With Positive Or Negative Ion Acceleration Patents (Class 313/359.1)
  • Publication number: 20080072413
    Abstract: A method and clamp system for use on an ion implanter system for aligning a cathode and filament relative to one another in-situ are disclosed. The invention includes a clamp system having a clamp including a first clamp member separably coupled to a second clamp member, and an opening to a mount portion of one of the cathode and the filament in at least one of the clamp members. Each clamp member includes a surface to engage a mount portion of one of the cathode and the filament. The opening is adapted to receive a positioning tool to position the cathode and the filament relative to one another by moving the mount portion when the clamp is released. The mount portion may include a tool receiving member to facilitate accurate positioning.
    Type: Application
    Filed: August 1, 2005
    Publication date: March 27, 2008
    Inventors: Stephen Krause, Eric R. Cobb, Russell Low
  • Patent number: 7339165
    Abstract: A chemical biological detection system detects the presence of biological agents in the air. The system includes a pyrolyzer having an inlet through which air is drawn into the pyrolyzer and a pyrotube that collects a sample of particles extracted from the air. The pyrolyzer further includes an exhaust line that exhausts the air drawn into the pyrolyzer and a sample line that directs the gases eluted from the sample collected in the pyrotube to a mass spectrometer for sample identification. After the sample is collected in the pyrotube, the sample is analyzed. A small droplet of a methylating reagent is added to the sample. If the sample includes any biological agents, the methylating reagent derivatizes organic materials to make them more volatile. The sample is then pyrolyzed, and the eluted gas sample is drawn through the sample line and into the mass spectrometer for identification of any biological agents.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: March 4, 2008
    Assignee: Hamilton Sundstrand Corporation
    Inventors: William S. Donaldson, Richard K. Chun
  • Publication number: 20080018220
    Abstract: A high-performance negative ion generating module includes a high-voltage electric field catalyzer unit formed of multiple catalyzer reaction boards and two high-voltage discharging panels for discharging a high voltage to produce a high voltage electric field, and an ion generator kit formed of a first ion generating panel, which has activation tubes respectively coated with VO2 and TiO2, and a metal coating and electrically connected to the negative pole of the power supply, and a second ion generating panel, which has discharging terminals electrically connected to the positive pole of the power supply and respectively aimed at the activation tubes for causing an electron wind to flow through the activation tubes to enhance air cleaning.
    Type: Application
    Filed: February 12, 2007
    Publication date: January 24, 2008
    Inventor: Kun-Liang Hong
  • Patent number: 7294969
    Abstract: Disclosed is a high-frequency discharge plasma generation-based two-stage Hall-effect plasma accelerator, which comprises an annular acceleration channel having a gas inlet port, a high-frequency wave supply section, an anode, a cathode, a neutralizing electron generation portion and a magnetic-field generation element, wherein: gas introduced from the gas inlet port into the annular acceleration channel is ionized by a high-frequency wave supplied from the high-frequency wave supply section, to generate plasma; a positive ion includes in the generated plasma is accelerated by an acceleration voltage applied between the anode and cathode, and ejected outside; and an electron included in the generated plasma is restricted in its movement in the axial direction of the annular acceleration channel by an interaction with a magnetic field.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: November 13, 2007
    Assignee: Japan Aerospace Exploration Agency
    Inventor: Hitoshi Kuninaka
  • Patent number: 7282702
    Abstract: An ion neutralizer enhances a heat transfer rate between a reflecting plate and a frame while preventing the reflecting plate from being bent due to thermal deformation. The ion neutralizer includes a frame and a plurality of reflecting plates integrally formed with the frame to neutralize plasma ions. Each reflecting plate has a cantilever shape. Each reflecting plate has a supporting end in surface contact with the frame, and a free end to define a space with the frame in order to prevent the reflecting plate from being bent upon stretching due to thermal deformation.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: October 16, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun Kwang Jeon, Jung Wook Kim
  • Patent number: 7259369
    Abstract: Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: August 21, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Jill R. Scott, David A. Dahl, Carla J. Miller, Paul L. Tremblay, Timothy R. McJunkin
  • Patent number: 7247992
    Abstract: For an ion accelerator system having a special magnetic field structure with an alternating predominantly longitudinal and crosswise progression of the magnetic field, a geometry of the ionization chamber having a non-cylindrical shape of the chamber wall that is adapted to the progression of the magnetic field is proposed.
