Optical Element Associated With Device (epo) Patents (Class 257/E31.127)
  • Patent number: 10802214
    Abstract: In an example, a photonic system and method include a photonic integrated circuit (PIC) including a silicon (Si) waveguide and a first silicon nitride (SiN) waveguide. The system also includes an interposer including a second SiN waveguide including vertical tapers on the second SiN waveguide by increasing a thickness of the second SiN waveguide in a direction toward the first SiN waveguide to allow an adiabatic optical mode transfer and decreasing the thickness of the second SiN waveguide in a direction away from the first SiN waveguide to inhibit the optical mode transfer.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: October 13, 2020
    Assignee: II-VI Delaware Inc.
    Inventors: Daniel Mahgerefteh, Jin-Hyoung Lee, Bernd Huebner
  • Patent number: 10454411
    Abstract: The present invention aims to provide a light-concentrating film capable of concentrating at least one of direct sunlight and diffuse sunlight with high efficiency; a photovoltaic module having the light-concentrating film; and a transfer mold (die) for producing the light-concentrating film. The present invention relates to a light-concentrating film including alternating fine concavo-convex structure on at least one surface, the film having a concavo-convex height (H) of 0.05 to 15 ?m and a concavo-convex pitch (P) of 0.05 to 50 ?m, the film concentrating at least one of direct sunlight and diffuse sunlight.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: October 22, 2019
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Kazuyuki Satoh, Tetsuya Matsuura, Shigehito Sagisaka
  • Patent number: 9634050
    Abstract: Fabricating an optics wafer includes providing a wafer including a core region composed of a glass-reinforced epoxy. The wafer further includes a first resin layer on a top surface of the core region and a second resin layer on a bottom surface of the core region. The core region and first and second resin layers are substantially non-transparent for a specific range of the electromagnetic spectrum. The wafer further includes vertical transparent regions that extend through the core region and the first and second resin layers and are composed of a solid material that is substantially transparent for the specific range of the electromagnetic spectrum. The wafer is thinned, and optical structures are provided on one or more exposed surfaces of at least some of the transparent regions.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 25, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventor: Hartmut Rudmann
  • Patent number: 9041133
    Abstract: A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a rear face. A semiconductor region has an opening overlying at least one of first and second light sensing elements, the semiconductor region having a first thickness between the first light sensing element and the rear face and a second thickness between the second light sensing element and the rear face. A light-absorbing material overlies the semiconductor region within the opening above at least one of the light sensing elements such that the first and second light sensing elements receive light of substantially the same intensity.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: May 26, 2015
    Assignee: NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Piyush Savalia, Craig Mitchell
  • Patent number: 9034682
    Abstract: A method of manufacturing a backside illuminated image sensor, including forming a first isolation layer in a first semiconductor layer, such that the first isolation layer defines pixels of a pixel array in the first semiconductor layer, forming a second semiconductor layer on a first surface of the first semiconductor layer, forming a second isolation layer in the second semiconductor layer, such that the second isolation layer defines active device regions in the second semiconductor layer, forming photo detectors and circuit devices by implanting impurities into a first surface of the second semiconductor layer, the first surface of the second semiconductor layer facing away from the first semiconductor layer, forming a wiring layer on the first surface of the second semiconductor layer, and forming a light filter layer on a second surface of the first semiconductor layer.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: May 19, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun-Sub Shim, Jung-Chak Ahn, Bum-Suk Kim, Kyung-Ho Lee
  • Patent number: 9035408
    Abstract: A ramped etalon cavity structure and a method of fabricating same. A bi-layer stack is deposited on a substrate. The bi-layer stack includes a plurality of bi-layers. Each bi-layer of the plurality of bi-layers includes an etch stop layer and a bulk layer. A three dimensional photoresist structure is formed by using gray-tone lithography. The three dimensional photoresist is plasma etched into the bi-layer stack, thereby generating an etched bi-layer stack. The etched bi-layer stack is chemically etched with a first chemical etchant to generate a multiple-step structure on the substrate, wherein the first chemical etchant stops at the etch stop layer.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: May 19, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Andrew J. Boudreau, Michael K. Yetzbacher, Marc Christophersen, Bernard F. Phlips
  • Patent number: 9029970
    Abstract: Provided is a semiconductor light receiving device including: a semiconductor substrate; a semiconductor layer laminated on the semiconductor substrate and including an upper surface portion; a reflecting film formed to cover the upper surface portion of the semiconductor layer and including a principal reflecting region and an upper surface; and an upper electrode formed to cover at least one portion of the upper surface of the reflecting film, and including a junction portion extending through the reflecting file to be provided in contact with the upper surface portion of the semiconductor layer, the junction portion of the upper electrode surrounding a portion of a circumference of the principal reflecting region of the reflecting film, the principal reflecting region being connected to a region of the reflecting film located outside the junction portion, in which the semiconductor light receiving device detects light entering from another side of the semiconductor substrate.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 12, 2015
    Assignee: Oclaro Japan, Inc.
