Electrode (epo) Patents (Class 257/E31.124)
  • Publication number: 20120279556
    Abstract: Provided are a photovoltaic apparatus and a manufacturing method thereof. The photovoltaic apparatus includes: substrate; a back electrode layer disposed on the substrate; a plurality of first intermediate layers disposed on the back electrode layer; a plurality of second intermediate layers disposed on the back electrode layer and each disposed between the first intermediate layers; light absorbing layers disposed on the first intermediate layers and the second intermediate layers; and a front electrode layer disposed on the light absorbing layer.
    Type: Application
    Filed: October 7, 2010
    Publication date: November 8, 2012
    Applicant: LG INNOTEK CO., LTD.
    Inventor: Chul Hwan Choi
  • Publication number: 20120282718
    Abstract: In accordance with an embodiment, a diode comprises a substrate, a dielectric material including an opening that exposes a portion of the substrate, the opening having an aspect ratio of at least 1, a bottom diode material including a lower region disposed at least partly in the opening and an upper region extending above the opening, the bottom diode material comprising a semiconductor material that is lattice mismatched to the substrate, a top diode material proximate the upper region of the bottom diode material, and an active diode region between the top and bottom diode materials, the active diode region including a surface extending away from the top surface of the substrate.
    Type: Application
    Filed: July 20, 2012
    Publication date: November 8, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Anthony J. Lochtefeld
  • Publication number: 20120282731
    Abstract: A method of photoplating a metal contact onto a surface of a cathode of a photovoltaic device is provided using light induced plating technique. The method comprises: a) immersing the photovoltaic device in a solution of metal ions, where the metal ions are a species which is to be plated onto the surface of the cathode of the photovoltaic device; and b) illuminating the photovoltaic device, using a light source of time varying intensity. This results in nett plating which is faster in a direction normal to the surface of the cathode than in a direction in a plane of the surface of the cathode.
    Type: Application
    Filed: November 3, 2010
    Publication date: November 8, 2012
    Inventors: Ly Mai, Alison Maree Wenham, Stuart Ross Wenham
  • Publication number: 20120282732
    Abstract: The present disclosure relates to a method for manufacturing a back electrode-type solar cell. The method for manufacturing a back electrode-type solar cell disclosed herein includes: A method for manufacturing a back electrode-type solar cell, comprising: preparing an n-type crystalline silicon substrate; forming a thermal diffusion control film on a front surface, a back surface and a side surface of the substrate; forming a p-type impurity region by implanting p-type impurity ions onto the back surface of the substrate; patterning the thermal diffusion control film so that the back surface of the substrate is selectively exposed; and forming a high-concentration back field layer (n+) at an exposed region of the back surface of the substrate and a low-concentration front field layer (n?) at the front surface of the substrate by performing a thermal diffusion process, and forming a p+ emitter region by activating the p-type impurity region.
    Type: Application
    Filed: January 18, 2011
    Publication date: November 8, 2012
    Applicant: HYUNDAI HEAVY INDUSTRIES CO., LTD.
    Inventors: Min Sung Jeon, Won Jae Lee, Eun Chel Cho, Joon Sung Lee
  • Publication number: 20120279563
    Abstract: Interconnect apparatus and methods for their manufacture are disclosed. An example method for forming a solderable connection to a conductive surface may include forming one or more solderable metal regions on the conductive surface, for example an aluminum surface. The method may comprise applying a solder layer to the one or more solderable metal regions to form one or more soldered metal regions. The method may further comprise depositing one or more solderable metal regions on the conductive surface by plasma deposition. In other examples, the one or more solderable metal regions may be sputtered. Additionally, the method may comprise applying a flux to the one or more solderable metal regions prior to applying the solder layer to the one or more solderable metal regions. An interconnect ribbon may be soldered to at least one of the solder layer or the solderable metal regions. Associated interconnect apparatus are also provided.
    Type: Application
    Filed: May 2, 2011
    Publication date: November 8, 2012
    Inventors: Daniel Meier, Vijay Yelundur, Vinodh Chandrasekaran, Adam M. Payne, Sheri X. Wang
  • Publication number: 20120279547
    Abstract: For contacting a silicon solar cell a pre-processed silicon substrate with a frontside and a backside is provided. Then, aluminum is deposited on the backside of the pre-processed silicon substrate, wherein aluminum-free regions remain on the backside. Then, a silver-free layer suitable for soldering on the backside of the silicon substrate is deposited so that the silver-free layer suitable for soldering covers at least the aluminum-free regions on the backside.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 8, 2012
    Inventors: Wieland Pethe, Harald Hahn, Kristian Schlegel, Torsten Weber, Martin Kutzer
  • Publication number: 20120273815
    Abstract: The present invention related to a lift-off structure adapted to a substrate having a photoelectric device, the structure comprising: a buffer layer, forming on the substrate; an upper sacrificial layer, forming on the buffer layer; an etch stop layer, forming on the upper sacrificial layer, and the photoelectric device structure forming on the etch stop layer.