    Type: Grant
    Filed: December 13, 2003
    Date of Patent: July 24, 2007
    Assignee: Thales Electron Devices GmbH
    Inventors: Günter Kornfeld, Gregory Coustou, Norbert Koch
  • Patent number: 7202474
    Abstract: An ion attachment mass spectrometry apparatus causing positively charged metal ions to attach to molecules of a gas to be measured in an attachment region to generate attached ions and then performing mass spectrometry on the attached ions by a mass spectrometer, has a metal ion selective disassociation unit for selectively making the metal ions attached to the specific molecules in the attachment region disassociate. By making the metal ions attached to the specific molecules such as H2O disassociate, a state is formed where the metal ions are attached to only the sample gas to be measured and the reliability of measurement of the gas is improved.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: April 10, 2007
    Assignee: Anelva Corporation
    Inventors: Yoshiki Hirano, Yoshiro Shiokawa, Harumi Maruyama, Megumi Nakamura
  • Patent number: 7192556
    Abstract: The invention relates to a flow cell, a method for separating carrier-free radionuclides from a liquid or liquefiable target material, and the radiochemical reaction thereof. According to prior art, flow cells are known which require reaction volumes corresponding to the volume of the target material in order to carry out the desired reactions. The inventive flow cell (1) and method enable the reaction volume, and thus the quantity of starting material, to be reduced by a multiple by reducing the cylinder volume (=reaction volume). As the radioactively marked product is present in very small quantities (picomole to nanomole), the HPL-chromatographic separation of the non-reacted starting material is significantly improved. The economic efficiency of the method is increased due to the fact that small quantities of starting material can be used.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: March 20, 2007
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Kurt Hamacher, Willi Bolten
  • Patent number: 7164227
    Abstract: An efficiency enhancing anode-magnetic structure of a Hall effect thruster produces a radially directed magnetic field between inner and outer poles at the exit portion of a gas distribution channel. The field-shaping structure includes magnetic material extending alongside the channel with an associated secondary flux-generating component to create an axially directed magnetic field in the area between the anode of the thruster and the exit portion of the gas distribution channel.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: January 16, 2007
    Assignee: Aerojet-General Corporation
    Inventor: Kristi H. de Grys
  • Patent number: 7148613
    Abstract: There is described, for example, a generally cylindrical generator of energetic electrons that releases electrons from a vacuum enclosure into a surrounding space including into the atmosphere where the electrons may be used for a variety of applications including clean up of a flowing gas stream. Described is an efficient electron generator that emits more beam power than past structures in this class of devices and does so in connection with the treatment of gases or surfaces requiring treatment.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: December 12, 2006
    Assignees: Valence Corporation, Teledyne Technologies Incorporated
    Inventors: Edgar B. Dally, Donald R. Gagne, Robert J. Espinosa, Joel Christeson
  • Patent number: 7139009
    Abstract: An ion printer is proposed for simultaneous generation on the spatially fixed substrate of the whole image composed of micron and submicron size elements, containing a fixed substrate with layer of material capable of changing its properties under the ion influence; an ion source with a tool for beam forming, which ensures the divergence angle less than 20°, and with the first tool of acceleration of ions providing them the energy less than the one needed for variation of the properties of the material on the substrate surface. The said ion printer contains also a mask with parallel flat surfaces and with a ratio of its thickness to the distance from the mask to the substrate equals to 1:(0.6–3), correspondingly. The said mask has a plurality of apertures for passing the said accelerated ions, each of the apertures having the ratio of its depth to its cross-section size in the range from 9 to 50.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: November 21, 2006
    Inventor: Boris Aronovich Gurovich
  • Patent number: 7084397
