Nitride Compound (epo) Patents (Class 257/E33.03)
  • Patent number: 9041065
    Abstract: Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2DEG, forming an ohmic contact with the layer containing the 2DEG.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: May 26, 2015
    Assignee: Transphorm Inc.
    Inventors: Yifeng Wu, Umesh Mishra, Primit Parikh, Rongming Chu, Ilan Ben-Yaacov, Likun Shen
  • Patent number: 8999060
    Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 7, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
  • Patent number: 8945965
    Abstract: The present invention provides a Group III nitride semiconductor light-emitting device exhibiting improved light extraction performance. In the production method, a p cladding layer of p-AlGaN is formed by the MOCVD method on a light-emitting layer at a pressure of 30 kPa and with an Mg concentration of 1.5×1020/cm3. A plurality of regions with a nitrogen polarity is formed in the crystals with a Group III element polarity, and thus the p cladding layer has a hexagonal columnar concave and convex configuration on the surface thereof. Subsequently, a p contact layer of GaN is formed by the MOCVD method, in a film along the concave and convex configuration on the p cladding layer.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: February 3, 2015
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Naoyuki Nakada, Yasuhisa Ushida
  • Patent number: 8928017
    Abstract: Example embodiments are directed to light-emitting devices (LEDs) and methods of manufacturing the same. The LED includes a first semiconductor layer; a second semiconductor layer; an active layer formed between the first and second semiconductor layers; and an emission pattern layer including a plurality of layers on the first semiconductor layer, the emission pattern including an emission pattern for externally emitting light generated from the active layer.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Su-hee Chae, Young-soo Park, Bok-ki Min, Jun-youn Kim, Hyun-gi Hong
  • Patent number: 8866173
    Abstract: A light emitting device according to the embodiment may include a light emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer; an electrode on the light emitting structure; a protection layer under a peripheral region of the light emitting structure; and an electrode layer under the light emitting structure, wherein the protection layer comprises a first layer, a second layer, and a third layer, wherein the first layer comprises a first metallic material, and wherein the second layer is disposed between the first layer and the third layer, the second layer has an insulating material or a conductive material.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: October 21, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hwan Hee Jeong
  • Patent number: 8829545
    Abstract: A group III nitride semiconductor light-emitting device comprises an n-type gallium nitride-based semiconductor layer, a first p-type AlXGa1-XN (0?X<1) layer, an active layer including an InGaN layer, a second p-type AlYGa1-YN (0?Y?X<1) layer, a third p-type AlZGa1-XN layer (0?Z?Y?X<1), and a p-electrode in contact with the third p-type AlZGa1-ZN layer. The active layer is provided between the n-type gallium nitride-based semiconductor layer and the first p-type AlXGa1-XN layer. The second p-type AlYGa1-YN (0?Y?X<1) layer is provided on the first p-type AlXGa1-XN layer. The p-type dopant concentration of the second p-type AlYGa1-YN layer is greater than the p-type dopant concentration of the first p-type AlXGa1-XN layer. The third p-type AlZGa1-ZN layer (0?Z?Y?X<1) is provided on the second p-type AlYGa1-YN layer. The p-type dopant concentration of the second p-type AlYGa1-YN layer is greater than a p-type dopant concentration of the third p-type AlZGa1-ZN layer.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: September 9, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaki Ueno, Takashi Kyono, Yusuke Yoshizumi
  • Patent number: 8785965
    Abstract: A nitride-based semiconductor light-emitting device according to the present invention has a nitride-based semiconductor multilayer structure 50. The nitride-based semiconductor multilayer structure 50 includes: an active layer 32 including an AlaInbGacN crystal layer (where a+b+c=1, a?0, b?0 and c?0); an AldGaeN overflow suppressing layer 36 (where d+e=1, d>0, and e?0); and an AlfGagN layer 38 (where f+g=1, f?0, g?0 and f<d). The AldGaeN overflow suppressing layer 36 is arranged between the active layer 32 and the AlfGagN layer 38. And the AldGaeN overflow suppressing layer 36 includes an In-doped layer that is doped with In at a concentration of 1×1016 atms/cm3 to 1×1019 atms/cm3.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: July 22, 2014
