Characterized By Shape (epo) Patents (Class 257/E33.065)
  • Patent number: 8536601
    Abstract: A thin-film LED includes an insulating substrate, an electrode on the insulating substrate, and an epitaxial structure on the electrode.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: September 17, 2013
    Assignee: Toshiba Techno Center, Inc.
    Inventor: Chao-Kun Lin
  • Patent number: 8530923
    Abstract: A light-emitting diode chip (1) with a semiconductor layer sequence (2) is described, which is contacted electrically by contacts (5) via a current spreading layer (3). The contacts (5) cover around 1%-8% of the surface of the semiconductor layer sequence (2). The contacts (5) consist for example of separate contact points (51), which are arranged at the nodes of a regular grid (52) with a grid constant of 12 ?m. The current spreading layer (3) contains for example indium-tin oxide, indium-zinc oxide or zinc oxide and has a thickness in the range from 15 nm to 60 nm.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: September 10, 2013
    Assignee: OSRAM Opto Semiconductor GmbH
    Inventors: Matthias Sabathil, Lutz Hoeppel, Andreas Weimar, Karl Engl, Johannes Baur
  • Patent number: 8530882
    Abstract: A light emitting device may include a light emitting structure including a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, and a second conductive semiconductor layer on the active layer. A first electrode including a plurality of openings may be provided on the light emitting structure. A filling factor, which is an area ratio of the first electrode relative to an area of a top surface of the light emitting structure, may be 20% or less.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 10, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jeung Mo Kang, Sun Kyung Kim
  • Patent number: 8525212
    Abstract: An exemplary embodiment of the present invention discloses a light emitting diode including a lower contact layer having a first edge, a second edge opposite to the first edge, a third edge connecting the first edge to the second edge, and a fourth edge opposite to the third edge, a mesa structure arranged on the lower contact layer, the mesa structure including an active layer and an upper contact layer, a first electrode pad arranged on the lower contact layer, a second electrode pad arranged on the mesa structure, a first lower extension and a second lower extension extending from the first electrode pad towards the second edge, distal ends of the first lower extension and the second lower extension being farther away from each other than front ends thereof contacting the first electrode pad, and a first upper extension, a second upper extension, and a third upper extension extending from the second electrode pad.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: September 3, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Kyoung Wan Kim, Ye Seul Kim, Jeong Hee Yang, Jae Moo Kim
  • Patent number: 8513698
    Abstract: An LED package includes a substrate, an LED chip and an encapsulation. The substrate includes a main plate, and a first soldering pad and a second soldering pad attached to the main plate. The first soldering pad and the second soldering pad are separated from each other. The LED chip includes a first electrode and a second electrode. The LED chip is mounted on the substrate with the second electrode electrically connected to the second soldering pad of the substrate. The encapsulation includes a main body enclosing the LED chip and an electric connecting unit electrically connecting the first electrode of the LED chip and the first soldering pad.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 20, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shiun-Wei Chan, Chih-Hsun Ke
  • Patent number: 8513687
    Abstract: A semiconductor light emitting device, includes: a stacked structure unit including a first semiconductor layer, a second semiconductor layer, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer; a first electrode provided on a first major surface of the stacked structure unit on the second semiconductor layer side to connect to the first semiconductor layer; and a second electrode provided on the first major surface of the stacked structure unit to connect to the second semiconductor layer. The second electrode includes: a first film provided on the second semiconductor layer; and a second film provided on a rim of the first film on the second semiconductor layer. The first film has a relatively low contact resistance with the second semiconductor layer. The second film has a relatively high contact resistance with the second semiconductor layer.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: August 20, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Katsuno, Yasuo Ohba, Kei Kaneko, Mitsuhiro Kushibe
  • Patent number: 8507942