    Abstract: An ion attachment mass spectrometry apparatus causing positively charged metal ions to attach to molecules of a gas to be measured in an attachment region to generate attached ions and then performing mass spectrometry on the attached ions by a mass spectrometer, has a metal ion selective disassociation unit for selectively making the metal ions attached to the specific molecules in the attachment region disassociate. By making the metal ions attached to the specific molecules such as H2O disassociate, a state is formed where the metal ions are attached to only the sample gas to be measured and the reliability of measurement of the gas is improved.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: August 1, 2006
    Assignee: Anelva Corporation
    Inventors: Yoshiki Hirano, Yoshiro Shiokawa, Harumi Maruyama, Megumi Nakamura
  • Patent number: 7084572
    Abstract: The invention relates to various advantageous embodiments of a plasma-accelerator configuration, especially for the configuration and design of electron sources used for ionizing the working gas and/or neutralizing the discharged plasma jet.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: August 1, 2006
    Assignee: Thales Electron Devices GmbH
    Inventors: Günter Kornfeld, Werner Schwertfeger, Roland Lenz, Gregory Coustou
  • Patent number: 7078852
    Abstract: A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: July 18, 2006
    Assignee: Coincident Beams Licensing Corporation
    Inventor: Michael Mauck
  • Patent number: 7049736
    Abstract: Background plasma electrons in a laser wake field are trapped and accelerated using a sharp downward density transition. A short and intense laser pulse travels through low density plasma with a sharp downward density transition. The density transition scale length is much smaller than the wavelength of a laser wake wave. As the laser wake wave passes the density transition, its wavelength increases suddenly so that some background plasma electrons are self-injected into the acceleration phase of the wake field and trapped and accelerated by the strong laser wake field.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: May 23, 2006
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Hy-yong Suk, Guang-Hoon Kim, Jong-Uk Kim, Chang-Bum Kim, Hae-June Lee
  • Patent number: 7045793
    Abstract: A multi-grid ion beam source has an extraction grid, an acceleration grid, a focus grid, and a shield grid to produce a highly collimated ion beam. A five grid ion beam source is also disclosed having two shield grids. The extraction grid has a high positive potential and covers a plasma chamber containing plasma. The acceleration grid has a non-positive potential. The focus grid is positioned between the acceleration grid and the shield grid. The combination of the extraction grid and the acceleration grid extracts ions from the plasma. The focus grid acts to change momentum of the ions exiting the acceleration grid, focusing the ions into a more collimated ion beam than previous approaches. In one embodiment, the focus grid has a large positive potential. In another embodiment, the focus grid has a large negative potential.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 16, 2006
    Assignee: Veeco Instruments, Inc.
    Inventor: Erik Karl Kristian Wåhlin
  • Patent number: 7038403
    Abstract: A technique is provided for the alignment of an H/D puller for use in a cyclotron. One aspect of the technique comprises magnetically attaching a pair of feeler gages to an alignment tool for use in aligning the H/D puller. The magnetic retention of the feeler gages allows a field engineer to make the desired adjustments to align the H/D puller. Another aspect of the present technique provides for the H/D puller to include a replaceable tip such that the tip may be replaced without removing the H/D puller. Because the H/D puller is not removed and replaced, the alignment of the H/D puller to the ion source is maintained.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: May 2, 2006
    Assignee: GE Medical Technology Services, Inc.
    Inventors: Edward J. Mastrangeli, Nevin R. Johns, Roger Deane Smith, Timothy E. Erickson
  • Patent number: 7023128
    Abstract: A dipole ion source (FIG. 1) includes two cathode surfaces, a substrate (1) and a pole (3); wherein a gap is defined between the substrate and the pole; an unsymmetrical mirror magnetic field including a compressed end, wherein the substrate is positioned in the less compressed end of the magnetic field; and an anode (4) creating an electric field penetrating the magnetic field and confining electrons in a continuous Hall current loop, wherein the unsymmetrical magnetic field serves an ion beam on the substrate.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: April 4, 2006
    Assignee: Applied Process Technologies, Inc.