    Inventors: Ryu Washino, Yasushi Sakuma, Hiroshi Hamada
  • Patent number: 9029176
    Abstract: The present invention achieves an optical characteristic exhibiting excellent sensitivity or the like, by increasing the opening dimension of an optical waveguide without changing the interconnection layout, so that the optical waveguide can surely be filled with a film having high refractive index. Pixel portion A of a solid-state imaging device includes photodiode PD formed on a semiconductor substrate; a first insulating film including a concave portion above photodiode PD; and a second insulating film formed on the first insulating film such that the concave portion is filled with the second insulating film. Peripheral circuit portion B of the solid-state imaging device includes an internal interconnection formed in the first insulating film and a pad electrode formed on the internal interconnection to be electrically connected to the internal interconnection. The pad electrode is formed on the second insulating film.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 12, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Hisashi Yano
  • Patent number: 9024401
    Abstract: The finding that with a reasonable effort a layer thickness and/or refractive index variation may be acquired which realizes different internal optical path lengths for impinging radiation whereby fluctuation of spectral sensitivity of the photodetector is reduced is used to provide image sensors with a less fluctuating spectral sensitivity with respect to different wavelengths, or photodetectors with a small fluctuation of the spectral sensitivity from photodetector to photodetector with respect to defined wavelengths, with a reasonable effort.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: May 5, 2015
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Frank Hochschulz, Stefan Dreiner, Uwe Paschen, Holger Vogt
  • Patent number: 9023681
    Abstract: The present invention discloses a method of fabricating a heterojunction battery, comprising the steps of: depositing a first amorphous silicon intrinsic layer on the front of an n-type silicon wafer, wherein the n-type silicon wafer may be a monocrystal or polycrystal silicon wafer; depositing an amorphous silicon p layer on the first amorphous silicon intrinsic layer; depositing a first boron doped zinc oxide thin film on the amorphous silicon p layer; forming a back electrode and an Al-back surface field on the back of the n-type silicon wafer; and forming a positive electrode on the front of the silicon wafer. In addition, the present invention further discloses a method of fabricating a double-sided heterojunction battery. In the present invention, the boron doped zinc oxide is used as an anti-reflection film in place of an ITO thin film; due to the special nature, especially the light trapping effect of the boron doped zinc oxide, the boron doped zinc oxide can achieve good anti-reflection.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: May 5, 2015
    Assignee: Chint Solar (Zhejiang) Co., Ltd.