    Type: Application
    Filed: October 14, 2011
    Publication date: November 1, 2012
    Applicant: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: YU-LI TSAI, Chih-Hung Wu, Jei-Li Ho, Chao-Huei Huang, Min-De Yang
  • Publication number: 20120273039
    Abstract: Disclosed are a solar cell apparatus and a method for manufacturing the same. The solar cell apparatus includes a substrate, a back electrode layer on the substrate, a light absorbing layer on the back electrode layer, and a front electrode layer on the light absorbing layer. An outer lateral side of the back electrode layer is aligned on a plane different from a plane of an outer lateral side of the front electrode layer. In the solar cell apparatus, short is prevented between the back and front electrode layers.
    Type: Application
    Filed: September 30, 2010
    Publication date: November 1, 2012
    Applicant: LG INNOTEK CO., LTD.
    Inventor: Hi Sun Pak
  • Publication number: 20120276681
    Abstract: The invention relates to a serial connection of thin layer solar cells. The aim of the invention is to provide a structuring method which provides a reliable and effective connection, prevents short-circuits and enlarges usable solar cell surfaces. The aim of the invention is achieved according to claims 1 and 14, the solution being suitable for mass production.
    Type: Application
    Filed: September 17, 2010
    Publication date: November 1, 2012
    Applicant: SOLARION AG PHOTOVOLTAIK
    Inventors: Karsten Otte, Alexander Braun, Steffen Ragnow, Andreas Rahm, Christian Scheit
  • Publication number: 20120266953
    Abstract: The present invention provides a method of coating a substrate with a zinc oxide film, the method comprising the steps of: Providing a substrate with at least one substantially flat surface; Subjecting said surface at least partially to a plasma-etching process; Depositing a layer on said etched surface, the layer comprising zinc oxide. The method according to the invention is particularly suitable for manufacturing solar cells with an improved efficiency.
    Type: Application
    Filed: September 27, 2010
    Publication date: October 25, 2012
    Applicant: Oerlikon Solar AG Trubbach
    Inventors: Daniel Borrello, Evelyne Vallat-Sauvain, Ulrich Kroll, Johannes Meier
  • Publication number: 20120268722
    Abstract: In one an embodiment, there is provided an assembly comprising at least one detector. Each of the at least one detector includes a substrate having a doped region of a first conduction type, a layer of dopant material of a second conduction type located on the substrate, a diffusion layer formed within the substrate and in contact with the layer of dopant material and the doped region of the substrate, wherein a doping profile, which is representative of a doping material concentration of the diffusion layer, increases from the doped region of the substrate to the layer of dopant material, a first electrode connected to the layer of dopant material, and a second electrode connected to the substrate. The diffusion layer is arranged to form a radiation sensitive surface.
    Type: Application
    Filed: February 17, 2012
    Publication date: October 25, 2012
    Applicant: ASML Netherlands B.V.
    Inventors: Stoyan NIHTIANOV, Arie Johan Van Der Sijs, Bearrach Moest, Petrus Wilhelmus Josephus Maria Kemper, Marc Antonius Maria Haast, Gerardus Wilhelmus Petrus Baas, Lis Karen Nanver, Francesco Sarubbi, Antonius Andreas Johannes Schuwer, Gregory Micha Gommeren, Martijn Pot, Thomas Ludovicus Maria Sholtes
  • Publication number: 20120266947
    Abstract: The invention relates to a solar cell that comprises a planar semiconductor substrate with a front and a back; a multitude of holes that interconnect the front and the back; and current-collecting electrical contacts that are exclusively arranged on the back. The front comprises highly doped regions and lightly doped regions of a first type such that in each case the holes are situated in a highly doped region or adjoin such a region. According to a first aspect of the invention, the highly doped regions are arranged locally around the holes. According to a second aspect of the invention, the front comprises at least one region without holes, and the highly doped regions comprise one region or several regions that extends/extend to the at least one hole-free region. The invention furthermore relates to methods for manufacturing such solar cells.