    Inventor: John Madocks
  • Patent number: 6984835
    Abstract: An irradiation apparatus has a large irradiation field and is capable of ensuring the uniformity of a dose distribution without strengthening the performance of an irradiation field enlarging device. The irradiation apparatus includes a beam interruption part for performing a plurality of irradiations of a radiation beam, a position control part for controlling a location to be irradiated in such a manner that the entire surface of the target can be irradiated in a plurality of irradiation zones including an overlapping area formed by the plurality of irradiations, and a multileaf collimator control part for providing a slope to a dose distribution in the overlapping area of the respective irradiation zones, so that the dose distribution over the entire surface of the target including the overlapping area is made flat or uniform by the plurality of irradiations of the radiation beam.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: January 10, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hisashi Harada
  • Patent number: 6982520
    Abstract: An efficiency enhancing anode-magnetic structure of a Hall effect thruster produces a radially directed magnetic field between inner and outer poles at the exit portion of a gas distribution channel. The field-shaping structure includes magnetic material extending alongside the channel with an associated secondary flux-generating component to create an axially directed magnetic field in the area between the anode of the thruster and the exit portion of the gas distribution channel.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: January 3, 2006
    Assignee: Aerojet-General Corporation
    Inventor: Kristi H. de Grys
  • Patent number: 6974950
    Abstract: The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: December 13, 2005
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Jani Reijonen
  • Patent number: 6964396
    Abstract: A voltage tracking system for an ion thruster includes a discharge chamber, a screen grid, an accelerator grid, and an accelerator grid voltage controller. The discharge chamber contains plasma at a given potential. The screen grid is adjacent to the discharge chamber and is voltage biased relative to the plasma to form a plasma sheath that repels electrons and attracts ions from the discharge chamber plasma. The accelerator grid is adjacent to the screen grid and has a voltage for accelerating the ions to create thrust and prevent any electrons from backstreaming into the ion thruster from the beam plasma. The accelerator grid voltage controller supplies voltage to the accelerator grid. The accelerator grid voltage controller adjusts the magnitude of the accelerator grid voltage to minimize the amount of voltage required to prevent electron backstreaming into the ion thruster.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: November 15, 2005
    Assignee: The Boeing Company
    Inventors: John D. Williams, Prakash C. Soni, John R. Beattie
  • Patent number: 6963162
    Abstract: A gas distributor for an ion source includes a plate having a recess and a series of apertures spaced radially outward from the recess. The apertures define paths for the flow of a gas through the plate, and the gas distributor further includes a sacrificial element that is separate from the plate and that is receivable and seats within the recess. The sacrificial element forms an area of the gas distributor that is subjected to erosive forces during normal operations of the ion source, and therefore, prevents erosion of the surface of the plate. The sacrificial element is removable from the plate and replaceable with another sacrificial element during a procedure which neither requires the plate to be removed from the ion source nor the ion source to be disassembled.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: November 8, 2005
    Assignee: Dontech Inc.
    Inventor: Dominick Centurioni
  • Patent number: 6960888
    Abstract: A method of producing and accelerating an ion beam comprising the steps of: providing a magnetic field with a cusp that opens in an outward direction along a centerline that passes through a vertex of the cusp: providing an ionizing gas that sprays outward through at least one capillary-like orifice in a plenum that is positioned such that the orifice is on the centerline in the cusp, outward of the vortex of the cusp; providing a cathode electron source, and positioning it outward of the orifice and off of the centerline; and positively charging the plenum relative to the cathode electron source such that the plenum functions as an anode. A hot filament may be used as the cathode electron source, and permanent magnets may be used to provide the magnetic field.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: November 1, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: John E. Foster
  • Patent number: 6948305
    Abstract: An apparatus and method for balancing the emission current of neutralizers in ion thruster arrays is disclosed that allows a single power processing unit (PPU) to be used to drive the array. A typical embodiment includes at least one voltage-regulated power supply, each voltage-regulated power supply for driving a common element in each of the plurality of ion thrusters, the common element in each of the plurality of ion thrusters being coupled together at a common point, and a current balance circuit for providing a substantially balanced current to each neutralizer cathode of the plurality of ion thrusters by providing a voltage to the neutralizer cathodes relative to the common point.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: September 27, 2005
    Assignee: The Boeing Company
    Inventors: John Robert Beattie, Prakash C. Soni
  • Patent number: 6919672
    Abstract: A closed drift ion source which includes a channel having an open end, a closed end, and an input port for an ionizable gas. A first magnetic pole is disposed on the open end of the channel and extends therefrom in a first direction. A second magnetic pole disposed on the open end of the channel and extends therefrom in a second direction, where the first direction is opposite to the second direction. The distal ends of the first magnetic pole and the second magnetic pole define a gap comprising the opening in the first end. An anode is disposed within the channel. A primary magnetic field line is disposed between the first magnetic pole and the second magnetic pole, where that primary magnetic field line has a mirror field greater than 2.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: July 19, 2005
    Assignee: Applied Process Technologies, Inc.