    Abstract: Provided are a light emitting device, a method of manufacturing the light emitting device, a light emitting device package, and a lighting system. The light emitting device includes a substrate, a light emitting structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer on the substrate, the light emitting structure exposing a portion of the first conductive type semiconductor layer upward, a light transmissive electrode having a stepped portion on the second conductive type semiconductor layer, a second electrode on the light transmissive electrode, and a first electrode on the exposed first conductive type semiconductor layer.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: August 13, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hwang Sung Min
  • Patent number: 8502260
    Abstract: According to one embodiment, a semiconductor light emitting device includes a semiconductor layer, a first electrode, a second electrode, an insulating layer, a first interconnect layer, a second interconnect layer, a first metal pillar, a second metal pillar, a film covering a side face of the first metal pillar and a side face of the second metal pillar, and a resin layer. The semiconductor layer includes a light emitting layer, a first major surface, and a second major surface formed on a side opposite to the first major surface. The film has a solder wettability poorer than a solder wettability of the first metal pillar and a solder wettability of the second metal pillar. The resin layer covers at least part of the film.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: August 6, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiaki Sugizaki
  • Patent number: 8494020
    Abstract: A semiconductor light emitting device downsized by devising arrangement of connection pads is provided. A second light emitting device is layered on a first light emitting device. The second light emitting device has a stripe-shaped semiconductor layer formed on a second substrate on the side facing to a first substrate, a stripe-shaped p-side electrode supplying a current to the semiconductor layer, stripe-shaped opposed electrodes that are respectively arranged oppositely to respective p-side electrodes of the first light emitting device and electrically connected to the p-side electrodes of the first light emitting device, connection pads respectively and electrically connected to the respective opposed electrodes, and a connection pad electrically connected to the p-side electrode. The connection pads are arranged in parallel with the opposed electrodes.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: July 23, 2013
    Assignee: Sony Corporation
    Inventors: Yuji Furushima, Abe Hiroaki, Kudou Hisashi, Fujimoto Tsuyoshi, Kentaro Aoshima
  • Patent number: 8476662
    Abstract: Disclosed are a light emitting device, a method of manufacturing the same, and a backlight unit. The light emitting device includes a body including a cavity to open an upper portion, in which the cavity has a sidewall inclined at a first angle with respect to a bottom surface of the cavity, first and second electrodes formed in the body, in which at least portions of the first and second electrodes are formed along the sidewall of the cavity, a light emitting chip over the first electrode, the second electrode, and the bottom surface of the cavity, at least one wire having one end bonded to a top surface of the light emitting chip and an opposite end bonded to a portion of the first and second electrodes over the sidewall of the cavity, and a molding member formed in the cavity to seal the light emitting chip.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: July 2, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Dong Wook Park
  • Patent number: 8476667
    Abstract: An optoelectronic component (10) comprising at least one metal body (15) and a layer sequence (17), which is applied on a base body (11) and which is embodied to emit an electromagnetic radiation and to which an insulation (12) is applied on at least one side area, wherein the at least one metal body (15) is applied to at least one region of the insulation (12) and is embodied in such a way that it is in thermally conductive contact with the base body (11).
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: July 2, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Siegfried Herrmann
  • Patent number: 8471286
    Abstract: According to an embodiment of the present invention, a semiconductor light emitting device includes a light emitting structure including a plurality of compound semiconductor layers, an electrode layer disposed under the light emitting structure, an electrode disposed on the light emitting structure, a conductive support member disposed under the electrode layer, a conductive layer disposed between the light emitting structure and the conductive support member, and an insulating layer disposed between the conductive support member and the light emitting structure, wherein the electrode layer is in contact with a first area of a lower surface of the light emitting structure and the conductive layer is in contact with a second area of the lower surface of the light emitting structure, and wherein the conductive layer includes a different material from the electrode layer.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: June 25, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hwan Hee Jeong
  • Patent number: 8471288