    Inventors: Xinwei Niu, Cao Yu, Lan Ding, Junmei Rong, Shiyong Liu, Minghua Wang, Jinyan Hu, Weizhi Han, Yongmin Zhu, Hua Zhang, Tao Feng, Jianbo Jin, Zhanwei Qiu, Liyou Yang
  • Patent number: 9024403
    Abstract: An image sensor package and image sensor chip capable of being slenderized while enhancing the reliability with respect to physical impact are provided. The image sensor package includes an image sensor chip provided with a pixel domain at a central portion of an upper surface thereof, a substrate disposed at an upper side of the image sensor chip so as to be flip-chip bonded with respect to the image sensor chip, provided with a hole formed at a position corresponding to the pixel domain, and formed of organic material, a printed circuit board at which the substrate provided with the image sensor chip bonded thereto is mounted, and a solder ball configured to electrically connect the substrate to the printed circuit board.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae Sang Park, Hyo Young Shin
  • Patent number: 9013017
    Abstract: A method of making image sensor devices may include forming a sensor layer including image sensor ICs in an encapsulation material, bonding a spacer layer to the sensor layer, the spacer layer having openings therein and aligned with the image sensor ICs, and bonding a lens layer to the spacer layer, the lens layer including lens in an encapsulation material and aligned with the openings and the image sensor ICs. The method may also include dicing the bonded-together sensor, spacer and lens layers to provide the image sensor devices. Helpfully, the method may use WLP to enhance production.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Yonggang Jin, Laurent Herard, WeeChinJudy Lim
  • Patent number: 9006773
    Abstract: A housing for an optoelectronic component including a main housing body formed by a first plastics material, and which has a recess, and a coating formed by a second plastics material, and which, at least in a region of the recess, connects at least in places to the main housing body and is in direct contact with the main housing body, wherein the first plastics material is different from the second plastics material, and the first plastics material and the second plastics material differ from one another with regard to at least one of the following material properties: temperature resistance with regard to discoloration, temperature resistance with regard to deformation, temperature resistance with regard to destruction, and resistance to electromagnetic radiation.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: April 14, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Gertrud Kräuter, Bernd Barchmann
  • Patent number: 8999740
    Abstract: A solar cell according to an embodiment of the invention includes a substrate configured to have a plurality of via holes and a first conductive type, an emitter layer placed in the substrate and configured to have a second conductive type opposite to the first conductive type, a plurality of first electrodes electrically coupled to the emitter layer, a plurality of current collectors electrically coupled to the first electrodes through the plurality of via holes, and a plurality of second electrodes electrically coupled to the substrate. The plurality of via holes includes at least two via holes having different angles.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 7, 2015
    Assignee: LG Electronics Inc.
    Inventors: Daehee Jang, Jihoon Ko, Juwan Kang, Jonghwan Kim
  • Patent number: 8993411
    Abstract: A method for forming a pad in a wafer with a three-dimensional stacking structure is disclosed. The method includes bonding a device wafer that includes an Si substrate and a handling wafer, thinning a back side of the Si substrate, depositing an anti-reflective layer on the thinned back side of the Si substrate, depositing a back side dielectric layer on the anti-reflective layer, defining a space for a pad in the back side dielectric layer and forming vias that pass through the back side dielectric layer and the anti-reflective layer and contact back sides of super contacts which are formed on the Si substrate, filling one or more metals in the vias and the defined space for the pad, and removing a remnant amount of the metal filled in the space for the pad through planarization by a CMP (chemical mechanical polishing) process.
    Type: Grant
    Filed: February 23, 2013
    Date of Patent: March 31, 2015
    Assignee: Siliconfile Technologies Inc.
    Inventors: Heui-Gyun Ahn, Se-Jung Oh, In-Gyun Jeon, Jun-Ho Won
  • Patent number: 8987039
    Abstract: A process is provided for making a photovoltaic device comprising a silicon substrate comprising a p-n junction, the process comprising the steps of: forming an amorphous silicon carbide antireflective coating over at least one surface of the silicon substrate by chemical vapor deposition of a composition comprising a precursor selected from the group consisting of an organosilane, an aminosilane, and mixtures thereof, wherein the amorphous silicon carbide antireflective coating is a film represented by the formula SivCxNuHyFz, wherein v+x+u+y+z=100%, v is from 1 to 35 atomic %, x is from 5 to 80 atomic %, u is from 0 to 50 atomic %, y is from 10 to 50 atomic % and z is from 0 to 15 atomic %.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: March 24, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Patrick Timothy Hurley, Robert Gordon Ridgeway, Raymond Nicholas Vrtis, Mark Leonard O'Neill, Andrew David Johnson
  • Patent number: 8987751
    Abstract: According to example embodiments, a photodiode system may include a substrate, and at least one photodiode in the substrate, and a wideband gap material layer on a first surface of the substrate. The at least one photodiode may be between an insulating material in a horizontal plane. According to example embodiments, a back-side-illumination (BSI) CMOS image sensor and/or a solar cell may include a photodiode device. The photodiode device may include a substrate, at least one photodiode in the substrate, a wide bandgap material layer on a first surface of the substrate, and an anti-reflective layer (ARL) on the wide bandgap material layer.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hisanori Ihara