    Assignee: Panasonic Corporation
    Inventors: Toshiya Yokogawa, Ryou Kato
  • Patent number: 8735196
    Abstract: According to one embodiment, in a method of a nitride semiconductor light emitting device, a nitride semiconductor laminated body is formed on a first substrate having a first size. A first adhesion layer with a second size smaller than the first size is formed on the nitride semiconductor laminated body. A second adhesion layer is formed on a second substrate. The first and the second substrates are bonded while the first and second adhesion layers being overlapped each other. The first substrate is removed so as to generate a recess having a third size equal to or larger than the second size. The first substrate is etched until exposing the nitride semiconductor laminated body while injecting a chemical solution into the recess. The exposed nitride semiconductor laminated body is etched using the chemical solution so as to form a concave-convex portion in the exposed nitride semiconductor laminated body.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: May 27, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masanobu Ando
  • Patent number: 8728236
    Abstract: Large area single crystal III-V nitride material having an area of at least 2 cm2, having a uniformly low dislocation density not exceeding 3×106 dislocations per cm2 of growth surface area, and including a plurality of distinct regions having elevated impurity concentration, wherein each distinct region has at least one dimension greater than 50 microns, is disclosed. Such material can be formed on a substrate by a process including (i) a first phase of growing the III-V nitride material on the substrate under pitted growth conditions, e.g., forming pits over at least 50% of the growth surface of the III-V nitride material, wherein the pit density on the growth surface is at least 102 pits/cm2 of the growth surface, and (ii) a second phase of growing the III-V nitride material under pit-filling conditions.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: May 20, 2014
    Assignee: Cree, Inc.
    Inventors: Xueping Xu, Robert P. Vaudo
  • Patent number: 8704252
    Abstract: This invention discloses a light-emitting device comprising a semiconductor stack layer having an active layer of a multiple quantum well (MQW) structure comprising alternate stack layers of quantum well layers and barrier layers, wherein the barrier layers comprise at least one doped barrier layer and one undoped barrier layer. The doped barrier layer can improve the carrier mobility of the electron holes and increase the light-emitting area and the internal quantum efficiency of the active layer.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: April 22, 2014
    Assignee: Epistar Corporation
    Inventors: Chun-Kai Wang, Schang-Jing Hon, Yu-Pin Hsu, Jui-Yi Chu, Hsin-Hsien Wu, Wei-Yu Yen
  • Patent number: 8704244
    Abstract: In order to provide an LED light emitting device that can easily control a color temperature of white light, the LED light emitting device is provided with a plurality of types of light emitting parts that: respectively have LED elements that emit ultraviolet radiation or violet color visible light, and phosphors that absorb the ultraviolet radiation or violet color visible light to emit colored light; and emit the colored light, wherein: the colored light emitted by the plurality of types of light emitting parts become white light when all mixed with each other; the LED elements of the plurality of types of light emitting parts are all the same ones, and mounted on a single base material; and two or more light emitting parts overlap with each other in their parts.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: April 22, 2014
    Assignee: CCS, Inc.
    Inventors: Hirokazu Suzuki, Jun Konishi, Yuichiro Tanaka, Kenji Yoneda
  • Patent number: 8679248
    Abstract: Millimeter-scale GaN single crystals in filamentary form, also known as GaN whiskers, grown from solution and a process for preparing the same at moderate temperatures and near atmospheric pressures are provided. GaN whiskers can be grown from a GaN source in a reaction vessel subjected to a temperature gradient at nitrogen pressure. The GaN source can be formed in situ as part of an exchange reaction or can be preexisting GaN material. The GaN source is dissolved in a solvent and precipitates out of the solution as millimeter-scale single crystal filaments as a result of the applied temperature gradient.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: March 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Jennifer K. Hite, Francis J. Kub, Charles R. Eddy, Jr.
