Carbon Nanotubes (epo) Patents (Class 257/E51.04)
-
Patent number: 11876121Abstract: Self-aligned gate endcap (SAGE) architectures having gate or contact plugs, and methods of fabricating SAGE architectures having gate or contact plugs, are described. In an example, an integrated circuit structure includes a first gate structure over a first semiconductor fin. A second gate structure is over a second semiconductor fin. A gate endcap isolation structure is between the first and second semiconductor fins and laterally between and in contact with the first and second gate structures. A gate plug is over the gate endcap isolation structure and laterally between the first gate structure and the second gate structure. A crystalline metal oxide material is laterally between and in contact with the gate plug and the first gate structure, and laterally between and in contact with the gate plug and the second gate structure.Type: GrantFiled: July 22, 2022Date of Patent: January 16, 2024Assignee: Intel CorporationInventors: Sairam Subramanian, Walid M. Hafez
-
Patent number: 11767442Abstract: A nanocarbon ink contains nanocarbons, a solvent, and a polyoxyethylene alkyl ether represented by the following expression: CnH2n(OCH2CH2)mOH where, n=12 to 18 and m=20 to 100.Type: GrantFiled: September 28, 2018Date of Patent: September 26, 2023Assignee: NEC CORPORATIONInventor: Hideaki Numata
-
Patent number: 9997461Abstract: Some embodiments include electrical interconnects. The interconnects may contain laminate structures having a graphene region sandwiched between non-graphene regions. In some embodiments the graphene and non-graphene regions may be nested within one another. In some embodiments an electrically insulative material may be over an upper surface of the laminate structure, and an opening may extend through the insulative material to a portion of the laminate structure. Electrically conductive material may be within the opening and in electrical contact with at least one of the non-graphene regions of the laminate structure. Some embodiments include methods of forming electrical interconnects in which non-graphene material and graphene are alternately formed within a trench to form nested non-graphene and graphene regions.Type: GrantFiled: February 2, 2015Date of Patent: June 12, 2018Assignee: Micron Technology, Inc.Inventor: Gurtej S. Sandhu
-
Patent number: 9443662Abstract: A method of forming an ordered nanorods array in a confined space is used to form a high surface area device where an ensemble of parallel trenches has micrometer dimensions for the width and depth of the trenches, which are decorated with crystalline nanowires radiating from the sidewalls and bases of the trenches. The high surface area device is formed by depositing a conformal crystalline seed coating in the trenches, forming microchannels from these trenches by placing a barrier layer on the open surface of the trenches, contacting the conformal coating with a crystal precursor solution that is caused to flow through the microchannels. In an embodiment, a very high surface area electrode is constructed with ZnO nanowires radiating from the sidewalls and base of trenches formed on a silicon substrate. The device can be a dye-sensitized solar cell.Type: GrantFiled: November 7, 2013Date of Patent: September 13, 2016Assignee: UNIVERSITY OF SOUTH FLORIDAInventors: Mikhail Ladanov, Paula C. Algarin Amaris, Garrett Matthews, Manoj Kumar Ram, Sylvia W. Thomas, Ashok Kumar, Jing Wang, Arash Takshi
-
Patent number: 9040364Abstract: A method of creating a semiconductor device is disclosed. An end of a carbon nanotube is unzipped to provide a substantially flat surface. A contact of the semiconductor device is formed. The substantially flat surface of the carbon nanotube is coupled to the contact to create the semiconductor device. An energy gap in the unzipped end of the carbon nanotube may be less than an energy gap in a region of the carbon nanotube outside of the unzipped end region.Type: GrantFiled: October 30, 2012Date of Patent: May 26, 2015Assignee: International Business Machines CorporationInventors: Damon B. Farmer, Aaron D. Franklin, Joshua T. Smith, George S. Tulevski
-
Patent number: 9029860Abstract: A structure includes a silicon substrate, a plurality of silicon rods on the silicon substrate, a silicon layer on the plurality of silicon rods, and a GaN substrate on the silicon layer.Type: GrantFiled: March 21, 2013Date of Patent: May 12, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Xianyu Wenxu, Yeon-hee Kim, Chang-youl Moon, Yong-young Park
-