    Abstract: A Group III nitride semiconductor light-emitting device includes a support, a p-electrode provided on the support, a p-type layer including a Group III nitride semiconductor and provided on the p-electrode, an active layer including a Group III nitride semiconductor and provided on the p-type layer, an n-type layer including a Group III nitride semiconductor and provided on the active layer, an n-electrode which is connected to the n-type layer, a first trench having a depth extending from a back surface of the p-type layer on a side of the p-electrode to reach the n-type layer, an auxiliary electrode which is in contact with a back surface of the n-type layer at a bottom of the first trench, but is not in contact with side walls of the first trench, and an insulating film which exhibits light permeability.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: June 25, 2013
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Toshiya Uemura, Jun Ito
  • Patent number: 8461615
    Abstract: According to one embodiment, a semiconductor light emitting device includes a stacked structural body, a first electrode, and a second electrode. The stacked structural body includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting portion. The stacked structural body has a first major surface on a side of the second semiconductor layer. The first electrode is provided on the first semiconductor. The second electrode is provided on the second semiconductor layer. The first electrode includes a first pad portion and a first extending portion that extends from the first pad portion along a first extending direction. The first extending portion includes a first width-increasing portion. A width of the first width-increasing portion along a direction orthogonal to the first extending direction is increased from the first pad portion toward an end of the first extending portion.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: June 11, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shigeya Kimura, Taisuke Sato, Toshihide Ito, Toshiyuki Oka, Shinya Nunoue
  • Patent number: 8450768
    Abstract: The present invention provides a semiconductor light-emitting element comprising an electrode part excellent in ohmic contact and capable of emitting light from the whole surface. An electrode layer placed on the light-extraction side comprises a metal part and plural openings. The metal part is so continuous that any pair of point-positions in the part is continuously connected without breaks, and the metal part in 95% or more of the whole area continues linearly without breaks by the openings in a straight distance of not more than ? of the wavelength of light emitted from an active layer. The average opening diameter is of 10 nm to ? of the wavelength of emitted light. The electrode layer has a thickness of 10 nm to 200 nm, and is in good ohmic contact with a semiconductor layer.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: May 28, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Kitagawa, Koji Asakawa, Akira Fujimoto, Tsutomu Nakanishi, Eishi Tsutsumi
  • Publication number: 20130126931
    Abstract: An LED (light emitting diode) includes a seat and an LED chip. The seat includes a main body, and a first electrode and a second electrode formed on the main body. The LED chip includes a first semiconductor layer, an annular light-emitting layer encircling the first semiconductor layer, and an annular second semiconductor layer encircling the light-emitting layer. The first electrode electrically connects with the first semiconductor layer, and the second electrode electrically connects with the second semiconductor layer.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 23, 2013
    Applicant: FOXSEMICON INTEGRATED TECHNOLOGY, INC.
    Inventor: KUO-CHENG CHANG
  • Publication number: 20130127364
    Abstract: Front facing piggyback wafer assembly. In accordance with an embodiment of the present invention, a plurality of piggyback substrates are attached to a carrier wafer. The plurality of piggyback substrates are dissimilar in composition to the carrier wafer. The plurality of piggyback substrates are processed, while attached to the carrier wafer, to produce a plurality of integrated circuit devices. The plurality of integrated circuit devices are singulated to form individual integrated circuit devices. The carrier wafer may be processed to form integrated circuit structures prior to the attaching.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: INVENSAS CORPORATION
    Inventors: Ilyas Mohammed, Masud Beroz, Liang Wang
  • Patent number: 8445339
    Abstract: A method for forming a conductor structure is provided. The method comprises: (1) providing a substrate; (2) forming a patterned dielectric layer with a first opening which exposes a portion of the substrate; forming a patterned organic material layer on the dielectric layer with a second opening which corresponds to the first opening and expose the exposed portion of the substrate; (3) forming a first barrier layer on the organic material layer and the exposed portion of the substrate; (4) forming a metal layer on the first barrier layer; and (5) removing the organic material layer, the first barrier layer thereon and the metal layer thereon.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: May 21, 2013
    Assignee: AU Optronics Corp.