  • Patent number: 8674381
    Abstract: A nitride semiconductor light emitting device is provided with a substrate, an n-type nitride semiconductor layer, a p-type nitride semiconductor layer, an n-side pad electrode, a translucent electrode and a p-side pad electrode, wherein the translucent electrode is formed from an electrically conductive oxide, the n-side pad electrode adjoins the periphery of the translucent electrode and the p-side pad electrode is disposed so as to satisfy the following relationships: 0.3L?X?0.5L and 0.2L?Y?0.5L where X is the distance between ends of the p-side pad electrode and the n-side pad electrode, Y is the distance between the end of the p-side pad electrode and the periphery of the translucent electrode, L is the length of the translucent electrode on the line connecting the centroids of the p-side pad electrode and the n-side pad electrode minus the outer diameter d of the p-side pad electrode.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: March 18, 2014
    Assignee: Nichia Corporation
    Inventors: Takahiko Sakamoto, Yasutaka Hamaguchi
  • Patent number: 8663389
    Abstract: A method and apparatus for depositing III-V material is provided. The apparatus includes a reactor partially enclosed by a selectively permeable membrane 12. A means is provided for generating source vapors, such as a vapor-phase halide of a group III element (IUPAC group 13) within the reactor volume 10, and an additional means is also provided for introducing a vapor-phase hydride of a group V element (IUPAC group 15) into the volume 10. The reaction of the group III halide and the group V hydride on a temperature-controlled substrate 18 within the reactor volume 10 produces crystalline III-V material and hydrogen gas. The hydrogen is preferentially removed from the reactor through the selectively permeable membrane 12, thus avoiding pressure buildup and reaction imbalance. Other gases within the reactor are unable to pass through the selectively permeable membrane.
    Type: Grant
    Filed: May 21, 2011
    Date of Patent: March 4, 2014
    Inventor: Andrew Peter Clarke
  • Patent number: 8637901
    Abstract: A low-defect gallium nitride structure including a first gallium nitride layer comprising a plurality of gallium nitride columns etched into the first gallium nitride layer and a first dislocation density; and a second gallium nitride layer that extends over the gallium nitride columns and comprises a second dislocation density, wherein the second dislocation density may be lower than the first dislocation density. In addition, a method for fabricating a gallium nitride semiconductor layer that includes masking an underlying gallium nitride layer with a mask that comprises an array of columns and growing the underlying gallium nitride layer through the columns and onto said mask using metal-organic chemical vapor deposition pendeo-epitaxy to thereby form a pendeo-epitaxial gallium nitride layer coalesced on said mask to form a continuous pendeo-epitaxial monocrystalline gallium nitride semiconductor layer.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: January 28, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Tsvetanka Zheleva, Shah Pankaj, Michael Derenge
  • Patent number: 8633495
    Abstract: There is provided a nitride semiconductor light emitting device. The nitride semiconductor light emitting device comprises a first nitride semiconductor layer including amorphous powder, an active layer on the first nitride semiconductor layer, and a second nitride semiconductor layer on the active layer.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: January 21, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hee-Jin Kim
  • Patent number: 8598599
    Abstract: The present invention provides a Group III nitride semiconductor light-emitting device whose main surface is a plane which provides an internal electric field of zero, and which exhibits improved emission performance. The light-emitting device includes a sapphire substrate which has, in a surface thereof, a plurality of dents which are arranged in a stripe pattern as viewed from above; an n-contact layer formed on the dented surface of the sapphire substrate; a light-emitting layer formed on the n-contact layer; an electron blocking layer formed on the light-emitting layer; a p-contact layer formed on the electron blocking layer; a p-electrode; and an n-electrode. The electron blocking layer has a thickness of 2 to 8 nm and is formed of Mg-doped AlGaN having an Al compositional proportion of 20 to 30%.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: December 3, 2013
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yoshiki Saito, Koji Okuno, Yasuhisa Ushida
  • Patent number: 8591652