Patent number: 9024436Abstract: In an embodiment, a thermal interface material (TIM) is provided. The TIM includes first and a second layers of a first transition metal, and a third layer including a plurality of carbon nanotubes supported in a flexible polymer matrix and a second transition metal coupled to sidewalls of carbon nanotubes. The first and second metal layers are in contact with first and second ends of carbon nanotube. The TIM further includes fourth and fifth layers of an alloy material coupled to the first and second metal layers, respectively. The carbon nanotube based TIM including the layers with transition metal allow improved heat transfer from an integrated circuit die to a heat spreader.Type: GrantFiled: June 19, 2013Date of Patent: May 5, 2015Assignee: Broadcom CorporationInventors: Sam Ziqun Zhao, Arpit Mittal, Rezaur Rahman Khan
-
Patent number: 8993448Abstract: A method of forming a plurality of nanotubes is disclosed. Particularly, a substrate may be provided and a plurality of recesses may be formed therein. Further, a plurality of nanotubes may be formed generally within each of the plurality of recesses and the plurality of nanotubes may be substantially surrounded with a supporting material. Additionally, at least some of the plurality of nanotubes may be selectively shortened and at least a portion of the at least some of the plurality of nanotubes may be functionalized. Methods for forming semiconductor structures intermediate structures, and semiconductor devices are disclosed. An intermediate structure, intermediate semiconductor structure, and a system including nanotube structures are also disclosed.Type: GrantFiled: November 26, 2013Date of Patent: March 31, 2015Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, Terry L. Gilton
-
Patent number: 8987707Abstract: Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.Type: GrantFiled: August 20, 2013Date of Patent: March 24, 2015Assignee: Wisconsin Alumni Research FoundationInventors: Michael S. Arnold, Feng Xu
-
Patent number: 8957406Abstract: Various methods and apparatuses involve the provision of graphitic material. As consistent with one or more aspects herein, an organic material template is used to restrict growth, in a width dimension, of graphitic material grown from the organic material template. Graphitic material is therein provided, having a set of characteristics including electrical behavior and shape, with a representative width defined by the width dimension, based on the organic material template.Type: GrantFiled: August 30, 2013Date of Patent: February 17, 2015Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Anatoliy N. Sokolov, Fung Ling Yap, Zhenan Bao, Nan Liu
-
Patent number: 8946683Abstract: The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.Type: GrantFiled: June 16, 2009Date of Patent: February 3, 2015Assignees: The Board of Trustees of the University of Illinois, Purdue Research FoundationInventors: John A. Rogers, Qing Cao, Muhammad Alam, Ninad Pimparkar
-
Patent number: 8921835Abstract: An organic light emitting diode display includes: a base film made of plastic; a thin film transistor and an organic light emitting diode formed on the base film; and a carbon nanotube thin film disposed among the base film, the thin film transistor, and the organic light emitting diode.Type: GrantFiled: March 19, 2012Date of Patent: December 30, 2014Assignee: Samsung Display Co., Ltd.Inventors: Jae-Seob Lee, Chang-Yong Jung, Yong-Hwan Park, Kyung-Mi Kwon
-
Patent number: 8895958Abstract: Disclosed is a light emitting element, which emits light with small power consumption and high luminance. The light emitting element has: a IV semiconductor substrate; two or more core multi-shell nanowires disposed on the IV semiconductor substrate; a first electrode connected to the IV semiconductor substrate; and a second electrode, which covers the side surfaces of the core multi-shell nanowires, and which is connected to the side surfaces of the core multi-shell nanowires. Each of the core multi-shell nanowires has: a center nanowire composed of a first conductivity type III-V compound semiconductor; a first barrier layer composed of the first conductivity type III-V compound semiconductor; a quantum well layer composed of a III-V compound semiconductor; a second barrier layer composed of a second conductivity type III-V compound semiconductor; and a capping layer composed of a second conductivity type III-V compound semiconductor.Type: GrantFiled: June 4, 2010Date of Patent: November 25, 2014Assignees: National University Corporation Hokkaido University, Sharp Kabushiki KaishaInventors: Takashi Fukui, Katsuhiro Tomioka