    Type: Application
    Filed: December 7, 2007
    Publication date: October 25, 2012
    Applicant: Q-CELLS SE
    Inventors: Joerg Mueller, Robert Wade, Markus Hlusiak
  • Publication number: 20120270341
    Abstract: A method for large scale manufacture of photovoltaic devices includes loading a substrate into a load lock station and transferring the substrate in a controlled ambient to a first process station. The method includes using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate. The method includes transferring the substrate to a second process station, and using a second physical deposition process in the second process station to cause formation of a second layer overlying the surface region of the substrate. The method further includes repeating the transferring and processing until all thin film materials of the photovoltaic devices are formed. In an embodiment, the invention also provides a method for large scale manufacture of photovoltaic devices including feed forward control.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 25, 2012
    Applicant: Stion Corporation
    Inventors: Howard W. H. Lee, Chester A. Farris, III
  • Publication number: 20120266959
    Abstract: A semiconductor electrode for a dye-sensitized solar cell, a method of manufacturing the semiconductor electrode, and a dye-sensitized solar cell having the semiconductor electrode are provided which can prevent electrons from being transported to an electrolyte from the surface of the semiconductor electrode to raise photocurrent and photovoltage and to improve an energy conversion efficiency by forming a semiconductor oxide layer on a conductive substrate, forming an organic layer in a core-shell structure thereon, and adsorbing a dye on the organic layer through the use of an electrostatic attraction.
    Type: Application
    Filed: October 14, 2011
    Publication date: October 25, 2012
    Applicant: Sungkyunkwan University Foundation for Corporate Collaboration
    Inventors: Byungyou Hong, Hyung Jin Kim, Minjae Shin, Ju Mi Kim
  • Publication number: 20120270366
    Abstract: Formulations and methods of making semiconductor devices and solar cell contacts are disclosed. The invention provides a method of making a semiconductor device or solar cell contact including ink jet printing onto a silicon wafer an ink composition, typically including a high solids loading (20-80 wt %) of glass frit and preferably a conductive metal such as silver. The wafer is then fired such that the glass frit fuses to form a glass, thereby forming a contact layer to silicon.
    Type: Application
    Filed: July 6, 2012
    Publication date: October 25, 2012
    Applicant: FERRO CORPORATION
    Inventors: Chandrashekhar S. Khadilkar, Srinivasan Sridharan, Paul S. Seman, Aziz S. Shaikh
  • Publication number: 20120270365
    Abstract: A method for manufacturing a solar cell according to an exemplary embodiment includes: forming a first doping film on a substrate; patterning the first doping film so as to form a first doping film pattern and so as to expose a portion of the substrate; forming a diffusion prevention film on the first doping film pattern so as to cover the exposed portion of the substrate; etching the diffusion prevention film so as to form spacers on lateral surfaces of the first doping film pattern; forming a second doping film on the first doping film pattern so as to cover the spacer and exposed substrate; forming a first doping region on the substrate surface by diffusing an impurity from the first doping film pattern into the substrate; and forming a second doping region on the substrate surface by diffusing an impurity from the second doping film pattern into the substrate.
    Type: Application
    Filed: July 3, 2012
    Publication date: October 25, 2012
    Inventors: Young Su KIM, Doo-Youl LEE
  • Publication number: 20120264252
    Abstract: A solar cell and a method of manufacturing the same are disclosed. The solar cell includes a substrate of a first conductive type having at least one via hole; an emitter layer only on at least a portion of the via hole and at least one selected from a group consisting of an incident surface and side surfaces of the substrate, the emitter layer having a second conductive type opposite the first conductive type; at least one first electrode on the incident surface, the first electrode being electrically connected to the emitter layer; a second electrode connected to an opposite surface to the incident surface; and at least one first electrode current collector on the opposite surface, the at least one first electrode current collector being insulated from the second electrode and being electrically connected to the at least one first electrode through the via hole.
    Type: Application
    Filed: May 18, 2012
    Publication date: October 18, 2012
    Inventors: Jihoon KO, Juwan KANG, Jonghwan KIM, Daehee JANG
  • Publication number: 20120260978
    Abstract: In one aspect of the present invention, a photovoltaic device is provided. The photovoltaic device includes a transparent layer; a first porous layer disposed on the transparent layer, wherein the first porous layer comprises a plurality of pores extending through a thickness of the first porous layer; a first semiconductor material disposed in the plurality of pores to form a patterned first semiconductor layer; and a second semiconductor layer disposed on the first porous layer and the patterned first semiconductor layer, wherein the patterned first semiconductor layer is substantially transparent. Method of making a photovoltaic device is also provided.
    Type: Application
    Filed: April 18, 2011
    Publication date: October 18, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, Renee Mary Whitney, Faisal Razi Ahmad
  • Publication number: 20120262622
    Abstract: An image sensor includes first pixels in an active region and second pixels in an optical black region of a pixel array. The first pixels have a gate that receives an active transfer control signal, and the second pixels have a gate that receives a passive transfer control signal, like a ground voltage.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 18, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yi Tae Kim, Sung-Ho Choi
  • Publication number: 20120255592
    Abstract: A photovoltaic panel includes a photovoltaic array, an electrically conductive busbar, a plurality of electrically conductive fingers and an electrically conductive ribbon. The electrically conductive busbar is disposed on the photovoltaic array and having a plurality of connection ribs. The electrically conductive fingers are disposed on the photovoltaic array and connected with the connection ribs respectively. The electrically conductive ribbon is soldered on the electrically conductive busbar, wherein a gap is formed between each electrically conductive finger and the electrically conductive ribbon.