    Inventor: John Madocks
  • Patent number: 6909087
    Abstract: A plasma generator generates positive ions and negative ions in a plasma. An ion extracting portion (4, 5) selectively extracts the generated positive ions and negative ions from the plasma, and accelerates the extracted ions in a predetermined direction. The positive ions and the negative ions are selectively applied to the workpiece (X). The plasma generator applies a high-frequency voltage to a process gas in a vacuum chamber for generating a plasma which is composed of positive ions and electrons from the process gas, and interrupts the high-frequency voltage for attaching the electrons to the residual process gas to generate negative ions. The application of the high-frequency voltage and the interruption of the high-frequency voltage are alternately repeated.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: June 21, 2005
    Assignee: Ebara Corporation
    Inventors: Katsunori Ichiki, Kazuo Yamauchi, Hirokuni Hiyama, Seiji Samukawa
  • Patent number: 6909086
    Abstract: A neutral particle beam processing apparatus comprises a workpiece holder (20) for holding a workpiece (X), a plasma generator for generating a plasma in a vacuum chamber (3) by applying a high-frequency electric field, an orifice electrode (4) disposed between the workpiece holder (20) and the plasma generator, and a grid electrode (5) disposed upstream of the orifice electrode (4) in the vacuum chamber (3). The orifice electrode (4) has orifices (4a) defined therein. The neutral particle beam processing apparatus further comprises a voltage applying unit for applying a voltage between the orifice electrode (4) which serves as an anode and the grid electrode (5) which serves as a cathode, while the high-frequency electric field applied by the plasma generator is being interrupted, to accelerate negative ions in the plasma generated by the plasma generator and pass the accelerated negative ions through the orifices (4a) in the orifice electrode (4).
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: June 21, 2005
    Assignees: Ebara Corporation, Japan as represented by President of Tohoku University
    Inventors: Seiji Samukawa, Katsunori Ichiki, Kazuo Yamauchi, Hirokuni Hiyama
  • Patent number: 6906453
    Abstract: A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: June 14, 2005
    Assignee: Coincident Beams Licensing Corporation
    Inventor: Michael Mauck
  • Patent number: 6903521
    Abstract: An electromagnetic induced accelerator includes internal and external circular loop inductors for inducing a magnetic field when a current is applied to the internal and external circular loop inductors in a same direction, the internal and external circular loop inductors being spaced apart from each other by a predetermined distance and disposed coaxially and parallel to each other; a channel, which includes dielectric layers contacting the internal and external circular loop inductors, disposed between the internal and external circular loop inductors, wherein a secondary current is induced in the channel between the dielectric layers by the induced, magnetic field; and a discharging coil for supplying a pulse energy to the channel and for generating a plasma.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: June 7, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Won-taek Park
  • Patent number: 6888326
    Abstract: A drift tube linear accelerator (linac) that can be used for the acceleration of low energy ion beams. The particles enter the linac at low energy and are accelerated and focused along a straight line in a plurality of resonant accelerating structures interposed by coupling structures up to the desired energy. In the accelerating structures, excited by an H-type resonant electromagnetic field, a plurality of accelerating gaps is provided between drift tubes supported by stems, for instance alternatively horizontally and vertically disposed. A basic module composed of two accelerating structures and an interposed coupling structure, or a modified coupling structure connected to a RF power generator, is if necessary linked to a vacuum system and equipped with one or more quadrupoles.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: May 3, 2005
    Assignee: Fondazione per Adroterapia Oncologica—TERA
    Inventors: Ugo Amaldi, Massimo Crescenti, Riccardo Zennaro
  • Patent number: 6864486
    Abstract: A closed loop exit hole is formed in a magnetically permeable end wall (2) of an enclosure (1) of a closed electron drift ion source. Parts of this end wall separated by the exit hole serve as pole pieces (7 and 8) of the magnetic system and define the first pole gap. The magnetic system includes pole pieces (9 and 10), which define the second pole gap made in the form of a closed loop exit hole and arranged along the direction of ion emission. Magnetomotive force sources (5 and 6) are located in space between two groups of magnetic terminals. The ratio of width of each pole gap and distance between pole pieces of the first (7 and 8) and second (9 and 10) magnetic gaps along the direction of ion emission is not less than 0.05. The invention allows the intensity of the generated ion beam and the energy of ions to be increased, and this is provided by the homogeneous distribution of ion current density across the ion beam section.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: March 8, 2005
    Assignee: Veeco Instruments, Inc.