-
Patent number: 8884273Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.Type: GrantFiled: October 7, 2011Date of Patent: November 11, 2014Assignee: Nanosys, Inc.Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffery A. Whiteford
-
Patent number: 8872154Abstract: Methods and apparatus for an electronic device such as a field effect transistor. One embodiment includes fabrication of an FET utilizing single walled carbon nanotubes as the semiconducting material. In one embodiment, the FETs are vertical arrangements of SWCNTs, and in some embodiments prepared within porous anodic alumina (PAA). Various embodiments pertain to different methods for fabricating the drains, sources, and gates.Type: GrantFiled: April 6, 2010Date of Patent: October 28, 2014Assignee: Purdue Research FoundationInventors: Aaron D. Franklin, Timothy D. Sands, Timothy S. Fisher, David B. Janes
-
Patent number: 8872162Abstract: A field-effect transistor includes a semiconductor layer containing carbon nanomaterials; a first electrode and a second electrode formed in contact with the semiconductor layer; a third electrode for controlling current flowing between the first electrode and the second electrode; and an insulating layer formed between the semiconductor layer and the third electrode. The insulating layer contains an aromatic polyamide comprising a substituent containing 1 to 20 carbon atoms.Type: GrantFiled: March 9, 2011Date of Patent: October 28, 2014Assignee: NEC CorporationInventor: Hiroyuki Endoh
-
Patent number: 8859316Abstract: A Schottky junction silicon nanowire field-effect biosensor/molecule detector with a nanowire thickness of 10 nanometer or less and an aligned source/drain workfunction for increased sensitivity. The nanowire channel is coated with a surface treatment to which a molecule of interest absorbs, which modulates the conductivity of the channel between the Schottky junctions sufficiently to qualitatively and quantitatively measure the presence and amount of the molecule.Type: GrantFiled: June 29, 2010Date of Patent: October 14, 2014Assignee: International Business Machines CorporationInventors: Dechao Guo, Christian Lavoie, Christine Ouyang Qiqing, Yanning Sun, Zhen Zhang
-
Patent number: 8853061Abstract: A method for forming a graphite-based device on a substrate having a plurality of zones is provided where the substrate is carbon doped in zones. Each such zone comprises a plurality of dopant profiles. One or more graphene stacks are generated in the doped zones. A graphene stack so generated comprises a non-planar graphene layer characterized by a bending angle, curvature, characteristic dimension, graphene orientation, graphene type, or combinations thereof. A method for forming a graphite-based device on a substrate is provided, the substrate comprising a graphene foundation material and a plurality of zones. The substrate is patterned to form features in the zones. One feature comprises a non-planar surface or at least two adjacent surfaces that are not coplanar. One or more graphene stacks are concurrently generated, at least one of which comprises a non-planar graphene layer overlaying the non-planar surface or the at least two adjacent surfaces.Type: GrantFiled: July 24, 2013Date of Patent: October 7, 2014Assignee: Solan, LLCInventor: Mark Alan Davis
-
Patent number: 8847395Abstract: A microelectronic device, including: a substrate and a plurality of metal interconnection levels stacked on the substrate; a first metal line of a given metal interconnection level; a second metal line of another metal interconnection level located above the given metal interconnection level, the first and second lines are interconnected via at least one semiconductor connection element extending in a direction forming a nonzero angle with the first metal lines and the second metal line; and a gate electrode capable of controlling conduction of the semiconductor connection element.Type: GrantFiled: July 5, 2011Date of Patent: September 30, 2014Assignee: Commissariat à l'énergie atomique et aux énergies alternativesInventors: Thomas Ernst, Paul-Henry Morel, Sylvain Maitrejean
-