  • Patent number: 8987852
    Abstract: A method for manufacturing a solid-state image pickup device is provided. The image pickup apparatus includes a photoelectric conversion portion disposed on the semiconductor substrate, a first insulating film over the photoelectric conversion portion, functioning as an antireflection film, a second insulating film on the first insulating film, disposed corresponding to the photoelectric conversion portion, and a waveguide having a clad and a core whose bottom is disposed on the second insulating film. The method includes forming an opening by anisotropically etching part of a member disposed over the photoelectric conversion portion, thereby forming the clad, and forming the core in the opening. In the method, the etching is performed under conditions where the etching rate of the second insulating film is lower than the etching rate of the member.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: March 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takehito Okabe, Kentarou Suzuki, Taskashi Usui, Taro Kato, Mineo Shimotsusa, Shunsuke Takimoto
  • Patent number: 8981514
    Abstract: A semiconductor package includes a light transmissive cover having a conductive pattern, a substrate having a cavity, a semiconductor chip in the cavity of the substrate and electrically connected to the conductive pattern arranged on the light transmissive cover, and a blocking pattern between the light transmissive cover and the substrate.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Sung Ryu, Byoung-Rim Seo, In-Won O
  • Patent number: 8975109
    Abstract: A method for producing a solar battery cell, includes: a first step of forming an insulating film on one face side of a semiconductor substrate; a second step of forming an electrode forming groove in an electrode forming region on the insulating film; a third step of printing an electrode printing paste including metal particles as a main component to a width that covers the electrode forming groove and a region sandwiching the electrode forming groove on the insulating film and that is wider than a width of the electrode forming groove, and then drying the electrode printing paste; and a fourth step of forming an electrode with the width of the electrode forming groove by firing the electrode paste at a temperature that is equal to or higher than a melting point of the metal particles or that is equal to or higher than a eutectic temperature, and accumulating and solidifying the electrode paste on the electrode forming groove.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: March 10, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventor: Mitsunori Nakatani
  • Patent number: 8969986
    Abstract: An infrared photo-detector with multiple discrete regions of a first absorber material. These regions may have geometric shapes with sloped sidewalls. The detector also may include a second absorber region comprising a second absorber material that absorbs light of a shorter wavelength than the light absorbed by the multiple discrete absorber regions of the first absorber material. The geometric shapes may extend only through the first absorber material. Alternatively, the geometric shapes may extend partially into the second absorber region. The detector has a metal reflector coupled to the multiple discrete absorber regions. The detector also has a substrate containing the discrete absorber regions and the second absorber region. The substrate can further include geometric shaped features etched into the substrate, with those features formed on the side of the substrate opposite the side containing the discrete absorber regions and the second absorber region.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 3, 2015
    Assignee: HRL Laboratories, LLC
    Inventors: Daniel Yap, Rajesh D. Rajavel, Sarabjit Mehta, Hasan Sharifi
  • Patent number: 8969988
    Abstract: There is provided a solid-state imaging device including a semiconductor substrate, pixels each including a photoelectric conversion unit formed in the semiconductor substrate, a trench that is formed in the semiconductor substrate and separates the pixels that are adjacent, and a color filter that is formed above the photoelectric conversion unit of each of the pixels and buried in at least a part of the trench.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: March 3, 2015
    Assignee: Sony Corporation
    Inventors: Harumi Ikeda, Yasushi Tateshita
  • Patent number: 8963168
    Abstract: Many thousands of micro-LEDs (e.g., 25 microns per side) are deposited on a substrate. Some of the LEDs are formed to emit a peak wavelength of 450 nm (blue), and some are formed to emit a peak wavelength of 490 nm (cyan). A YAG (yellow) phosphor is then deposited on the LEDs, or a remote YAG layer is used. YAG phosphor is most efficiently excited at 450 nm and has a very weak emission at 490 nm. The two types of LEDs are GaN based and can be driven at the same current. The ratio of the two types of LEDs is controlled to achieve the desired overall color emission of the LED lamp. The blue LEDs optimally excite the YAG phosphor to produce white light having blue and yellow components, and the cyan LEDs broaden the emission spectrum to increase the CRI of the lamp while improving luminous efficiency. Other embodiments are described.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: February 24, 2015
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventor: Reuben Rettke
  • Patent number: 8963269