    Inventors: Valery V. Alekseev, Vsevolod V. Zelenkov, Mark M. Krivoruchko, John E. Keem
  • Patent number: 6861643
    Abstract: A neutral particle beam processing apparatus comprises a process gas inlet port (11) for introducing a process gas into a vacuum chamber (1), a plasma generating chamber (2) for generating positive ions and electrons from the introduced process gas, and a negative ion generating chamber (3) for attaching electrons generated in the plasma generating chamber to the residual gas to generate negative ions. The neutral particle beam processing apparatus further comprises an ion extracting portion (4) for extracting the positive ions or the negative ions and accelerating the positive ions or the negative ions in a predetermined direction, and a neutralizing chamber (5) for neutralizing an ion beam generated by the ion extracting portion (4) to generate a neutral particle beam. The neutral particle beam generated in the neutralizing chamber (5) is applied to a workpiece (X).
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: March 1, 2005
    Assignee: Ebara Corporation
    Inventors: Katsunori Ichiki, Kazuo Yamauchi, Hirokuni Hiyama, Seiji Samukawa
  • Patent number: 6858838
    Abstract: A neutral particle beam processing apparatus comprises a plasma generator for generating positive ions and/or negative ions in a plasma, a pair of electrodes (5, 6) involving the plasma generated by the plasma generator therebetween, and a power supply (102) for applying a voltage between the pair of electrodes (5, 6). The pair of electrodes (5, 6) accelerate the positive ions and/or the negative ions generated by the plasma generator. The positive ions and/or the negative ions are neutralized and converted into neutral particles while being drifted in the plasma between the pair of electrodes (5, 6) toward a workpiece (X). The accelerated neutral particles pass through one of the electrodes (6) and are applied to the workpiece (X).
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: February 22, 2005
    Assignee: Ebara Corporation
    Inventors: Katsunori Ichiki, Kazuo Yamauchi, Hirokuni Hiyama, Seiji Samukawa
  • Patent number: 6855939
    Abstract: The invention relates to a particle beam system comprising a particle source (1), a mirror corrector (9, 21 to 25), and an objective lens (16). The mirror corrector comprises an electrostatic mirror (9) and a magnetic beam deflector (21, 22, 23, 24, 25), which is arranged between the particle source (1) and the electrostatic mirror (9) as well as between the electrostatic mirror (9) and the objective lens (16). The magnetic beam deflector (21, 22, 23, 24, 25) is free from dispersion for each single pass. The magnetic beam deflector (21, 22, 23, 24, 25) also comprises quadrupoles and/or quadrupole components, which are provided in such a manner that a maximum of two planes, which are conjugated with regard to the diffraction plane (28) of the objective lens (16), occur on the entire path length between the first outlet from the magnetic beam deflector (21, 22, 23, 24, 25) and from the objective lens (16).