Patent number: 8828256Abstract: A method for making a carbon nanotube film includes the steps of providing an array of carbon nanotubes, treating the array of carbon nanotubes by plasma, and pulling out a carbon nanotube film from the array of carbon nanotubes treated by the plasma.Type: GrantFiled: January 8, 2009Date of Patent: September 9, 2014Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.Inventors: Chen Feng, Kai Liu, Yong-Chao Zhai, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 8815625Abstract: A pressure sensor having a structure, which includes a supporting body, a circuit arrangement and at least one circuit support. The circuit arrangement includes circuit components, amongst which detection means for generating electrical signals representing a quantity to be detected. The at least one circuit support is connected to the supporting body and has a surface, formed on which is a plurality of said circuit components, amongst which electrically conductive paths, where the circuit support is laminated on the first face of the supporting body.Type: GrantFiled: July 14, 2011Date of Patent: August 26, 2014Assignee: Metallux SAInventor: Massimo Monichino
-
Patent number: 8816328Abstract: A method to fabricate a carbon nanotube (CNT)-based transistor includes providing a substrate having a CNT disposed over a surface; forming a protective electrically insulating layer over the CNT and forming a first multi-layer resist stack (MLRS) over the protective electrically insulating layer. The first MLRS includes a bottom layer, an intermediate layer and a top layer of resist. The method further includes patterning and selectively removing a portion of the first MLRS to define an opening for a gate stack while leaving the bottom layer; selectively removing a portion of the protective electrically insulating layer within the opening to expose a first portion of the CNT; forming the gate stack within the opening and upon the exposed first portion of the carbon nanotube, followed by formation of source and drain contacts also in accordance with the inventive method so as to expose second and third portions of the CNT.Type: GrantFiled: September 14, 2012Date of Patent: August 26, 2014Assignee: International Business Machines CorporationInventors: Josephine B Chang, Martin Glodde, Michael A. Guillorn
-
Patent number: 8803129Abstract: A structure includes a substrate having a carbon nanotube (CNT) disposed over a surface. The CNT is partially disposed within a protective electrically insulating layer. The structure further includes a gate stack disposed over the substrate. A first portion of a length of the CNT not covered by the protective electrically insulating layer passes through the gate stack. Source and drain contacts are disposed adjacent to the gate stack, where second and third portions of the length of CNT not covered by the protective electrically insulating layer are conductively electrically coupled to the source and drain contacts. The gate stack and the source and drain contacts are contained within the protective electrically insulating layer and within an electrically insulating organic planarization layer that is disposed over the protective electrically insulating layer. A method to fabricate a CNT-based transistor is also described.Type: GrantFiled: October 11, 2011Date of Patent: August 12, 2014Assignee: International Business Machines CorporationInventors: Josephine B Chang, Martin Glodde, Michael A. Guillorn
-
Patent number: 8785763Abstract: Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.Type: GrantFiled: August 30, 2013Date of Patent: July 22, 2014Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Melburne C. LeMieux, Ajay Virkar, Zhenan Bao
-
Patent number: 8754403Abstract: A method of forming a self-aligned device is provided and includes depositing carbon nanotubes (CNTs) onto a crystalline dielectric substrate, isolating a portion of the crystalline dielectric substrate encompassing a location of the CNTs, forming gate dielectric and gate electrode gate stacks on the CNTs while maintaining a structural integrity thereof and forming epitaxial source and drain regions in contact with portions of the CNTs on the crystalline dielectric substrate that are exposed from the gate dielectric and gate electrode gate stacks.Type: GrantFiled: August 2, 2012Date of Patent: June 17, 2014Assignee: International Business Machines CorporationInventors: Josephine B. Chang, Paul Chang, Vijay Narayanan, Jeffrey W. Sleight
-
Patent number: 8741756Abstract: A method of fabricating a semiconducting device is disclosed. A carbon nanotube is deposited on a substrate of the semiconducting device. A first contact on the substrate over the carbon nanotube. A second contact on the substrate over the carbon nanotube, wherein the second contact is separated from the first contact by a gap. A portion of the substrate in the gap between the first contact and the second contact is removed.Type: GrantFiled: August 13, 2012Date of Patent: June 3, 2014Assignee: International Business Machines CorporationInventors: Aaron D. Franklin, Shu-jen Han, Joshua T. Smith, Paul M. Solomon