    Abstract: A light-transmissive member has a first principal face, a second principal face, and side faces. The first principal face has a first portion including a center of the first principal face and a second portion between the first portion and the side face sides. The member includes a plurality of altered portions formed between the first principal face and the second principal face so that the plurality of altered portions do not appear on the first principal face, the second principal face, and the side faces. Orthogonal projections of the plurality of altered portions onto the first principal face are included in the second portion.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: February 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takashi Miyake
  • Patent number: 8962375
    Abstract: A method of creating a reflective shield for an image sensor device includes depositing a first dielectric layer on a substrate, wherein a photodiode is on the substrate. The method further includes removing surface topography by performing chemical mechanical polishing (CMP) on the first dielectric layer. The method further includes patterning the substrate to define an area on a surface of the first dielectric layer, wherein the area is directly above the photodiode. The method further includes depositing a layer of a material with high reflectivity on the substrate, wherein the material fills the area on the surface of the first dielectric layer. The method further includes removing excess material with high reflectivity, wherein the reflective shield is formed and is embedded in the first dielectric layer. The method further includes depositing a second dielectric material on the substrate, wherein the second dielectric material covers the reflective shield.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hao Shih, Szu-Ying Chen, Hsing-Lung Chen, Jen-Cheng Liu, Dun-Nian Yaung, Volume Chien
  • Patent number: 8947566
    Abstract: The first face of the pad is situated between the front-side face of the second semiconductor substrate and a hypothetical plane including and being parallel to the front-side face, and a second face of the pad that is a face on the opposite side of the first face is situated between the first face and the front-side face of the second semiconductor substrate, and wherein the second face is connected to the wiring structure so that the pad is electrically connected to the circuit arranged in the front-side face of the second semiconductor substrate via the wiring structure.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: February 3, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Masahiro Kobayashi, Mineo Shimotsusa
  • Patent number: 8946611
    Abstract: A color filter is formed using a simple manufacturing method, and bias application to a pixel separating electrode allows sensitivity in low illumination intensity to be improved. In a solid-state imaging element, in which a plurality of unit pixel sections are disposed two dimensionally on a side closer to a front surface of a semiconductor substrate or a semiconductor layer, each unit pixel section having a light receiving section for generating a signal charge by light irradiation, an adjoining unit pixel section is formed in the same color to allow for lesser alignment accuracy of the color filter. A pixel separating electrode is formed in the adjoining unit pixel section, and a signal charge is shared by bias application during low illumination intensity, thereby improving an effective photodiode area.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: February 3, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroshi Iwata
  • Patent number: 8948561
    Abstract: A waveguide is provided on which an electromagnetic wave impinges, the electromagnetic wave having a wavelength ? included in a given interval ?? of interest centered on a ?centr. The waveguide comprises a film defining a surface on a plane on which the electromagnetic waves are apt to impinge, having a thickness in a direction substantially perpendicular to the surface, the film being realized in a material having a first refractive index; a plurality of scatterers being randomly distributed in two directions in at least a portion of the surface of the film, the scatterers having a substantially constant cross section along said substantially perpendicular direction. The scatterers are realized in a material having a second refractive index lower than the first refractive index, wherein the wavelength of the incident electromagnetic waves is comprised between 0.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 3, 2015
    Assignee: CNR—Consiglio Nazionale Delle Ricerche
    Inventors: Diederik Sybolt Wiersma, Francesco Riboli, Kevin Vynck, Matteo Burresi
  • Patent number: 8946849
    Abstract: A device includes a semiconductor substrate having a front side and a backside. A plurality of image sensors is disposed at the front side of the semiconductor substrate. A plurality of clear color-filters is disposed on the backside of the semiconductor substrate. A plurality of metal rings encircles the plurality of clear color-filters.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuang-Ji Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Feng-Chi Hung
  • Patent number: 8941159
    Abstract: Embodiments of an apparatus including a color filter arrangement formed on a substrate having a pixel array formed therein. The color filter arrangement includes a clear filter having a first clear hard mask layer and a second clear hard mask layer formed thereon, a first color filter having the first clear hard mask layer and the second hard mask layer formed thereon, a second color filter having the first clear hard mask layer formed thereon, and a third color filter having no clear hard mask layer formed thereon. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: January 27, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai, Howard E. Rhodes
  • Patent number: 8941202