    Type: Application
    Filed: July 26, 2011
    Publication date: October 11, 2012
    Applicant: GINTECH ENERGY CORPORATION
    Inventors: Kai-Sheng Chang, Chen-Chan Wang, Tzu-Chun Chen, Chia-Hung Wu, Hung-Ming Lin, Ching-Tang Tsai, Tien-Szu Chen, Kuei-Wu Huang
  • Publication number: 20120256286
    Abstract: A photoelectric conversion device includes: a first substrate of which end portions are cut off so as to slope or with a groove shape; a photodiode and an amplifier circuit over the first substrate; a first electrode electrically connected to the photodiode and provided over one end portion of the first substrate; a second electrode electrically connected to the amplifier circuit and provided over an another end portion of the first substrate; and a second substrate having third and fourth electrodes thereon. The first and second electrodes are attached to the third and fourth electrodes, respectively, with a conductive material provided not only at the surfaces of the first, second, third, and fourth electrodes facing each other but also at the side surfaces of the first and second electrodes to increase the adhesiveness between a photoelectric conversion device and a member on which the photoelectric conversion device is mounted.
    Type: Application
    Filed: June 21, 2012
    Publication date: October 11, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Naoto KUSUMOTO, Kazuo NISHI, Yuusuke SUGAWARA
  • Patent number: 8283199
    Abstract: Embodiments of the present invention generally provide methods for forming conductive structures on the surfaces of a solar cell. In one embodiment, conductive structures are formed on the front surface of a solar cell by depositing a sacrificial polymer layer, forming patterned lines in the sacrificial polymer via a fluid jet, depositing metal layers over the front surface of the solar cell, and performing lift off of the metal layers deposited over the sacrificial polymer by dissolving the sacrificial polymer with a water based solvent.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: October 9, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Virendra V. S. Rana, Chris Eberspacher, Karl J. Armstrong, Nety M. Krishna
  • Publication number: 20120247527
    Abstract: A thermoelectric device and methods thereof. The thermoelectric device includes nanowires, a contact layer, and a shunt. Each of the nanowires includes a first end and a second end. The contact layer electrically couples the nanowires through at least the first end of each of the nanowires. The shunt is electrically coupled to the contact layer. All of the nanowires are substantially parallel to each other. A first contact resistivity between the first end and the contact layer ranges from 10?13 ?-m2 to 10?7 ?-m2. A first work function between the first end and the contact layer is less than 0.8 electron volts. The contact layer is associated with a first thermal resistance ranging from 10?2 K/W to 1010 K/W.
    Type: Application
    Filed: February 1, 2012
    Publication date: October 4, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Matthew L. Scullin, Madhav A. Karri, Adam Lorimer, Sylvain Muckenhirn, Gabriel A. Matus, Justin Tynes Kardel, Barbara Wacker
  • Publication number: 20120247528
    Abstract: A thin film photoelectric conversion module includes a substrate, a first electrode layer, at least one photoelectric conversion layer and a second electrode layer. The first electrode layer is deposited on the substrate, wherein the first electrode layer includes a plurality of first electrode rows extending along a current flow direction. Any immediately-adjacent two of the first electrode rows have a row of unoverlapped through holes formed therebetween. The photoelectric conversion layer is deposited on the first electrode layer. The second electrode layer is deposited on the photoelectric conversion layer.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Applicant: Du Pont Apollo Limited
    Inventors: Chen-Pang FU, Jia-Wei Ma
  • Publication number: 20120248563
    Abstract: A polarization organic photoelectric conversion device having a structure in which an organic photoelectric conversion layer is interposed between a first electrode and a second electrode, at least one of which is transparent, wherein the organic photoelectric conversion layer is one obtained by uniaxially orienting at least a portion thereof in the plane in advance.
    Type: Application
    Filed: March 20, 2012
    Publication date: October 4, 2012
    Applicant: Sony Corporation
    Inventors: Toru Udaka, Osamu Goto
  • Publication number: 20120247549
    Abstract: A solar cell includes: a light absorbing layer, a semiconductor layer disposed on a first surface of the light absorbing layer, a first electrode disposed on the semiconductor layer in a first direction of the semiconductor layer, a first passivation layer disposed on a second surface of the light absorbing layer, a second passivation layer disposed on the first passivation layer in a second direction opposite to the first direction of the semiconductor layer, a contact hole disposed in the first passivation layer and the second passivation layer and exposing a portion of the light absorbing layer, and a second electrode disposed on the second passivation layer in the second direction of the second passivation layer and connected with the light absorbing layer through the contact hole. The second passivation layer is made of a compound containing carbon.