-
Patent number: 8674412Abstract: A method of fabricating a semiconducting device is disclosed. A carbon nanotube is deposited on a substrate of the semiconducting device. A first contact on the substrate over the carbon nanotube. A second contact on the substrate over the carbon nanotube, wherein the second contact is separated from the first contact by a gap. A portion of the substrate in the gap between the first contact and the second contact is removed.Type: GrantFiled: August 16, 2012Date of Patent: March 18, 2014Assignee: International Business Machines CorporationInventors: Aaron D. Franklin, Shu-jen Han, Joshua T. Smith, Paul M. Solomon
-
Patent number: 8664091Abstract: A method for removing a metallic nanotube, which is formed on a substrate in a first direction, includes forming a plurality of conductors in a second direction crossing the first direction, electrically contacting the plurality of conductors with metallic nanotube, respectively, forming at least two voltage-applying electrodes on the conductors, each of which electrically contacting at least one of the conductors, and applying voltages to at least some of the conductors through the voltage-applying electrodes, respectively. Among the conductors to which the voltages are respectively applied, every two adjacent conductors have an electrical potential difference created therebetween, so as to burn out the metallic nanotube.Type: GrantFiled: November 21, 2011Date of Patent: March 4, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
-
Patent number: 8652874Abstract: A method of making nanostructures using a self-assembled monolayer of organic spheres is disclosed. The nanostructures include bowl-shaped structures and patterned elongated nanostructures. A bowl-shaped nanostructure with a nanorod grown from a conductive substrate through the bowl-shaped nanostructure may be configured as a field emitter or a vertical field effect transistor. A method of separating nanoparticles of a desired size employs an array of bowl-shaped structures.Type: GrantFiled: November 18, 2011Date of Patent: February 18, 2014Assignee: Georgia Tech Research CorporationInventors: Zhong L. Wang, Christopher J. Summers, Xudong Wang, Elton D Graugnard, Jeffrey King
-
Patent number: 8647922Abstract: The present invention relates to a method of forming a wire bond-free conductive interconnect area on a semiconductor substrate. A semiconductor substrate with an electrically conductive protrusion, defining a bond pad, is provided as well as a plurality of carbon nanotubes. The plurality of carbon nanotubes is immobilized on the bond pad by allowing at least one random portion along the length of the carbon nanotubes to attach to the surface of the bond pad. Thus an aggregate of loops of carbon nanotubes is formed on the surface of the bond pad. Thereby a conductive interconnect area is formed on the electrically conductive protrusion without heat treatment.Type: GrantFiled: November 8, 2007Date of Patent: February 11, 2014Assignee: Nanyang Technological UniversityInventors: Jijie Zhou, Zhong Chen
-
Patent number: 8647894Abstract: A method for depositing graphene is provided. The method includes depositing a layer of non-conducting amorphous carbon over a surface of a substrate and depositing a transition metal in a pattern over the amorphous carbon. The substrate is annealed at a temperature below 500° C., where the annealing converts the non-conducting amorphous carbon disposed under the transition metal to conducting amorphous carbon. A portion of the pattern of the transition metal is removed from the surface of the substrate to expose the conducting amorphous carbon.Type: GrantFiled: December 26, 2012Date of Patent: February 11, 2014Assignee: Intermolecular, Inc.Inventors: Sandip Niyogi, Sean Barstow
-
Patent number: 8637356Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.Type: GrantFiled: June 27, 2012Date of Patent: January 28, 2014Assignee: Northeastern UniversityInventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
-
Patent number: 8629010Abstract: Carbon nanotubes can be aligned with compatibility with semiconductor manufacturing processes, with scalability for forming smaller devices, and without performance degradation related to structural damages. A planar structure including a buried gate electrode and two embedded electrodes are formed. After forming a gate dielectric, carbon nanotubes are assembled in a solution on a surface of the gate dielectric along the direction of an alternating current (AC) electrical field generated by applying a voltage between the two embedded electrodes. A source contact electrode and a drain contact electrode are formed by depositing a conductive material on both ends of the carbon nanotubes. Each of the source and drain contact electrodes can be electrically shorted to an underlying embedded electrode to reduce parasitic capacitance.Type: GrantFiled: October 21, 2011Date of Patent: January 14, 2014Assignees: International Business Machines Corporation, Karlsruher Institut Fuer Technologie (KIT)Inventors: Phaedon Avouris, Yu-Ming Lin, Mathias B. Steiner, Michael W. Engel, Ralph Krupke