    Abstract: A method for forming an image sensor device is provided. First, a lens is provided and a first sacrificial element is formed thereon. An electromagnetic interference layer is formed on the lens and the first sacrificial element, and the first sacrificial element and electromagnetic interference layer thereon are removed to form an electromagnetic interference pattern having an opening exposing a selected portion of the lens. A second sacrificial element is formed in the opening to cover a center region of the selected portion of the lens. A peripheral region of the selected portion of the lens remains exposed. A light-shielding layer is formed on the electromagnetic interference pattern, second sacrificial element, and peripheral region of the selected portion of the lens. The second sacrificial element and light-shielding pattern are removed to expose the center region of the selected portion of the lens as a light transmitting region.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: January 27, 2015
    Assignees: OmniVision Technologies, Inc., VisEra Technologies Company Limited
    Inventors: Ming-Kai Liu, Tzu-Wei Huang, Jui-Hung Chang, Chia-Hui Huang, Teng-Sheng Chen
  • Patent number: 8928102
    Abstract: The present application disclosed various embodiments of improved performance optically coated semiconductor devices and the methods for the manufacture thereof and includes at least one semiconductor wafer having at least a first surface, a first layer of low density, low index of refraction optical material applied to at least the first surface of the semiconductor wafer, and a multi-layer optical coating applied to the first layer of low density, low index of refraction material, the multi-layer optical coating comprising alternating layers of low density, low index of refraction materials and high density, high index of refraction materials.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: January 6, 2015
    Assignee: Newport Corporation
    Inventor: Jamie Knapp
  • Patent number: 8928103
    Abstract: A solid-state imaging element including a semiconductor substrate that has a light reception portion performing a photoelectric conversion of an incident light; an oxide layer that is formed on a surface of the semiconductor substrate; a light shielding layer that is formed on an upper layer further than the oxide layer via an adhesion layer; and an oxygen supply layer that is disposed between the oxide layer and the adhesion layer and is formed of a material which shows an oxidation enthalpy smaller than that of a material forming the oxide layer.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: January 6, 2015
    Assignee: Sony Corporation
    Inventors: Yoshiyuki Ohba, Susumu Hiyama, Itaru Oshiyama
  • Patent number: 8920689
    Abstract: A photosensitive resin composition for a color filter includes (A) a dye polymer composite including a repeating unit derived from a compound represented by the following Chemical Formula 1, wherein in Chemical Formula 1, each substituent is the same as described in the detailed description, (B) an acrylic-based photopolymerizable monomer, (C) a photopolymerization initiator, and (D) a solvent, and a color filter using the same.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 30, 2014
    Assignee: Cheil Industries Inc.
    Inventors: Taek-Jin Baek, Seong-Ryong Nam, Won-A Noh, Chang-Min Lee, Sang-Won Cho, Gyu-Seok Han
  • Patent number: 8916410
    Abstract: Processes for making light to current converter devices are provided. The processes can be used to make light to current converter devices having P-N junctions located on only the top surface of the cell, located on the top surface and symmetrically or asymmetrically along a portion of the inner surface of the via holes, located on the top surface and full inner surface of the via holes, or located on the top surface, full inner surface of the via holes, and a portion of the bottom surface of the cell. The processes may isolate the desired P-N junction by etching the emitter, forming a via hole after forming the emitter, using a barrier layer to protect portions of the emitter from etching, or using a barrier layer to prevent the emitter from being formed on portions of the substrate.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: December 23, 2014
    Assignee: CSI Cells Co., Ltd
    Inventors: Lingjun Zhang, Feng Zhang, Jian Wu, Xusheng Wang
  • Patent number: 8916946
    Abstract: The present invention is intended to provide a compact and simple optical semiconductor device that reduces crosstalk (leakage current) between light receiving elements. According to the present invention, since a back surface electrode is a mirror-like thin film, crosstalk to an adjacent light receiving element can be suppressed, thereby reducing a detection error of a light intensity. By disposing a patterned back surface electrode or by disposing an ohmic electrode at the bottom of an insulating film over the whole back surface, contact resistance on the back surface can be reduced. By using the optical semiconductor elements with a two-dimensional arrangement and by using a mirror-like thin film as the back surface electrode, crosstalk can be reduced. By accommodating the optical semiconductor elements in the housing in a highly hermetic condition, the optical semiconductor elements can be protected from an external environment.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: December 23, 2014
    Assignees: Nippon Telegraph and Telephone Corporation, NTT Electronics Corporation
    Inventors: Yoshiyuki Doi, Yoshifumi Muramoto, Takaharu Ohyama
  • Patent number: 8913034
    Abstract: A connector of connecting a light sensor and a substrate is utilized for rotating the light sensor so that the light-receiving direction of the light sensor is parallel with the substrate. When the connector is utilized in an optical touch system, the light sensor can be disposed on the substrate of the optical touch system by means of general manufacturing facilities of flat display panels. Meanwhile, the light-receiving direction of the light sensor is parallel with the substrate of the optical touch system.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 16, 2014
    Assignee: PixArt Imaging Inc.