    Abstract: The invention relates to a free-standing semiconductor substrate as well as a process and a mask layer for the manufacture of a free-standing semiconductor substrate, wherein the material for forming the mask layer consists at least partially of tungsten silicide nitride or tungsten silicide and wherein the semiconductor substrate self-separates from the starting substrate without further process steps.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: November 26, 2013
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Christian Hennig, Markus Weyers, Eberhard Richter, Guenther Traenkle
  • Patent number: 8592840
    Abstract: An optoelectronic semiconductor chip includes an epitaxially grown semiconductor layer sequence based on GaN, InGaN, AlGaN and/or InAlGaN, a p-doped layer sequence, an n-doped layer sequence, an active zone that generates an electromagnetic radiation and is situated between the p-doped layer sequence and the n-doped layer sequence, and at least one AlxGa1-xN-based intermediate layer where 0<x?1, which is situated at a same side of the active zone as the n-doped layer sequence.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 26, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Peter, Tobias Meyer, Nikolaus Gmeinwieser, Tetsuya Taki, Hans-Jürgen Lugauer, Alexander Walter
  • Patent number: 8541796
    Abstract: There is provided a nitride semiconductor light emitting device having a light emitting portion coated with a coating film, the light emitting portion being formed of a nitride semiconductor, the coating film in contact with the light emitting portion being formed of an oxynitride film deposited adjacent to the light emitting portion and an oxide film deposited on the oxynitride film. There is also provided a method of fabricating a nitride semiconductor laser device having a cavity with a facet coated with a coating film, including the steps of: providing cleavage to form the facet of the cavity; and coating the facet of the cavity with a coating film formed of an oxynitride film deposited adjacent to the facet of the cavity and an oxide film deposited on the oxynitride film.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: September 24, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshinobu Kawaguchi, Takeshi Kamikawa
  • Patent number: 8541818
    Abstract: Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2 DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2 DEG, forming an ohmic contact with the layer containing the 2 DEG.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: September 24, 2013
    Assignee: Transphorm Inc.
    Inventors: Yifeng Wu, Umesh Mishra, Primit Parikh, Ilan Ben-Yaacov
  • Patent number: 8535753
    Abstract: Methods of forming carbon nanotubes include forming a catalytic metal layer on a sidewall of an electrically conductive region, such as a metal or metal nitride pattern. A plurality of carbon nanotubes are grown from the catalytic metal layer. These carbon nanotubes can be grown from a sidewall of the catalytic metal layer. The plurality of carbon nanotubes are then exposed to an organic solvent. This step of exposing the carbon nanotubes to the organic solvent may be preceded by a step of applying centrifugal forces to the plurality of carbon nanotubes. Alternatively, the exposing step may include applying a centrifugal force to the plurality of carbon nanotubes while simultaneously exposing the plurality of carbon nanotubes to an organic solvent.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: September 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Xianfeng Wang, Hong-Sik Yoon, In-Seok Yeo
  • Patent number: 8525196
    Abstract: A nitride-based semiconductor LED includes a substrate; an n-type nitride semiconductor layer formed on the substrate; an active layer and a p-type nitride semiconductor layer that are sequentially formed on a predetermined region of the n-type nitride semiconductor layer; a transparent electrode formed on the p-type nitride semiconductor layer; a p-electrode pad formed on the transparent electrode, the p-electrode pad being spaced from the outer edge line of the p-type nitride semiconductor layer by 50 to 200 ?m; and an n-electrode pad formed on the n-type nitride semiconductor layer.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: September 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuk Min Lee, Hyun Kyung Kim, Dong Joon Kim, Hyoun Soo Shin
  • Patent number: 8519416