-
Patent number: 8618611Abstract: Embodiments of the invention integrate carbon nanotubes on a CMOS substrate using localized heating. An embodiment can allow the CMOS substrate to be in a room-temperature environment during the carbon nanotube growth process. Specific embodiments utilize a maskless post-CMOS microelectromechanical systems (MEMS) process. The post-CMOS MEMS process according to an embodiment of the present invention provides a carbon nanotube growth process that is foundry CMOS compatible. The maskless process, according to an embodiment, eliminates the need for photomasks after the CMOS fabrication and can preserve whatever feature sizes are available in the foundry CMOS process. Embodiments integrate single-walled carbon nanotube devices into a CMOS platform.Type: GrantFiled: June 16, 2008Date of Patent: December 31, 2013Assignee: University of Florida Research Foundation, Inc.Inventors: Huikai Xie, Ant Ural
-
Patent number: 8603836Abstract: Disclosed is a transparent carbon nanotube (CNT) electrode using a conductive dispersant. The transparent CNT electrode comprises a transparent substrate and a CNT thin film formed on a surface the transparent substrate wherein the CNT thin film is formed of a CNT composition comprising CNTs and a doped dispersant. Further disclosed is a method for producing the transparent CNT electrode. The transparent CNT electrode exhibits excellent conductive properties, can be produced in an economical and simple manner by a room temperature wet process, and can be applied to flexible displays. The transparent CNT electrode can be used to fabricate a variety of devices, including image sensors, solar cells, liquid crystal displays, organic electroluminescence (EL) displays and touch screen panels, that are required to have both light transmission properties and conductive properties.Type: GrantFiled: February 14, 2012Date of Patent: December 10, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Seon Mi Yoon, Jae Young Choi, Dong Kee Yi, Seong Jae Choi, Hyeon Jin Shin
-
Patent number: 8604459Abstract: Electrical devices containing carbon nanotubes can be passivated to protect the carbon nanotubes from degradation while substantially preserving the carbon nanotubes' electrical conductivity and switching characteristics. Such electrical devices can include a first metal contact, a switching layer containing a plurality of carbon nanotubes disposed on the first metal contact, a passivation layer containing amorphous carbon, a metal carbide, or any combination thereof that is disposed on at least a top surface of the switching layer, and a second metal contact disposed upon the passivation layer. Methods for forming the electrical devices can include disposing a passivation layer containing amorphous carbon on at least a top surface of the switching layer, and optionally heating to at least partially convert the amorphous carbon within the passivation layer into a metal carbide.Type: GrantFiled: June 7, 2012Date of Patent: December 10, 2013Assignee: Lockheed Martin CorporationInventors: Jonathan W. Ward, Garo J. Derderian
-
Patent number: 8598689Abstract: A method of forming a plurality of nanotubes is disclosed. Particularly, a substrate may be provided and a plurality of recesses may be formed therein. Further, a plurality of nanotubes may be formed generally within each of the plurality of recesses and the plurality of nanotubes may be substantially surrounded with a supporting material. Additionally, at least some of the plurality of nanotubes may be selectively shortened and at least a portion of the at least some of the plurality of nanotubes may be functionalized. Methods for forming semiconductor structures intermediate structures, and semiconductor devices are disclosed. An intermediate structure, intermediate semiconductor structure, and a system including nanotube structures are also disclosed.Type: GrantFiled: July 8, 2011Date of Patent: December 3, 2013Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, Terry L. Gilton
-