    Inventor: Wei-Chung Wang
  • Patent number: 8901692
    Abstract: An imaging device includes at least one photosite formed in a semiconducting substrate and fitted with a filtering device for filtering at least one undesired radiation. The filtering device is buried in the semiconducting substrate at a depth depending on the wavelength of the undesired radiation.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: December 2, 2014
    Assignees: STMicroelectronics (Grenoble 2) SAS, STMicroelectronics (Rousset) SAS, STMicroelectronics SA
    Inventors: David Coulon, Benoit Deschamps, Frédéric Barbier
  • Patent number: 8901694
    Abstract: An optical input/output (I/O) device is provided. The device includes a substrate including an upper trench; a waveguide disposed within the upper trench of the substrate; a photodetector disposed within the upper trench of the substrate and comprising a first end surface optically connected to an end surface of the waveguide; and a light-transmitting insulating layer interposed between the end surface of the waveguide and the first end surface of the photodetector.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: December 2, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Kyu Kang, Joong-Han Shin, Byung-Lyul Park, Gil-Heyun Choi
  • Patent number: 8896076
    Abstract: A photoelectric conversion element of an embodiment is a photoelectric conversion element which performs photoelectric conversion by receiving illumination light having n light emission peaks having a peak energy Ap (eV) (where 1?p?n and 2?n) of 1.59?Ap?3.26 and a full width at half maximum Fp (eV) (where 1?p?n and 2?n), wherein the photoelectric conversion element includes m photoelectric conversion layers having a band gap energy Bq (eV) (where 1?q?m and 2?m?n), and the m photoelectric conversion layers each satisfy the relationship of Ap?Fp<Bq?Ap with respect to any one of the n light emission peaks.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: November 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinji Saito, Rei Hashimoto, Mizunori Ezaki, Shinya Nunoue, Hironori Asai
  • Patent number: 8890269
    Abstract: A wafer-level camera sensor package includes a semiconductor substrate with an optical sensor on a front surface. Through-silicon-vias (TSV) extend through the substrate and provide I/O contact with the sensor from the back side of the substrate. A glass cover is positioned over the front surface, and the cover and substrate are embedded in a molding compound layer (MCL), the front surface of the MCL lying coplanar with the front of the cover, and the back surface lying coplanar with the back of the substrate. Surface-mount devices, electromagnetic shielding, and through-wafer-connectors can be embedded in the MCL. A redistribution layer on the back surface of the MCL includes bottom contact pads for mounting the package, and conductive traces interconnecting the contact pads, TSVs, surface-mount devices, shielding, and through-wafer-connectors. Anisotropic conductive adhesive is positioned on the front of the MCL for physically and electrically attaching a lens array.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: November 18, 2014
    Assignee: STMicroelectronics Pte Ltd.