    Type: Application
    Filed: November 11, 2011
    Publication date: October 4, 2012
    Applicants: SAMSUNG SDI CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyoung Jin Seo, Meemongkolkiat Vichai, Byong Gook Jeong
  • Publication number: 20120248492
    Abstract: The invention relates to an optoelectronic component, having —a carrier (1) comprising a first main surface (Ia), —at least one optoelectronic semiconductor chip (2) having no substrate, and —a contact metallization (3a, 3b), wherein —the carrier (1) is electrically insulating, —the at least one optoelectronic semiconductor chip (2) is fastened to the first main surface (Ia) of the carrier (1) by means of a bonding material (4), particularly a solder material, —the contact metallization (3a, 3b) covers at least one area of the first main surface (Ia) free of the optoelectronic semiconductor chip (2), and —the contact metallization (3a, 3b) is electrically conductively connected to the optoelectronic semiconductor chip (2).
    Type: Application
    Filed: August 31, 2010
    Publication date: October 4, 2012
    Applicant: Osram Opto Semiconductors GmbH
    Inventors: Klaus Müller, Günter Spath, Siegfried Herrmann, Ewald Karl Michael Günther, Herbert Brunner
  • Publication number: 20120247529
    Abstract: Back contact solar cell modules and methods of manufacturing the same. The solar cell module comprises a back surface with a plurality of first electrodes and a plurality of second electrodes formed thereon, the plurality of first electrodes and the plurality of second electrodes being of opposite polarities, the back surface being configured to form an electric field thereon of the opposite polarity as the plurality of first electrodes; a first connecting strip electrically connecting the plurality of first electrodes; and an insulative member between the back surface and the first connecting strip.
    Type: Application
    Filed: July 28, 2011
    Publication date: October 4, 2012
    Applicant: CSI Cells Co., Ltd
    Inventors: Lingjun Zhang, Jian Shen, Xusheng Wang, Jian Wu, Feng Zhang
  • Publication number: 20120240995
    Abstract: A rear-contact solar cell interconnect is disclosed. The rear-contact solar cell interconnect includes a first conductive foil with an opening and a second conductive foil. The first conductive foil is arranged to be electrically connected to a first polarity contact of a solar cell. The second conductive foil is arranged to be electrically connected to a second polarity contact of the solar cell through the opening of the first conductive foil. The solar cell includes a first surface arranged to receive solar irradiation and a second surface substantially opposite the first surface. The first polarity contact and the second polarity contact are provided on the second surface of the solar cell.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 27, 2012
    Inventor: Kevin Michael Coakley
  • Publication number: 20120234375
    Abstract: A thin film solar cell includes, on a substrate, a first electrode layer formed of a transparent conductive material, a photoelectric conversion layer, and a second electrode layer including a conductive material that reflects light. The thin film solar cell includes a plurality of unit solar battery cells divided by scribe lines. The second electrode layer and the first electrode layer of the unit solar battery cell adjacent to the second electrode layer are connected in the scribe line formed in the photoelectric conversion layer. The unit solar battery cells are electrically connected in series. The scribe lines on both sides of at least one of the unit solar battery cells are formed such that the unit solar battery cell held between the scribe lines meanders while having fixed width in a predetermined direction and have same shapes that overlap when the scribe lines translate in the predetermined direction.
    Type: Application
    Filed: April 8, 2010
    Publication date: September 20, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Keisuke Nakamura, Hidetada Tokioka, Takeo Furuhata
  • Publication number: 20120235272
    Abstract: A range image sensor 1 is provided with a semiconductor substrate 1A having a light incident surface 1BK and a surface 1FT opposite to the light incident surface 1BK, a photogate electrode PG, first and second gate electrodes TX1, TX2, first and second semiconductor regions FD1, FD2, and a third semiconductor region SR1. The photogate electrode PG is provided on the surface 1FT. The first and second gate electrodes TX1, TX2 are provided next to the photogate electrode PG. The first and second semiconductor regions FD1, FD2 accumulate respective charges flowing into regions immediately below the respective gate electrodes TX1, TX2. The third semiconductor region SR1 is located away from the first and second semiconductor regions FD1, FD2 and on the light incident surface 1BK side and has the conductivity type opposite to that of the first and second semiconductor regions FD1, FD2.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 20, 2012
    Inventors: Mitsuhito MASE, Takashi SUZUKI, Tomohiro YAMAZAKI
  • Publication number: 20120235270
    Abstract: A semiconductor apparatus including a substrate, a pixel array on the substrate, first and second conductive pads between which the substrate locates is provided. The apparatus also comprises an insulating layer arranged between the substrate and the first conductive pad; a third conductive pad arranged between the substrate and the insulating layer; a first conductive member which passes through the insulating layer and connects the first and third conductive pads to each other; and a second conductive member which passes through the substrate and connects the second and third conductive pads to each other. The pixel array further comprises a conductive line connected to circuit elements included in pixels aligned in a row or column direction. The first conductive pad is connected to the conductive line in an interval between the pixels.