Patent number: 8586458Abstract: Provided are a method of doping carbon nanotubes, p-doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes. Particularly, a method of doping carbon nanotubes having improved conductivity by reforming the carbon nanotubes using an oxidizer, doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes are provided.Type: GrantFiled: March 6, 2008Date of Patent: November 19, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Seon-mi Yoon, Seong-jae Choi, Hyeon-jin Shin, Jae-young Choi, Sung-jin Kim, Young-hee Lee
-
Patent number: 8558256Abstract: Provided are a light emitting diode (LED) using a Si nanowire as an emission device and a method of fabricating the same. The LED includes: a semiconductor substrate; first and second semiconductor protrusions disposed on the semiconductor substrate to face each other; a semiconductor nanowire suspended between the first and second semiconductor protrusions; and first and second electrodes disposed on the first and second protrusions, respectively.Type: GrantFiled: October 19, 2007Date of Patent: October 15, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Ki-ha Hong, Young-gu Jin, Jai-kwang Shin, Sung-Il Park, Jong-seob Kim
-
Patent number: 8558220Abstract: In some aspects, a method of fabricating a memory cell is provided that includes (1) fabricating a first conductor above a substrate; (2) selectively fabricating a carbon nano-tube (CNT) material above the first conductor; (3) fabricating a diode above the CNT material; and (4) fabricating a second conductor above the diode. Numerous other aspects are provided.Type: GrantFiled: December 31, 2007Date of Patent: October 15, 2013Assignee: SanDisk 3D LLCInventors: April Schricker, Mark Clark, Brad Herner
-
Patent number: 8535753Abstract: Methods of forming carbon nanotubes include forming a catalytic metal layer on a sidewall of an electrically conductive region, such as a metal or metal nitride pattern. A plurality of carbon nanotubes are grown from the catalytic metal layer. These carbon nanotubes can be grown from a sidewall of the catalytic metal layer. The plurality of carbon nanotubes are then exposed to an organic solvent. This step of exposing the carbon nanotubes to the organic solvent may be preceded by a step of applying centrifugal forces to the plurality of carbon nanotubes. Alternatively, the exposing step may include applying a centrifugal force to the plurality of carbon nanotubes while simultaneously exposing the plurality of carbon nanotubes to an organic solvent.Type: GrantFiled: November 25, 2009Date of Patent: September 17, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Xianfeng Wang, Hong-Sik Yoon, In-Seok Yeo
-
Patent number: 8530271Abstract: Nanostructures are doped to set conductivity characteristics. In accordance with various example embodiments, nanostructures such as carbon nanotubes are doped with a halogenated fullerene type of dopant material. In some implementations, the dopant material is deposited from solution or by vapor deposition, and used to dope the nanotubes to increase the thermal and/or electrical conductivity of the nanotubes.Type: GrantFiled: January 21, 2011Date of Patent: September 10, 2013Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Ajay Virkar, Melburne C. Lemieux, Zhenan Bao
-
Patent number: 8530889Abstract: A carbon nanotube composite in which a conjugated polymer containing repeating units containing a fused heteroaryl unit having a nitrogen-containing double bond in the ring, and a thiophene unit is attached to at least a part of the surface of a carbon nanotube. The present invention reduces the hysteresis of a field-effect transistor having a semiconductor layer containing a carbon nanotube.Type: GrantFiled: May 11, 2009Date of Patent: September 10, 2013Assignee: Toray Industries, Inc.Inventors: Yukari Jo, Seiichiro Murase, Daisuke Kitazawa, Jun Tsukamoto
-
Patent number: 8524525Abstract: Nanostructures are joined using one or more of a variety of materials and approaches. As consistent with various example embodiments, two or more nanostructures are joined at a junction between the nanostructures. The nanostructures may touch or be nearly touching at the junction, and a joining material is deposited and nucleates at the junction to couple the nanostructures together. In various applications, the nucleated joining material facilitates conductivity (thermal and/or electric) between the nanostructures. In some embodiments, the joining material further enhances conductivity of the nanostructures themselves, such as by growing along the nanostructures and/or doping the nanostructures.Type: GrantFiled: January 21, 2011Date of Patent: September 3, 2013Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Melburne C. LeMieux, Ajay Virkar, Zhenan Bao