    Abstract: A nitride-based semiconductor light-emitting device capable of suppressing reduction of characteristics and a yield and method of fabricating the same is described. The method of fabricating includes the steps of forming a groove portion on a nitride-based semiconductor substrate by selectively removing a prescribed region of a second region of the nitride-based semiconductor substrate other than a first region corresponding to a light-emitting portion of a nitride-based semiconductor layer up to a prescribed depth and forming the nitride-based semiconductor layer having a different composition from the nitride-based semiconductor substrate on the first region and the groove portion of the nitride-based semiconductor substrate.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: August 27, 2013
    Assignee: Future Light, LLC
    Inventors: Takashi Kano, Masayuki Hata, Yasuhiko Nomura
  • Patent number: 8519414
    Abstract: A semiconductor structure includes a substrate and a conductive carrier-tunneling layer over and contacting the substrate. The conductive carrier-tunneling layer includes first group-III nitride (III-nitride) layers having a first bandgap, wherein the first III-nitride layers have a thickness less than about 5 nm; and second III-nitride layers having a second bandgap lower than the first bandgap, wherein the first III-nitride layers and the second III-nitride layers are stacked in an alternating pattern. The semiconductor structure is free from a III-nitride layer between the substrate and the conductive carrier-tunneling layer. The semiconductor structure further includes an active layer over the conductive carrier-tunneling layer.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: August 27, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Lin Yu, Ding-Yuan Chen, Chen-Hua Yu, Wen-Chih Chiou
  • Patent number: 8513686
    Abstract: A light emitting diode is disclosed with advantageous output on a per unit area basis. The diode includes an area of less than 100,000 square microns, operates at a forward voltage of less than 4.0 volts, produces a radiant flux of at least 24 milliwatts at 20 milliamps drive current, and emits at a dominant wavelength between about 395 and 540 nanometers.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: August 20, 2013
    Assignee: Cree, Inc.
    Inventor: John Adam Edmond
  • Patent number: 8507944
    Abstract: Disclosed herein is a light emitting device including a first nitride semiconductor and a second nitride semiconductor, each of which includes a first conductivity-type semiconductor layer, an active layer and a second conductivity-type semiconductor layer, and a connection layer formed between the second conductivity-type semiconductor layer of the second nitride semiconductor and the first conductivity-type semiconductor layer of the first nitride semiconductor, wherein the first nitride semiconductor and the second nitride semiconductor are connected by the connection layer, and the light emitting device further comprises electrodes formed on at least a part of the second conductivity-type semiconductor layer of the first nitride semiconductor, at least a part of the first conductivity-type semiconductor layer of the second nitride semiconductor, and at least a part of the second conductivity-type semiconductor layer of the second nitride semiconductor.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 13, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventors: Sung Kyoon Kim, Hee Young Beom, Sung Ho Choo
  • Patent number: 8470626
    Abstract: Exemplary embodiments of the present invention relate to a method of fabricating a light emitting diode (LED). According to an exemplary embodiment of the present invention, the method includes growing a first GaN-based semiconductor layer on a substrate at a first temperature by supplying a chamber with a nitride source gas and a first metal source gas, stopping the supply of the first metal source gas and maintaining the first temperature for a first time period after stopping the supply of the first metal source gas, decreasing the temperature of the substrate to the a second temperature after the first time period elapses, growing an active layer of the first GaN-based semiconductor layer at the second temperature by supplying the chamber with a second metal source gas.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: June 25, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Kwang Joong Kim, Chang Suk Han, Seung Kyu Choi, Ki Bum Nam, Nam Yoon Kim, Kyung Hae Kim, Ju Hyung Yoon
  • Patent number: 8455273
    Abstract: This invention relates to a new method for the production of nitride-based phosphors, in particular, of phosphors containing rare earth elements. The phosphors can be used, for example, in light sources, especially in Light Emitting Devices (LEDs).
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: June 4, 2013
    Assignee: Max-Planck-Gesellschaft zur Forderung der Wissenschaften E.V.