    Type: Application
    Filed: February 27, 2012
    Publication date: September 20, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Hiroshi Wayama, Chiori Mochizuki, Minoru Watanabe, Keigo Yokoyama, Masato Ofuji, Jun Kawanabe, Kentaro Fujiyoshi
  • Publication number: 20120234392
    Abstract: A photoelectric conversion device with high open-circuit voltage and high conversion efficiency is provided. A photoelectric conversion device including a p-n junction is formed by stacking a first semiconductor layer having p-type conductivity, a second semiconductor layer having p-type conductivity, and a third semiconductor layer having n-type conductivity between a pair of electrodes. The first semiconductor layer is a compound semiconductor layer, and the second semiconductor layer is formed using an organic compound and an inorganic compound. A material having a high hole-transport property is used as the organic compound, and a transition metal oxide having an electron-accepting property is used as the inorganic compound.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 20, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Yoshinobu Asami, Shunpei Yamazaki
  • Publication number: 20120228496
    Abstract: An uncooled infrared imaging element includes a pixel region, a device region, and a support substrate. The pixel region includes heat-sensitive pixels. The heat-sensitive pixels are arranged in a matrix and change current-voltage characteristics thereof in accordance with receiving amounts of infrared. The device region includes at least one of a drive circuit and a readout circuit which includes a MOS transistor. The drive circuit drives the heat-sensitive pixels. The readout circuit detects signals of the heat-sensitive pixels. The support substrate is provided with a cavity region to be under pixel region and the MOS transistor.
    Type: Application
    Filed: September 18, 2011
    Publication date: September 13, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masako OGATA, Ikuo Fujiwara, Hiroto Honda, Kazuhiro Suzuki, Honam Kwon, Risako Ueno, Hitoshi Yagi, Masaki Atsuta, Koichi Ishii, Keita Sasaki, Hideyuki Funaki
  • Publication number: 20120228732
    Abstract: A photoelectric conversion device including a first substrate; a second substrate located generally opposite to the first substrate; a first grid pattern located on the first substrate, wherein the first grid pattern includes a first finger electrode; a first collector electrode spaced from the first finger electrode and extending in a direction that intersects the first finger electrode; and a first connecting electrode connecting the first finger electrode and the first collector electrode; and a second grid pattern located on the second substrate, wherein the second grid pattern includes a second finger electrode; a second collector electrode spaced from the second finger electrode and extending in a direction that intersects the second finger electrode; and a second connecting electrode connecting the second finger electrode and the second collector electrode, wherein the first connecting electrode and the second connecting electrode are arranged alternately and do not overlap each other.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 13, 2012
    Inventor: Do-Young Park
  • Publication number: 20120227785
    Abstract: A solar battery cell and related methodology are provided which enable a TAB wire to be accurately connected to an intended position, thus allowing a possible increase in manufacturing costs to be suppressed. A solar battery cell includes a plurality of finger electrodes arranged on a light receiving surface of a photovoltaic substrate, and an alignment marking indicating a position where a TAB wire is to be connected to the finger electrodes via a conductive adhesive. The alignment marking has portions discontinuously provided on the light receiving surface along a line crossing two of the finger electrodes positioned nearest opposite ends of the light receiving surface.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Yasuo TSURUOKA, Kenzou Takemura, Masaki Fujii, Yusuke Asakawa
  • Publication number: 20120222742
    Abstract: A compound thin film solar cell of an embodiment includes: as a light-absorbing layer a semiconductor thin film which contains Cu, an element A (A is at least one element selected from a group consisting of Al, In and Ga) and Te, and has a chalcopyrite crystal structure, wherein a buffer layer that forms an interface with the light-absorbing layer is a compound which contains at least one element selected from Cd, Zn and a group consisting of In and Ga and at least one element selected from a group consisting of S, Se and Te, and has any crystal structure of a sphalerite structure, a wurtzite structure and a defect spinel structure, and a lattice constant “a” of the buffer layer with the sphalerite structure or a lattice constant “a” of the buffer layer at the time of converting the wurtzite structure or the defect spinel structure to the sphalerite structure is not smaller than 0.59 nm and not larger than 0.62 nm.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 6, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Naoyuki Nakagawa, Shinya Sakurada, Yasutaka Nishida, Satoshi Itoh, Michihiko Inaba
  • Publication number: 20120222737
    Abstract: A method of fabricating a hot carrier energy conversion structure, and a hot carrier energy conversion structure. The method comprises forming an energy selective contact ESC comprising a tunnelling layer; forming a carrier generation layer on the ESC; and forming a semiconductor contact without a tunnelling layer on the carrier generation layer.