    Inventors: Hantu Lin, Chienhung Chen
  • Patent number: 8441022
    Abstract: An outer lead connected to an inner lead penetrating a molded resin section, and another outer lead connected to another inner lead penetrating the molded resin section are provided on an outer wall surface of the molded resin section. The outer lead has a surface area greater than that of the another outer lead.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: May 14, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobuhiro Nishiyama, Masaaki Katoh
  • Patent number: 8436395
    Abstract: According to one embodiment, a semiconductor light emitting device includes a stacked structure unit, a transparent, p-side and n-side electrodes. The unit includes n-type semiconductor layer, a light emitting portion provided on a part of the n-type semiconductor layer and p-type semiconductor layer provided on the light emitting portion. The transparent electrode is provided on the p-type semiconductor layer. The p-side electrode is provided on the transparent electrode. The n-side electrode is provided on the n-type semiconductor layer. The transparent electrode has a hole provided between the n-side and p-side electrodes. A width of the hole along an axis perpendicular to an axis from the p-side electrode toward the n-side electrode is longer than widths of the n-side and p-side electrodes. A distance between the hole and the n-side electrode is not longer than a distance between the hole and the p-side electrode.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 7, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takahiro Sato, Shigeya Kimura, Taisuke Sato, Toshihide Ito, Koichi Tachibana, Shinya Nunoue
  • Patent number: 8431949
    Abstract: A light emitting device includes a semiconductor light emitting element, a first lead including an element mount portion on which the semiconductor light emitting element is mounted, and a second lead electrically connected to the semiconductor light emitting element. The light emitting device further includes a resin package covering the semiconductor light emitting element and part of each of the first and the second leads. The resin package includes a lens portion facing the semiconductor light emitting element. The first lead includes a pair of standing portions spaced from each other with the element mount portion intervening between them and a pair of terminal portions extending from the standing portions in mutually opposite directions. Each of the standing portions projects from the resin package in a direction away from the lens portion.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: April 30, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Masahiko Kobayakawa, Tomokazu Okazaki
  • Patent number: 8421116
    Abstract: The light emitting device of the invention comprises a first electrode, a second electrode being light transmitting, and a carrier sandwiched between the first electrode and the second electrode and containing light emitters, wherein the first electrode has a plurality of projections or a pn junction formed with a p-type semiconductor and an n-type semiconductor each on a surface being in contact with the carrier.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: April 16, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobutoshi Arai, Masatomi Harada, Takayuki Ogura, Hiroshi Kotaki
  • Patent number: 8421112
    Abstract: Disclosed are a light emitting device and a light emitting device package having the same. The light emitting device includes a light emitting structure including a first conductive semiconductor layer, an active layer under the first conductive semiconductor layer, and a second conductive semiconductor layer under the active layer; a first electrode layer under the second conductive semiconductor layer; an electrode including a top surface making contact with a part of a bottom surface of the first conductive semiconductor layer; and an insulating member for covering an outer peripheral surface of the electrode, wherein a part of the insulating member extends into a region between the second conductive semiconductor layer and the first electrode layer from a bottom surface of the electrode.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: April 16, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventors: Hwan Hee Jeong, Sang Youl Lee, Ji Hyung Moon, June O Song, Kwang Ki Choi
  • Patent number: 8415689
    Abstract: The embodiment discloses a semiconductor light emitting device. The semiconductor light emitting device comprises a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive semiconductor layer on the active layer, a first electrode formed under the first conductive semiconductor layer and comprising a patterns of a predetermined shape, and a nitride semiconductor layer between the patterns of the first electrode.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: April 9, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Woo Sik Lim
  • Patent number: 8410515
    Abstract: Solid state lighting (“SSL”) devices with improved contacts and associated methods of manufacturing are disclosed herein. In one embodiment, an SSL device includes a first semiconductor material, a second semiconductor material spaced apart from the first semiconductor material, and an active region between the first and second semiconductor materials. The SSL device also includes an insulative material on the first semiconductor material, the insulative material including a plurality of openings having a size of about 1 nm to about 20 ?m, and a conductive material having discrete portions in the individual openings.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: April 2, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Martin F. Schubert
  • Patent number: 8410510
    Abstract: A semiconductor light emitting device, which includes: a first conductivity-type semiconductor layer; a second conductivity-type semiconductor layer; a semiconductor light emitting portion having a light emitting layer which is disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer; a first conductivity-type semiconductor side electrode connected to the first conductivity-type semiconductor layer; and a second conductivity-type semiconductor side electrode connected to the second conductivity-type semiconductor layer, wherein the second conductivity-type semiconductor side electrode is disposed separated from an insulator film covering the semiconductor light emitting portion by a separation area.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 2, 2013
    Assignee: Nichia Corporation
    Inventor: Hiroaki Matsumura
  • Patent number: 8405100