    Inventors: Hasan Cakmak, Martin Jansen
  • Patent number: 8449672
    Abstract: This disclosure pertains to a process for making single crystal Group III nitride, particularly gallium nitride, at low pressure and temperature, in the region of the phase diagram of Group III nitride where Group III nitride is thermodynamically stable comprises a charge in the reaction vessel of (a) Group III nitride material as a source, (b) a barrier of solvent interposed between said source of Group III nitride and the deposition site, the solvent being prepared from the lithium nitride (Li3N) combined with barium fluoride (BaF2), or lithium nitride combined with barium fluoride and lithium fluoride (LiF) composition, heating the solvent to render it molten, dissolution of the source of GaN material in the molten solvent and following precipitation of GaN single crystals either self seeded or on the seed, maintaining conditions and then precipitating out.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: May 28, 2013
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, Richard L. Henry
  • Patent number: 8431936
    Abstract: One embodiment of the present invention provides a method for fabricating a group III-V p-type nitride structure. The method comprises growing a first layer of p-type group III-V material with a first acceptor density in a first growing environment. The method further comprises growing a second layer of p-type group III-V material, which is thicker than the first layer and which has a second acceptor density, on top of the first layer in a second growing environment. In addition, the method comprises growing a third layer of p-type group III-V material, which is thinner than the second layer and which has a third acceptor density, on top of the second layer in a third growing environment.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: April 30, 2013
    Assignee: Lattice Power (Jiangxi) Corporation
    Inventors: Fengyi Jiang, Li Wang, Wenqing Fang, Chunlan Mo
  • Patent number: 8421119
    Abstract: A GaN related compound semiconductor element includes: a channel layer made of a GaN related compound semiconductor; and a source layer and a drain layer, which are disposed in a manner of sandwiching the channel layer. The source layer includes two adjacent ridge portions which are formed by selective growth. A source electrode is formed over the surface, sandwiched by the ridge portions, of the channel layer, and the surfaces of the respective two adjacent ridge portions. The selective-growth mask formed between the two ridge portions is removed by wet etching. In addition, as another embodiment, a gate electrode is formed in a manner that the direction of the longer dimension of the gate electrode is aligned with the m plane of the channel layer. Moreover, as still another embodiment, the channel layer has a multilayer structure in which a GaN layer doped with no impurity is used as an intermediate layer.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: April 16, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Yukio Shakuda
  • Publication number: 20130065340
    Abstract: A method for manufacturing a semiconductor light emitting device is provided. The device includes: an n-type semiconductor layer; a p-type semiconductor layer; and a light emitting unit provided between the n-type semiconductor layer and the p-type semiconductor layer. The method includes: forming a buffer layer made of a crystalline AlxGa1-xN (0.8?x?1) on a first substrate made of c-plane sapphire and forming a GaN layer on the buffer layer; stacking the n-type semiconductor layer, the light emitting unit, and the p-type semiconductor layer on the GaN layer; and separating the first substrate by irradiating the GaN layer with a laser having a wavelength shorter than a bandgap wavelength of GaN from the first substrate side through the first substrate and the buffer layer.
    Type: Application
    Filed: November 8, 2012
    Publication date: March 14, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yasuo Ohba, Kei Kaneko, Toru Gotoda, Hiroshi Katsuno, Mitsuhiro Kushibe
  • Patent number: 8367441
    Abstract: Example embodiments herein relate to a nitride semiconductor light emitting device including a coat film formed at a light emitting portion and including an aluminum nitride crystal or an aluminum oxynitride crystal, and a method of manufacturing the nitride semiconductor light emitting device. Also provided is a nitride semiconductor transistor device including a nitride semiconductor layer and a gate insulating film which is in contact with the nitride semiconductor layer and includes an aluminum nitride crystal or an aluminum oxynitride crystal.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: February 5, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takeshi Kamikawa, Yoshinobu Kawaguchi
  • Patent number: 8368095
    Abstract: There is provided a nitride semiconductor light emitting device having a light emitting portion coated with a coating film, the light emitting portion being formed of a nitride semiconductor, the coating film in contact with the light emitting portion being formed of an oxynitride. There is also provided a method of fabricating a nitride semiconductor laser device having a cavity with a facet coated with a coating film, including the steps of: providing cleavage to form the facet of the cavity; and coating the facet of the cavity with a coating film formed of an oxynitride.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: February 5, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takeshi Kamikawa, Yoshinobu Kawaguchi
  • Patent number: 8357607