    Type: Application
    Filed: July 2, 2010
    Publication date: September 6, 2012
    Applicants: Toyota Jidosha Kabushiki Kaisha, NewSouth Innovations Pty Limited
    Inventors: Gavin John Conibeer, Santosh Shrestha, Dirk Konig, Martin Andrew Green, Tomonori Nagashima, Yasuhiko Takeda, Tadashi Ito, Tomoyoshi Motohiro
  • Publication number: 20120222738
    Abstract: A conductive composition for a front electrode busbar of a silicon solar cell includes a metallic powder, a solder powder, a curable resin, a reducing agent, and a curing agent. A method of manufacturing a front electrode busbar of a silicon solar cell includes applying the composition to the front surface of the silicon solar cell wherein its front electrode finger line is formed. A substrate includes a front electrode busbar of a silicon solar cell, formed with a conductive composition. A silicon solar cell includes one or more electrodes containing a conductive composition including a conductive powder, a curable resin, a reducing agent, and a curing agent. A method of manufacturing the silicon solar cell includes forming a first electrode array with a first conductive composition, forming a second electrode, and forming a third electrode with a third conductive composition.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Soo Young OH, Yong Sung Eom, Jong Tae Moon, Kwang Seong Choi
  • Publication number: 20120222735
    Abstract: A solar cell is formed on an n-type semiconductor substrate having a p+ emitter layer by forming spaced-apart contact/protection structures on the emitter layer, depositing a blanket dielectric passivation layer over the substrate's upper surface, utilizing laser ablation to form contact openings through the dielectric layer that expose corresponding contact/protection structures, and then forming metal gridlines on the upper surface of the dielectric layer that are electrically connected to the contact structures by way of metal via structures extending through associated contact openings. The contact/protection structures serve both as protection against substrate damage during the contact opening formation process (i.e., to prevent damage of the p+ emitter layer caused by the required high energy laser pulses), and also serve as optional silicide sources that facilitate optimal contact between the metal gridlines and the p+ emitter layer.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 6, 2012
    Applicant: Palo Alto Research Center Incorporated
    Inventor: Baomin Xu
  • Publication number: 20120225515
    Abstract: Various laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional.
    Type: Application
    Filed: December 30, 2011
    Publication date: September 6, 2012
    Applicant: SOLEXEL, INC.
    Inventors: Mehrdad M. Moslehi, Virendra V. Rana
  • Publication number: 20120222736
    Abstract: Embodiments of the invention contemplate the formation of a high efficiency solar cell using novel methods to form metal contact structures of the solar cell device. In one embodiment, a solar cell device includes a substrate comprising a doped semiconductor material, a surface formed on the substrate having a second doped semiconductor layer having a conductivity type opposite to the first doped semiconductor material, a dielectric layer disposed on the surface of the substrate, a metal contact structure formed in the dielectric layer with a first predetermined cross sectional area, and a metal line formed on the metal contact structure with a second predetermined cross sectional area, wherein the second predetermined cross sectional area is larger than the first predetermined cross sectional area.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 6, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: James M. Gee, Charles F. Gay
  • Patent number: 8258519
    Abstract: Embodiments of the present disclosure relate to a novel semiconductor. In one aspect, the semiconductor may include a transparent layer having a first surface, a first doped layer, a second doped layer, and an active layer. The first doped layer may be formed over the first surface of the transparent layer and have a plurality of first-type electrodes formed thereon. The second doped layer may be formed over the first surface of the transparent layer and have a plurality of second-type electrodes formed thereon. The active layer may be formed between the first doped layer and the second doped layer. A distance between at least one of the first-type electrodes and a nearest other one of the first-type electrodes may be greater than each of respective distances between the at least one of the first-type electrodes and more than two of the second-type electrodes.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: September 4, 2012
    Assignee: Everlight Electronics Co., Ltd.
    Inventor: Chin-Yuan Hsu
  • Publication number: 20120220070
    Abstract: A method of manufacturing a solar cell includes the following steps. An ion implantation process is performed to a first surface of a substrate to form a first doping layer. Then, the ion implantation process is performed to a second surface of the substrate to form a second doping layer. After that, an annealing process is performed to the structure formed by the substrate, the first doping layer and the second doping layer, and forming a first passivation layer on the first doping layer and a second passivation layer on the second doping layer by the annealing process. A third passivation layer is formed on the first passivation layer formed after the annealing process and a fourth passivation layer is formed on the second passivation layer formed after the annealing process. Afterward, conductive electrodes are formed on the third passivation layer and the fourth passivation layer, respectively.