    Abstract: An organic electroluminescence display unit includes: a lower electrode for each device; a first hole injection/transport layer provided on the lower electrode for each device; a second organic light emitting layer of the first color provided on the first hole injection/transport layer for the second organic electroluminescence device; a second hole injection/transport layer provided on the entire surfaces of the second organic light emitting layer and the first hole injection/transport layer for the first organic electroluminescence device, and being made of a low molecular material; a blue first organic light emitting layer provided on the entire surface of the second hole injection/transport layer; and an electron injection/transport layer having at least one of electron injection characteristics and electron transport characteristics, and an upper electrode that are provided in sequence on the entire surface of first organic light emitting layer.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: March 26, 2013
    Assignee: Sony Corporation
    Inventors: Toshiaki Matsumoto, Tomoyuki Higo, Tadahiko Yoshinaga, Toshiaki Imai
  • Patent number: 8395176
    Abstract: A top-emitting nitride-based light-emitting device and a method of manufacturing the same. The top-emitting nitride-based light-emitting device having a substrate, an n-cladding layer, an active layer, and a p-cladding layer sequentially formed includes: a grid cell layer formed on the p-cladding layer by a grid array of separated cells formed from a conducting material with a width of less than 30 micrometers to improve electrical and optical characteristics; a surface protective layer that is formed on the p-cladding layer and covers at least regions between the cells to protect a surface of the p-cladding layer; and a transparent conducting layer formed on the surface protective layer and the grid cell layer using a transparent conducting material. The light-emitting device and the method of manufacturing the same provide an improved ohmic contact to the p-cladding layer, excellent I-V characteristics, and high light transmittance, thus increasing luminous efficiency of the device.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: March 12, 2013
    Assignees: Samsung Electronics Co., Ltd., Gwangju Institute of Science and Technology
    Inventors: Tae-yeong Seong, Kyoung-kook Kim, June-o Song, Dong-seok Leem, Jung-inn Sohn
  • Patent number: 8390020
    Abstract: A face-up optical semiconductor device can be prepared by forming an n-type GaN layer, an active layer, and a p-type GaN layer on a C-plane sapphire substrate. Parts of the p-type GaN layer and the active layer can be removed, and a transparent electrode can be formed over all or most of the remaining p-type GaN layer. A p-side electrode including a pad portion and auxiliary electrode portions can be formed on the transparent electrode layer. An n-side electrode can be formed on the exposed n-type GaN layer. On regions of the transparent electrode layer where weak light emission regions may be formed, outside independent electrodes can be provided. They can be disposed on concentric circles with the n-side electrode as a center or tangent lines thereof so as to be along the circles or the tangent lines.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: March 5, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Satoshi Tanaka, Yusuke Yokobayashi
  • Patent number: 8384112
    Abstract: A light emitting chip includes a substrate, a reflective layer, a light emitting structure and a first electrode having a base formed between the reflective layer and the substrate. The light emitting structure includes a first semiconductor layer, an active layer and a second semiconductor layer. The first electrode further includes a connecting section extending upwardly from the base. An electrically insulating ion region is defined in the light emitting structure and extends from an upper surface of the base to the first semiconductor layer. A receiving groove is defined in the ion region and extends upwardly from the upper surface of the base to the first semiconductor layer. The connecting section is positioned in the receiving groove and electrically connects with the first semiconductor layer.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: February 26, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Jian-Shihn Tsang
  • Patent number: 8384115
    Abstract: An improved bond pad design for increased light extraction efficiency for use in light emitting diodes (LEDs) and LED packages. Embodiments of the present invention incorporate a structure that physically isolates the bond pads from the primary emission surface, forcing the current to flow away from the bond pads first before traveling down into the semiconductor material toward the active region. This structure reduces the amount of light that is generated in the area near the bond pads, so that less of the generated light is trapped underneath the bond pads and absorbed.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: February 26, 2013
    Assignee: Cree, Inc.
    Inventor: Ting Li
  • Patent number: 8378363
    Abstract: A self-illuminating display includes a substrate, and a number of light emitting units. The light emitting units are formed on the substrate in an array fashion. Each of the light emitting units includes a first electrode, a second electrode formed on the substrate and a number of light emitting nanowires. The first electrode includes a number of first arms, and the second electrode includes a number of second arms. Each of the first arms opposes a corresponding second arm. Each of light emitting nanowires interconnects the first arm and the corresponding second arm. Each of the light emitting nanowires has a p-n junction.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: February 19, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chia-Ling Hsu
  • Patent number: 8378373
    Abstract: A light-emitting device includes a substrate; a stacked structure including a first type semiconductor layer positioned on the substrate, a light-emitting structure positioned on the first type semiconductor layer, and a second type semiconductor layer positioned on the light-emitting structure, wherein the stacked structure includes a depression exposing the first type semiconductor layer; a first electrode positioned on the first type semiconductor layer in the depression, the first electrode including at least one first pad and at least one first extending wire with one end connected to the first pad; a second electrode positioned on the second type semiconductor layer, the second electrode including at least one second pad and at least one second extending wire with one end connected to the second pad; wherein the distance between the first pad and the second pad is greater than 70% of the width of the light-emitting device.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: February 19, 2013
    Assignee: Huga Optotech Inc.