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: February 15, 2005
    Assignee: Leo Elektronenmikroskopie GmbH
    Inventors: Harald Rose, Dirk Preikszas, Peter Hartel
  • Patent number: 6833553
    Abstract: Apparatuses, devices, systems and methods employing a material or combination of materials capable of emitting both far infared radiation and negative ions are provided. The material at least include a first part of, for example, a bio-ceramic, and a second part that includes an additional oxide material. The material can be used in a variety of different applications including, for example, internal engine combustion, natural gas combustion, water purification or the like.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: December 21, 2004
    Inventor: Fred M. Slingo
  • Patent number: 6825597
    Abstract: This ion source includes a chamber having an internal wall surface and an external wall surface, and also includes a cathode, which is provided to be insulated from the chamber, capable of emitting thermal electrons into the chamber, and has a cathode cap protruding into the chamber from an external side of an opening part which is formed to pass through from the external wall surface to the internal wall surface of the chamber and a filament disposed inside the cathode cap, the cathode cap and/or the filament being an alloy containing tungsten (W) as a major component and a predetermined metal element as a minor component.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: November 30, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kyoichi Suguro
  • Patent number: 6815880
    Abstract: A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: November 9, 2004
    Assignee: Coincident Beams Licensing Corporation
    Inventor: Michael Mauck
  • Publication number: 20040207308
    Abstract: A system for joining at least two beams of charged particles that includes directing a first beam along a first axis into a field. A second beam is directed along a second axis into the field. The first and second beams are turned, by interaction between the field and the first and second beams, into a third beam directed along a third axis.
    Type: Application
    Filed: May 10, 2004
    Publication date: October 21, 2004
    Inventor: Michael Mauck
  • Publication number: 20040195951
    Abstract: Background plasma electrons in a laser wake field are trapped and accelerated using a sharp downward density transition. A short and intense laser pulse travels through low density plasma with a sharp downward density transition. The density transition scale length is much smaller than the wavelength of a laser wake wave. As the laser wake wave passes the density transition, its wavelength increases suddenly so that some background plasma electrons are self-injected into the acceleration phase of the wake field and trapped and accelerated by the strong laser wake field.
    Type: Application
    Filed: February 12, 2003
    Publication date: October 7, 2004
    Inventors: Hy-yong Suk, Guang-Hoon Kim, Jong-Uk Kim, Chang-Bum Kim, Hae-June Lee
  • Patent number: 6777862
    Abstract: An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: August 17, 2004
    Assignee: General Plasma Technologies LLC
    Inventors: Nathaniel J. Fisch, Yevgeny Raitses
  • Patent number: 6774378
    Abstract: The present invention concerns a method of tuning a plurality of electrostatic quadrupoles used for focusing an ion beam implanter. The steps of the method include: classifying the plurality of electrostatic quadrupoles into one of a predetermined number of groups, and for each of the predetermined number of groups, tuning the quadrupoles in the group by iteratively substituting values for a voltage ton be applied to each of the quadrupoles in the group using a multi-variable heuristic algorithm and concurrently measuring final beam current measured downstream of the ion accelerator to determine a set of applied voltage values that maximize the final beam current among those applied voltage values tested and utilizing the set of applied voltage values to tune the quadrupoles in the group. If the resulting ion beam is suitable, utilizing the determined applied voltages to tune the quadrupoles.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: August 10, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Yongzhang Huang, Xiangyang Wu, Hans J. Rutishauser
  • Patent number: 6768121
    Abstract: An ion source (10) for an ion implanter is provided, comprising: (i) an ionization chamber (14) defined at least partially by chamber walls (12), and having an inlet (45) into which a sputtering gas may be injected and an aperture (18) through which an ion beam (B) may be extracted: (ii) an ionizing electron source (44) for ionizing the sputtering gas to form a sputtering plasma; and (iii) a sputterable repeller (100). The sputterable repeller both (a) repels electrons emitted by the electron source, and (b) provides a source of sputtered material that can be ionized by the electron source. the sputterable repeller (100) comprises a slug (108) of sputterable material, and further comprises mounting structure (102, 104) for removably mounting the slug within the ionization chamber (14), so that the slug is made removably detachable from the mounting structure.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: July 27, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Thomas N. Horsky, Tommy D. Hollingsworth
  • Publication number: 20040135485
    Abstract: A dipole ion source (FIG. 1) includes two cathode surfaces, a substrate (1) and a pole (3); wherein a gap is defined between the substrate and the pole; an unsymmetrical mirror magnetic field including a compressed end, wherein the substrate is positioned in the less compressed end of the magnetic field; and an anode (4) creating an electric field penetrating the magnetic field and confining electrons in a continuous Hall current loop, wherein the unsymmetrical magnetic field serves an ion beam on the substrate.