    Type: Application
    Filed: July 27, 2011
    Publication date: August 30, 2012
    Applicant: GINTECH ENERGY CORPORATION
    Inventors: Yan-Kai CHIOU, Ming-Chin KUO, Ching-Tang TSAI, Tien-Szu CHEN, Kuei-Wu HUANG
  • Publication number: 20120217604
    Abstract: A solid-state imaging device includes a semiconductor layer where a pixel is formed in a pixel region and a semiconductor element is formed in a side opposite to where incident light is incident, a wiring layer provided on the semiconductor layer to cover the semiconductor element, a support substrate provided to oppose the wiring layer in a wiring layer surface opposite to the semiconductor layer, and an adhesion layer which adheres the wiring layer and the support substrate, where the wiring layer includes a pad electrode and an opening is formed so the pad electrode is exposed, a convex section is provided where the pad electrode is formed in at least a wiring layer surface opposing the support substrate or a support substrate surface opposing the wiring layer, and the adhesion layer is formed thinner at the formation portion of the pad electrode than a portion of the pixel region.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 30, 2012
    Applicant: SONY CORPORATION
    Inventor: Shunichi Shibuki
  • Publication number: 20120220069
    Abstract: An embodiment of this invention provides a method to produce a conductive thin film, which comprises: providing a substrate; forming a first metal oxide layer on the substrate; forming an indium-free metal layer on the first metal oxide layer; and forming a second metal oxide layer on the indium-free layer, wherein the first metal oxide layer, the indium-free metal layer, and the second oxide layer are all solution processed.
    Type: Application
    Filed: May 18, 2011
    Publication date: August 30, 2012
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: CHING-FUH LIN, MING-SHIUN LIN
  • Publication number: 20120219831
    Abstract: The present invention is directed to a hybrid device comprising: an energy converting unit comprising a first electrode, a second electrode and an energy converting medium arranged between the first electrode and the second electrode, wherein the energy conversion takes place between the first electrode and the second electrode; an energy charge storing unit comprising a first electrode, a second electrode and an electrolyte medium; wherein the energy charge is stored between the first and the second electrode; the second electrode of the energy converting unit and the second electrode of the energy charge storing unit being a shared electrode electrically connecting the energy converting unit and the energy charge storing unit; and wherein the shared electrode comprises a metal and a nanostructured material. The present invention is also directed to a method of manufacturing such a hybrid device.
    Type: Application
    Filed: August 20, 2009
    Publication date: August 30, 2012
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Wai Fatt Mak, Tsyh Ying Grace Wee, Teddy Salim, Madhavi Srinivasan, Subodh Mhaisalkar, Yin Chiang Freddy Boey
  • Publication number: 20120220073
    Abstract: Provided are methods of fabricating a solar cell and a vacuum deposition apparatus used therefor. The method may include forming a lower electrode on a substrate, forming a light absorption layer on the lower electrode, forming a buffer layer on the light absorption layer, and forming a window electrode layer on the buffer layer. The forming of the buffer layer may include a deposition step of forming a cationic metal material and a diffusion step of diffusing an anionic non-metal material into the cationic metal material.
    Type: Application
    Filed: January 12, 2012
    Publication date: August 30, 2012
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Rae-Man PARK
  • Publication number: 20120220071
    Abstract: A screen mask has a mesh, a frame, and at least one emulsion pattern. The mesh includes a squeeze surface pressed by a squeegee, and a discharge surface discharging a paste. The frame fixes an edge of the mesh. The emulsion pattern is placed on the discharge surface and includes a main pattern, and an auxiliary pattern spaced apart from the main pattern.
    Type: Application
    Filed: November 17, 2011
    Publication date: August 30, 2012
    Inventors: Young-Su Kim, Doo-Youl Lee, Sung-Chul Lee
  • Publication number: 20120220074
    Abstract: An apparatus and method for producing a dye-sensitized cell are provided, in which a pre-transparent electrode and an opposite electrode are partially bonded, dye molecules are applied to the bonded electrodes followed by washing, an electrolyte is injected, and then the electrodes are hermetically sealed. With the apparatus and method, the manufacturing cost can be reduced and the manufacturing process can be simplified.
    Type: Application
    Filed: May 4, 2012
    Publication date: August 30, 2012
    Applicants: SEWON CO., LTD., DMS CO., LTD.
    Inventors: Chun-Seong Park, Jong Min Kim, Jung Min Hwang, Gang-Beom Kim, Jeong-Yong Eum, Hyun-Seung Cho