    Inventors: Tai Chun Wang, Wei Chih Wen
  • Publication number: 20130037839
    Abstract: A semiconductor light emitting element of the present invention includes a support substrate, a semiconductor film including a light emitting layer, a surface electrode provided on the surface on a light-extraction-surface side of the semiconductor film, and a light reflecting layer. The surface electrode includes first electrode pieces that form ohmic contact with the semiconductor film and a second electrode piece electrically connected to the first electrode pieces. The light reflecting layer includes a reflecting electrode, and the reflecting electrode includes third electrode pieces that form ohmic contact with the semiconductor film and a fourth electrode piece electrically connected to the third electrode pieces and placed opposite to the second electrode piece. Both the second electrode piece and the fourth electrode piece form Schottky contact with the semiconductor film so as to form barriers to prevent forward current in the semiconductor film.
    Type: Application
    Filed: August 6, 2012
    Publication date: February 14, 2013
    Applicant: STANLEY ELECTRIC CO.
    Inventor: Takuya KAZAMA
  • Patent number: 8373179
    Abstract: A LED chip including a substrate, a semiconductor device layer, a current blocking layer, a current spread layer, a first electrode and a second electrode is provided. The semiconductor device layer is disposed on the substrate. The current blocking layer is disposed on a part of the semiconductor device layer and includes a current blocking segment and a current distribution adjusting segment. The current spread layer is disposed on a part of the semiconductor device layer and covers the current blocking layer. The first electrode is disposed on the current spread layer, wherein a part of the current blocking segment is overlapped with the first electrode. Contours of the current blocking segment and the first electrode are similar figures. Contour of the first electrode and is within contour of the current blocking segment. The current distribution adjusting segment is not overlapped with the first electrode.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: February 12, 2013
    Assignee: Lextar Electronics Corp.
    Inventors: Kuo-Lung Fang, Chien-Sen Weng, Chih-Wei Chao
  • Publication number: 20130032847
    Abstract: An LED device includes a strip-shaped electrode, a strip-shaped current blocking structure and a plurality of distributed current blocking structures. The current blocking structures are formed of an insulating material such as silicon dioxide. The strip-shaped current blocking structure is located directly underneath the strip-shaped electrode. The plurality of current blocking structures may be disc shaped portions disposed in rows adjacent the strip-shaped current blocking structure. Distribution of the current blocking structures is such that current is prevented from concentrating in regions immediately adjacent the electrode, thereby facilitating uniform current flow into the active layer and facilitating uniform light generation in areas not underneath the electrode. In another aspect, current blocking structures are created by damaging regions of a p-GaN layer to form resistive regions.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: Bridgelux, Inc.
    Inventors: Chih-Wei Chuang, Chao-Kun Lin
  • Patent number: 8368102
    Abstract: A light emitting device has a light emitting layer having a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type different from the first conductivity type, and an active layer sandwiched between the first semiconductor layer and the second semiconductor layer, a reflecting layer provided on a side of one surface of the light emitting layer, which reflects a light emitted from the active layer, a supporting substrate provided on an opposite side of the reflecting layer with respect to the light emitting layer, which supports the light emitting layer via an adhesion layer, an ohmic contact portion provided on a part of the reflecting layer, which electrically connects between the reflecting layer and the light emitting layer, and convexo-concave portions formed on other surface of the light emitting layer and side surfaces of the light emitting layer, respectively, and an insulating film configured to cover the convexo-concave portions.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: February 5, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Tetsuji Fujimoto, Kazuyuki Ilzuka, Masahiro Watanabe, Katsuya Akimoto
  • Patent number: 8368111
    Abstract: Provided is a semiconductor light emitting device and a method for manufacturing the same. The semiconductor light emitting device includes a light emitting structure, an insulating substrate, a first electrode, a second electrode, and a conductive supporting substrate. The light emitting structure includes a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer. The insulating substrate is formed on the light emitting structure to include a contact groove. The first electrode is formed on the insulating substrate. The second electrode is formed under the light emitting structure. The conductive supporting substrate is formed under the second electrode.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: February 5, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sang Youl Lee
  • Publication number: 20130026474
    Abstract: A storage capacitor architecture for pixel structure and manufacturing method thereof are described. The storage capacitor architecture includes a substrate, a first electrode, an insulating layer and a second electrode. The first electrode has a first concave and convex structure. The insulating layer is disposed on the first concave and convex structure of the first electrode. The second electrode is disposed on the insulating layer and has a second concave and convex structure. The first concave and convex structure and the second concave and convex structure form an interdigitated space and the insulating layer is disposed in the interdigitated space to solve the problem of decreased aperture ratio of the LCD panel.