    Type: Application
    Filed: October 20, 2003
    Publication date: July 15, 2004
    Inventor: John Madocks
  • Patent number: 6707051
    Abstract: An RF loaded line type CCP source-having two collar type electrodes with an operating tube passing through these electrodes. One of the electrodes (high voltage electrode) is connected with the core of a feeding coaxial cable leading to a power supply, and another one is grounded by connection to a braid of the feeding coaxial cable, and the grounded electrode is further extended to form an outer cylindrical shield enveloping the operating tube with the high voltage electrode to provide a termination of an RF loaded line wherein the high voltage electrode with a plasma beam excited within the operating tube by action of an electric field between the electrodes form a core of this RF line. To provide effective contribution of RF energy in the plasma beam, the impedance of this line can be matched to the impedance of the plasma beam and matched also to the impedance of the feeding cable.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: March 16, 2004
    Assignee: Wintek Corporation
    Inventor: Evgeny V. Shun'ko
  • Publication number: 20030230961
    Abstract: A closed drift ion source which includes a channel having an open end, a closed end, and an input port for an ionizable gas. A first magnetic pole is disposed on the open end of the channel and extends therefrom in a first direction. A second magnetic pole disposed on the open end of the channel and extends therefrom in a second direction, where the first direction is opposite to the second direction. The distal ends of the first magnetic pole and the second magnetic pole define a gap comprising the opening in the first end. An anode is disposed within the channel. A primary magnetic field line is disposed between the first magnetic pole and the second magnetic pole, where that primary magnetic field line has a mirror field greater than 2.
    Type: Application
    Filed: April 10, 2003
    Publication date: December 18, 2003
    Inventor: John Madocks
  • Patent number: 6661014
    Abstract: An oxygen ion containing plasma is generated using a hot filament ion source. The oxygen ions in the plasma come from an oxide source (e.g., a metal oxide) which has a lower free energy of formation than that of the filament metal oxide (e.g., WO3) at the operating temperatures of the ion source. Consequently, oxidation of the filament and other metal components of the arc chamber is limited, or even prevented. Thus, the invention can advantageously lead to longer filament lives as compared to certain conventional processes that generate oxygen plasmas using hot filament sources.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: December 9, 2003
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Jaime M. Reyes
  • Patent number: 6661178
    Abstract: The metastable atom bombardment source provides a charged particle free beam of metastable species that can be used to bombard and ionize organic and inorganic substances in a gas phase. The metastable atoms are produced by inducing a discharge in a gas (rare gases or small molecules). The discharge is curved between the cathode and anode, with the cathode located in a medium pressure zone and the anode located off-axis in a low pressure zone. A nozzle located between the cathode and the anode provides a collimated beam of metastable atoms of low kinetic energy that is directed at an ion volume containing the substances to be analyzed. By selecting the energy of the metastable state, selective fragmentation of molecules, particularly large molecular weight molecules, can be carried out.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: December 9, 2003
    Assignee: Universite de Montreal
    Inventors: Michel J. Bertrand, Olivier Peraldi
  • Publication number: 20030218414
    Abstract: An electron accelerator for generating an electron beam includes a vacuum chamber having an outer perimeter and an electron beam exit window. The exit window has a central region and a first end region. An electron generator is positioned within the vacuum chamber for generating electrons. The electron generator and the vacuum chamber are shaped and positioned relative to each other to accelerate the electrons in an electron beam out through the exit window. The electrons pass through the central region of the exit window substantially perpendicular to the exit window and through the first end region of the exit window angled outwardly relative to the exit window. At least a portion of the outwardly angled electrons are directed beyond the perimeter of the electron accelerator.
    Type: Application
    Filed: February 10, 2003
    Publication date: November 27, 2003
    Applicant: Advanced Electron Beams, Inc.
    Inventor: Tzvi Avnery