    Abstract: A nitride-based semiconductor light-emitting device 100 includes a GaN substrate 10, of which the principal surface is an m-plane 12, a semiconductor multilayer structure 20 that has been formed on the m-plane 12 of the GaN-based substrate 10, and an electrode 30 arranged on the semiconductor multilayer structure 20. The electrode 30 includes an Mg alloy layer 32 which is formed of Mg and a metal selected from a group consisting of Pt, Mo, and Pd. The Mg alloy layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: January 22, 2013
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Ryou Kato
  • Patent number: 8334199
    Abstract: A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes a Zn layer 32 and an Ag layer 34 provided on the Zn layer 32. The Zn layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: December 18, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Akihiro Isozaki
  • Publication number: 20120313124
    Abstract: Provided herein are phosphor compositions that include a YAG phosphor that is substituted with gallium, such as YaCebAlcGadOz, wherein a, b, c, d and z are positive numbers. Also provided are solid state light emitting devices that include a YAG phosphor that is substituted with gallium.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Inventors: David Clatterbuck, Brian Thomas Collins
  • Publication number: 20120313138
    Abstract: An optoelectronic semiconductor chip includes an epitaxially grown semiconductor layer sequence based on GaN, InGaN, AlGaN and/or InAlGaN, a p-doped layer sequence, an n-doped layer sequence, an active zone that generates an electromagnetic radiation and is situated between the p-doped layer sequence and the n-doped layer sequence, and at least one AlxGa 1-xN-based intermediate layer where 0<x?1, which is situated at a same side of the active zone as the n-doped layer sequence.
    Type: Application
    Filed: December 20, 2010
    Publication date: December 13, 2012
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Peter, Tobias Meyer, Nikolaus Gmeinwieser, Tetsuya Taki, Hans-Jürgen Lugauer, Alexander Walter
  • Patent number: 8319235
    Abstract: A nitride semiconductor light-emitting device including a coating film and a reflectance control film successively formed on a light-emitting portion, in which the light-emitting portion is formed of a nitride semiconductor, the coating film is formed of an aluminum oxynitride film or an aluminum nitride film, and the reflectance control film is formed of an oxide film, as well as a method of manufacturing the nitride semiconductor light-emitting device are provided.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: November 27, 2012
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takeshi Kamikawa, Yoshinobu Kawaguchi
  • Patent number: 8318594
    Abstract: A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes an Mg layer 32 and an Ag layer 34 provided on the Mg layer 32. The Mg layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Akihiro Isozaki
  • Patent number: 8309984
    Abstract: A nitride-based semiconductor light-emitting device 100 includes a GaN substrate 10, of which the principal surface is an m-plane 12, a semiconductor multilayer structure 20 that has been formed on the m-plane 12 of the GaN-based substrate 10, and an electrode 30 arranged on the semiconductor multilayer structure 20. The electrode 30 includes an Mg alloy layer 32 which is formed of Mg and a metal selected from a group consisting of Pt, Mo, and Pd. The Mg alloy layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 13, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Ryou Kato
  • Patent number: 8304802
    Abstract: A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes a Zn layer 32 and an Ag layer 34 provided on the Zn layer 32. The Zn layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: November 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Akihiro Isozaki
  • Patent number: 8299490
    Abstract: A nitride-based semiconductor light-emitting device 100 includes: a GaN substrate 10 with an m-plane surface 12; a semiconductor multilayer structure 20 provided on the m-plane surface 12 of the GaN substrate 10; and an electrode 30 provided on the semiconductor multilayer structure 20. The electrode 30 includes an Mg layer 32 and an Ag layer 34 provided on the Mg layer 32. The Mg layer 32 is in contact with a surface of a p-type semiconductor region of the semiconductor multilayer structure 20.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: October 30, 2012
    Assignee: Panasonic Corporation
    Inventors: Mitsuaki Oya, Toshiya Yokogawa, Atsushi Yamada, Akihiro Isozaki
  • Patent number: 8263424
    Abstract: A method for growing III-V nitride films having an N-face or M-plane using an ammonothermal growth technique. The method comprises using an autoclave, heating the autoclave, and introducing ammonia into the autoclave to produce smooth N-face or M-plane Gallium Nitride films and bulk GaN.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: September 11, 2012
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Tadao Hashimoto, Hitoshi Sato, Shuji Nakamura
  • Publication number: 20120202306
    Abstract: The present invention provides a method of fabricating a semiconductor substrate and a method of fabricating a light emitting device. The method includes forming a first semiconductor layer on a substrate, forming a metallic material layer on the first semiconductor layer, forming a second semiconductor layer on the first semiconductor layer and the metallic material layer, wherein a void is formed in a first portion of the first semiconductor layer under the metallic material layer during formation of the second semiconductor layer, and separating the substrate from the second semiconductor layer by etching at least a second portion of the first semiconductor layer using a chemical solution.