    Type: Application
    Filed: September 5, 2011
    Publication date: January 31, 2013
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO. ltd
    Inventor: Chihtsung Kang
  • Patent number: 8362516
    Abstract: An excellent light emitting element capable of improving problems caused by a material having high light-reflectivity and susceptible to electromigration, especially Al used for the electrode. FIG. 2A depicts semiconductor light emitting element having a first and second electrodes 20 and 30 disposed at a same surface side respectively on a first and second conductive type semiconductor layer 11 and 13. In the electrode disposing surface, the first electrode 20 comprises a first base part 23 and a first extended part 24 extending from the first base part, and a plurality of separated external connecting parts 31 of the second electrode 30 arranged side by side in extending direction of the first extended part.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: January 29, 2013
    Assignee: Nichia Corporation
    Inventors: Yoshiki Inoue, Masahiko Sano
  • Publication number: 20130020609
    Abstract: This application is related to a semiconductor light-emitting device including a substrate, a semiconductor epitaxial layer over the substrate and having a first surface distant from the substrate, a first transparent conductive layer formed on the first surface, and a second transparent conductive layer formed on the first transparent conductive layer and having a second surface smaller than a first surface of the first transparent conductive layer.
    Type: Application
    Filed: September 20, 2012
    Publication date: January 24, 2013
    Applicant: Epistar Corporation
    Inventors: Chen OU, Chen-Ke HSU
  • Patent number: 8357570
    Abstract: A method for fabricating a pixel structure includes providing a substrate having a pixel area. A first metal layer, a gate insulator and a semiconductor layer are formed on the substrate and patterned by using a first half-tone mask or a gray-tone mask to form a transistor pattern, a lower capacitance pattern and a lower circuit pattern. Next, a dielectric layer and an electrode layer both covering the three patterns are sequentially formed and patterned to expose a part of the lower circuit pattern, a part of the lower capacitance pattern and a source/drain region of the transistor pattern. A second metal layer formed on the electrode layer and the electrode layer are patterned by using a second half-tone mask or the gray-tone mask to form an upper circuit pattern, a source/drain pattern and an upper capacitance pattern. A portion of the electrode layer constructs a pixel electrode.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: January 22, 2013
    Assignee: Au Optronics Corporation
    Inventor: Yu-Cheng Chen
  • Patent number: 8357938
    Abstract: An organic light-emitting display device that is transparent and prevents distortion of an image transmitted therethrough by preventing light from scattering during image display. The organic light-emitting display device comprises a plurality of pixels, in which each pixel includes a light transmission area, a light emitting area, and a light absorption area. The light transmission area is configured to pass visible light incident thereto. The light absorption is configured to absorb visible light incident thereto.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: January 22, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seok-Gyu Yoon, Jae-Heung Ha, Kyu-Hwan Hwang, Young-Woo Song
  • Patent number: 8354724
    Abstract: The present invention relates to a semiconductor device which includes a photoelectric conversion layer; an amplifier circuit amplifying an output current of the photoelectric conversion layer and including two thin film transistors; a first terminal supplying a high-potential power supply voltage; a second terminal supplying a low-potential power supply voltage; an electrode electrically connecting the two thin film transistors and the photoelectric conversion layer; a first wiring electrically connecting the first terminal and a first thin film transistor which is one of the two thin film transistors; and a second wiring electrically connecting the second terminal and a second thin film transistor which is the other of the two thin film transistors. In the semiconductor device, the value of voltage drop of the first wiring and the second wiring are increased by bending the first wiring and the second wiring.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: January 15, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideaki Shishido
  • Patent number: 8354681
    Abstract: A semiconductor light-emitting element including a semiconductor substrate having a first surface and second surface faced on the opposite side of the first surface, the semiconductor substrate having a recessed portion formed in the first surface, and the recessed portion having a V-shaped cross-section, a reflecting layer formed on an inner surface of the recessed portion, a first electrode formed on the reflecting layer, a light-emitting layer formed on the second surface, and a second electrode formed on the light-emitting layer.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: January 15, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasushi Hattori, Shinya Nunoue, Shinji Saito, Genichi Hatakoshi
  • Patent number: 8350286