-
Patent number: 8519379Abstract: An embodiment relates to a device comprising a substrate, a nanowire and a doped epitaxial layer surrounding the nanowire, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire. Another embodiment relates to a device comprising a substrate, a nanowire and one or more photogates surrounding the nanowire, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire, and wherein the one or more photogates comprise an epitaxial layer.Type: GrantFiled: December 8, 2009Date of Patent: August 27, 2013Assignee: Zena Technologies, Inc.Inventors: Young-June Yu, Munib Wober
-
Patent number: 8513099Abstract: A method of forming a self-aligned device is provided and includes depositing carbon nanotubes (CNTs) onto a crystalline dielectric substrate, isolating a portion of the crystalline dielectric substrate encompassing a location of the CNTs, forming gate dielectric and gate electrode gate stacks on the CNTs while maintaining a structural integrity thereof and forming epitaxial source and drain regions in contact with portions of the CNTs on the crystalline dielectric substrate that are exposed from the gate dielectric and gate electrode gate stacks.Type: GrantFiled: June 17, 2010Date of Patent: August 20, 2013Assignee: International Business Machines CorporationInventors: Josephine B. Chang, Paul Chang, Vijay Narayanan, Jeffrey W. Sleight
-
Patent number: 8501529Abstract: Provided are a method of doping carbon nanotubes, p-doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes. Particularly, a method of doping carbon nanotubes having improved conductivity by reforming the carbon nanotubes using an oxidizer, doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes are provided.Type: GrantFiled: October 7, 2010Date of Patent: August 6, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Seon-mi Yoon, Seong-jae Choi, Hyeon-jin Shin, Jae-young Choi, Sung-jin Kim, Young-hee Lee
-
Patent number: 8466044Abstract: Memory cells, and methods of forming such memory cells, are provided that include a carbon-based reversible resistivity switching material. In particular embodiments, methods in accordance with this invention form a memory cell by forming a carbon-based reversible resistance-switching material above a substrate, forming a carbon nitride layer above the carbon-based reversible resistance-switching material, and forming a barrier material above the carbon nitride layer using an atomic layer deposition process. Other aspects are also provided.Type: GrantFiled: August 5, 2009Date of Patent: June 18, 2013Assignee: SanDisk 3D LLCInventor: Huiwen Xu
-
Patent number: 8455311Abstract: A solid state Klystron structure is fabricated by forming a source contact and a drain contact to both ends of a conducting wire and by forming a bias gate and a signal gate on the conducting wire. The conducting wire may be at least one carbon nanotube or at least one semiconductor wire with long ballistic mean free paths. By applying a signal at a frequency that corresponds to an integer multiple of the transit time of the ballistic carriers between adjacent fingers of the signal gate, the carriers are bunched within the conducting wire, thus amplifying the current through the solid state Klystron at a frequency of the signal to the signal gate, thus achieving a power gain.Type: GrantFiled: September 4, 2012Date of Patent: June 4, 2013Assignee: International Business Machines CorporationInventor: Paul M. Solomon
-
Patent number: 8440994Abstract: Carbon nanotube (CNT)-based devices and technology for their fabrication are disclosed. The discussed electronic and photonic devices and circuits rely on the nanotube arrays grown on a variety of substrates, such as glass or Si wafer. The planar, multiple layer deposition technique and simple methods of change of the nanotube conductivity type during the device processing are utilized to provide a simple and cost effective technology for a large scale circuit integration. Such devices as p-n diode, CMOS-like circuit, bipolar transistor, light emitting diode and laser are disclosed, all of them are expected to have superior performance then their semiconductor-based counterparts due to excellent CNT electrical and optical properties. When fabricated on Si-wafers, the CNT-based devices can be combined with the Si circuit elements, thus producing hybrid Si-CNT devices and circuits.Type: GrantFiled: January 24, 2008Date of Patent: May 14, 2013Assignee: Nano-Electronic and Photonic Devices and Circuits, LLCInventor: Alexander Kastalsky