    Type: Application
    Filed: April 10, 2012
    Publication date: August 9, 2012
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Chang Youn KIM, Shiro SAKAI, Hwa Mok KIM, Joon Hee LEE, Soo Young MOON, Kyoung Wan KIM
  • Patent number: 8237198
    Abstract: Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2DEG, forming an ohmic contact with the layer containing the 2DEG.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: August 7, 2012
    Assignee: Transphorm Inc.
    Inventors: Yifeng Wu, Rongming Chu, Primit Parikh, Umesh Mishra, Ilan Ben-Yaacov, Likun Shen
  • Patent number: 8231726
    Abstract: An object of the present invention is to obtain, with respect to a semiconductor light-emitting element using a group III nitride semiconductor substrate, a semiconductor light-emitting element having an excellent light extraction property by selecting a specific substrate dopant and controlling the concentration thereof. The semiconductor light-emitting element comprises a substrate composed of a group III nitride semiconductor comprising germanium (Ge) as a dopant, an n-type semiconductor layer composed of a group III nitride semiconductor formed on the substrate, an active layer composed of a group III nitride semiconductor formed on the n-type semiconductor layer, and a p-type semiconductor layer composed of a group III nitride semiconductor formed on the active layer in which the substrate has a germanium (Ge) concentration of 2×1017 to 2×1019 cm?3.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: July 31, 2012
    Assignee: Panasonic Corporation
    Inventors: Hisashi Minemoto, Yasuo Kitaoka, Yasutoshi Kawaguchi, Yasuhito Takahashi, Yoshiaki Hasegawa
  • Patent number: 8232570
    Abstract: Provided are a semiconductor light emitting device and a method of manufacturing the same. The semiconductor light emitting device comprises a p-type substrate, a p-type semiconductor layer, an active layer, and an n-type semiconductor layer. The p-type semiconductor layer is formed on the p-type substrate. The active layer is formed on the p-type semiconductor layer. The n-type semiconductor layer is formed on the active layer.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: July 31, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Kyung Jun Kim
  • Publication number: 20120187422
    Abstract: A semiconductor substrate that includes a semiconductor layer that exhibits high crystallinity includes a graphite layer formed of a heterocyclic polymer obtained by condensing an aromatic tetracarboxylic acid and an aromatic tetramine, and a semiconductor layer that is grown on the surface of the graphite layer, or includes a substrate that includes a graphite layer formed of a heterocyclic polymer obtained by condensing an aromatic tetracarboxylic acid and an aromatic tetramine on its surface, a buffer layer that is grown on the surface of the graphite layer, and a semiconductor layer that is grown on the surface of the buffer layer.
    Type: Application
    Filed: September 7, 2010
    Publication date: July 26, 2012
    Applicants: TOKAI CARBON CO., LTD., THE UNIVERSITY OF TOKYO
    Inventors: Hiroshi Fujioka, Tetsuro Hirasaki, Hitoshi Ue, Junya Yamashita, Hiroaki Hatori