    Abstract: A heat radiation structure of a light emitting element has leads, each lead having a plurality of leg sections, and a light emitting chip mounted on any one of the leads. The present invention can provide a high-efficiency light emitting element, in which a thermal load is reduced by widening a connecting section through which a lead and a chip seating section of the light emitting element are connected, and the heat generated from a heat source can be more rapidly radiated to the outside. Further, the present invention can also provide a high-efficiency light emitting element, in which heat radiation fins are formed between a stopper and a molding portion of a lead of the light emitting element so that natural convection can occur between the heat radiation fins, and an area in which heat radiation can occur is widened to maximize a heat radiation effect.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: January 8, 2013
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Tae Won Seo, Zhbanov Alexander, Dae Won Kim
  • Patent number: 8350287
    Abstract: A heat radiation structure of a light emitting element has leads, each lead having a plurality of leg sections, and a light emitting chip mounted on any one of the leads. The present invention can provide a high-efficiency light emitting element, in which a thermal load is reduced by widening a connecting section through which a lead and a chip seating section of the light emitting element are connected, and the heat generated from a heat source can be more rapidly radiated to the outside. Further, the present invention can also provide a high-efficiency light emitting element, in which heat radiation fins are formed between a stopper and a molding portion of a lead of the light emitting element so that natural convection can occur between the heat radiation fins, and an area in which heat radiation can occur is widened to maximize a heat radiation effect.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: January 8, 2013
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Tae Won Seo, Zhbanov Alexander, Dae Won Kim
  • Patent number: 8349629
    Abstract: A semiconductor light-emitting element includes a first semiconductor layer having a first conduction type, a second semiconductor layer having a second conduction type, an active layer provided between the first and second semiconductor layers, a polarity inversion layer provided on the second semiconductor layer, and a third semiconductor layer having the second conduction type provided on the polarity inversion layer. Crystal orientations of the first through third semiconductor layers are inverted, with the polarity inversion layer serving as a boundary. The first and third semiconductor layers have uppermost surfaces made from polar faces having common constitutional elements. Hexagonal conical protrusions arising from a crystal structure are formed at outermost surfaces of the first and third semiconductor layers. The first through third semiconductor layers are made from a wurtzite-structure group III nitride semiconductor, and are layered along a C-axis direction of the crystal structure.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: January 8, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yusuke Yokobayashi, Satoshi Tanaka, Masahiko Moteki
  • Patent number: 8344392
    Abstract: A light-emitting element includes a light-emitting stack includes: a first semiconductor layer; an active layer formed on the first semiconductor layer; and a second semiconductor layer formed on the active layer; a recess structure formed through the second semiconductor layer, the active layer, and extended in the first semiconductor layer, wherein the first semiconductor layer includes a contact region defined by the recess structure; a first electrode structure including a first contact portion on the contact region of the first semiconductor layer, and a second contact portion laterally extended from the first contact portion into the first semiconductor layer; and a dielectric layer formed on side surfaces of the second semiconductor layer and the active layer to insulate the second semiconductor layer and the active layer from the first contact portion.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: January 1, 2013
    Assignee: Epistar Corporation
    Inventors: Jui Hung Yeh, Chun Kai Wang, Wei Yu Yen, Yu Yao Lin, Chien Fu Shen, De Shan Kuo, Ting Chia Ko
  • Publication number: 20120314150
    Abstract: An array substrate is disclosed. The array substrate comprises a plurality of gate lines, a plurality of data lines, and a plurality of pixel units defined by the gate lines and the data lines and arranged in an array, each of the pixel units comprising a thin film transistor (TFT) for switching the pixel unit and a driving electrode for driving liquid crystal, and the driving electrode being formed with slit-shaped openings. The two corresponding pixel units respectively provided on two sides of the gate line are different from each other in structure, and the pixel unit on one side of the gate line can be obtained by rotating the pixel unit on the other side of the gate line by 180° respect to the central point of the section of the gate line between the two pixel units.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 13, 2012
    Applicants: BEIJING BOE DISPLAY TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Liang SUN, Zhaohui HAO, Chunxia MENG, Ying QIN, Seungmoo RIM