    Inventor: Jing-En Luan
  • Patent number: 8889460
    Abstract: The present disclosure provides an image sensor device and a method for manufacturing the image sensor device. An exemplary image sensor device includes a substrate having a front surface and a back surface; a plurality of sensor elements disposed at the front surface of the substrate, each of the plurality of sensor elements being operable to sense radiation projected towards the back surface of the substrate; a radiation-shielding feature disposed over the back surface of the substrate and horizontally disposed between each of the plurality of sensor elements; a dielectric feature disposed between the back surface of the substrate and the radiation-shielding feature; and a metal layer disposed along sidewalls of the dielectric feature.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Wen Hsu, Shih-Chang Liu, Yeur-Luen Tu
  • Patent number: 8884392
    Abstract: Disclosed herein is a method of manufacturing a solid state imaging device, including the steps of: forming a light receiving portion in a light receiving area of a semiconductor substrate; forming a pad portion in a pad area of the semiconductor substrate; forming a microlens material layer over the light receiving portion and the pad portion; providing the microlens material layer with a microlens corresponding to the light receiving portion; forming a low-reflection material layer on the microlens material layer; etching the microlens material layer and the low-reflection material layer over the pad portion to form an opening; and imparting hydrophilicity to a surface of the low-reflection material layer and an inside portion of the opening by a normal temperature oxygen radical treatment.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventors: Yoshinori Toumiya, Ina Hori, Tadayuki Dofuku, Hitomi Kamiya, Atsushi Yamamoto, Taichi Natori
  • Patent number: 8884347
    Abstract: The present disclosure provides a method of manufacturing a photoelectric conversion device, including, a first step of forming a plurality of photoelectric conversion regions on a surface on one side of a semiconductor wafer, a second step of preparing a light-blocking wafer having insertion openings, a third step of bonding the one-side surface of the semiconductor wafer and a surface on the opposite side to a surface on the one side of the light-blocking wafer to each other to form a bonded wafer body, and a fourth step of dividing the bonded wafer body in peripheries of the photoelectric conversion regions, to obtain bonded-body chips each having the photoelectric conversion region.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventor: Yasuhide Nihei
  • Patent number: 8878326
    Abstract: Structures and design structures for improved adhesion of protective layers of imager microlens structures are disclosed. A method of fabricating a semiconductor structure includes forming an interfacial region between a microlens and a protective oxide layer. The interfacial region has a lower concentration of oxygen than the protective oxide layer.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: November 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Jeffrey P. Gambino, Robert K. Leidy, Charles F. Musante, John G. Twombly
  • Patent number: 8878199
    Abstract: A white LED lighting device driven by a pulse current is provided, which consists of blue, violet or ultraviolet LED chips, blue afterglow luminescence materials A and yellow luminescence materials B. Wherein the weight ratio of the blue afterglow luminescence materials A to the yellow luminescence materials B is 10-70 wt %: 30-90 wt %. The white LED lighting device drives the LED chips with a pulse current having a frequency of not less than 50 Hz. Because of using the afterglow luminescence materials, the light can be sustained when an excitation light source disappears, thereby eliminating the influence of LED light output fluctuation caused by current variation on the illumination. At the same time, the pulse current can keep the LED chips being at an intermittent work state, so as to overcome the problem of chip heating.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: November 4, 2014
    Assignee: Sichuan Sunfor Light Co., Ltd.
    Inventors: Ming Zhang, Kun Zhao, Dong-ming Li
  • Patent number: 8866249
    Abstract: A photoelectric conversion device is provided which is capable of improving the light condensation efficiency without substantially decreasing the sensitivity. The photoelectric conversion device has a first pattern provided above an element isolation region formed between adjacent two photoelectric conversion elements, a second pattern provided above the element isolation region and above the first pattern, and microlenses provided above the photoelectric conversion elements with the first and the second patterns provided therebetween. The photoelectric conversion device further has convex-shaped interlayer lenses in optical paths between the photoelectric conversion elements and the microlenses, the peak of each convex shape projecting in the direction from the electro-optical element to the microlens.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: October 21, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Sakae Hashimoto
  • Patent number: 8866005
    Abstract: A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: October 21, 2014
    Assignee: Kopin Corporation
    Inventor: Roger E. Welser
  • Patent number: 8865496
    Abstract: A method for fabricating an image panel for a hyperspectral camera that is configured to scan a scene and obtain spectral image data over as defined range of wavelengths. At least one companion sensor is first fabricated on a planar imaging surface of a silicon die. At least as region of the silicon die is then back thinned to a diffraction thickness that is suitable for a diffraction slit. A diffraction slit is then formed in the thinned region so that the diffraction slit penetrates the silicon die in the thinned region, and the diffraction slit is co-planar with the imaging surface of the silicon die.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: October 21, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Thomas H. Wallace
  • Patent number: 8866247
    Abstract: Described are embodiments of apparatuses and systems including photonic devices having a conductive shunt layer, and methods for making such apparatuses and systems. A photonic device may include a device substrate, a photo-active region disposed on a first region of the device substrate, an isolation region in the device substrate, a contact disposed on a second region of the substrate such that the isolation region is located between the contact and the photo-active region, and a conductive material overlying the isolation region to shunt the first region with the second region. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: October 21, 2014
    Assignee: Intel Corporation
    Inventors: Avi Feshali, Tao Sherry Yin, Ansheng Liu