Particular Frequency Control Means Patents (Class 331/34)
  • Publication number: 20120194279
    Abstract: Techniques and architectures corresponding to relaxation oscillators having output frequencies that are supply voltage independent are described. In a particular embodiment, an apparatus includes a relaxation oscillator having one or more capacitors and a compensation current circuit coupled to the relaxation oscillator. The compensation current circuit is configured to regulate current provided to the one or more capacitors of the relaxation oscillator in response to changes in a supply voltage provided to the compensation current circuit and to the relaxation oscillator.
    Type: Application
    Filed: January 28, 2011
    Publication date: August 2, 2012
    Applicant: Infineon Technologies AG
    Inventors: Roberto Nonis, Nicola DaDalt
  • Publication number: 20120188022
    Abstract: The disclosure relates to an oscillator for use in generating frequencies in a frequency synthesizer, comprising: a first inductor element forming a metal trace loop with at least one turn, and a first capacitive circuit arranged to form a first resonance circuit with the first inductor element and being connected to the first inductor element through at least one first connection terminal, wherein the first capacitive circuit comprises at least one capacitive element and an electrical components arrangement arranged to establish and maintain an oscillation.
    Type: Application
    Filed: September 29, 2009
    Publication date: July 26, 2012
    Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventor: Tomas Nylén
  • Publication number: 20120182077
    Abstract: A MEMS oscillator including: an oscillator unit being capable of outputting an output from an amplifier as an original oscillator signal that includes a feedback type oscillator circuit including a MEMS resonator and an amplifier, and an automatic gain controller receiving the output from the amplifier and controlling a gain of the amplifier based on a level of the output to maintain a level of the output from the amplifier constant; and a corrector unit that receives the original oscillator signal, that generates from the original oscillator signal a signal of a predetermined set frequency, and that outputs the generated signal of the predetermined set frequency as an output signal.
    Type: Application
    Filed: March 3, 2011
    Publication date: July 19, 2012
    Inventors: Takehiko Yamakawa, Kunihiko Nakamura, Keiji Onishi
  • Patent number: 8222961
    Abstract: A method and a device for determining closed loop bandwidth characteristic of a Phase Locked Loop (PLL) (52) comprising a voltage controlled oscillator (VCO) (53) controlled by means of a tuning voltage (Vtune) is disclosed.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: July 17, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Christian Grewing, Anders Jakobsson, Ola Pettersson, Anders Emericks, Bingxin Li
  • Patent number: 8222962
    Abstract: A digitally controlled oscillator provides high resolution in frequency tuning by using a digitally controlled capacitive network that includes a tunable capacitive circuit, a first capacitor and a second capacitor. The tunable capacitive circuit generates a variable capacitance according to a digital control word. The first capacitor is coupled in an electrically parallel configuration with the tunable capacitive circuit. The second capacitor is coupled in an electrically serial configuration with a combination of the first capacitor and the tunable capacitive circuit. The first capacitor and the second capacitor are sized such that an effective capacitance of the digitally controlled capacitor network has a step size that is a fraction of a step size of the variable capacitance in response to an incremental change in the digital control word.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: July 17, 2012
    Assignee: Realtek Semiconductor Corp.
    Inventors: Chia-Liang Lin, Chi-Kung Kuan
  • Publication number: 20120176202
    Abstract: A frequency synthesizer of a transceiver for generating a crystal oscillation frequency and a carry frequency having been done a process of frequency offset cancellation with that of another transceiver. The frequency offset cancellation of the frequency synthesizer is done in accordance with a wireless signal which is transmitted from another transceiver received. The frequency synthesizer has a first sigma-delta modulator receiving a signal transmitted by a transceiver at far area responding thereafter a frequency divisor value in accordance with the channel information of the received signal and a frequency offset between two.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 12, 2012
    Applicant: UNIBAND ELECTRONIC CORP.
    Inventors: Chun-Chin CHEN, Yun-Hsueh CHUANG, Yi-Chun LU
  • Patent number: 8219342
    Abstract: A self correcting device includes a first flip-flop to receive data and coupled to a clock input; one or more delayed flip-flops used to detect delay variations; a multiplexer coupled to the output of the first flip-flop and the delayed flip-flops, a metastability detector and error check controller to control the multiplexer to select one flip-flop output; and an adaptive voltage swing link coupled to the multiplexer output to generate a voltage swing on the link based on a selected clock skew.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 10, 2012
    Assignee: NEC Laboratories America, Inc.
    Inventors: Simone Medardoni, Marcello Lajolo
  • Publication number: 20120161881
    Abstract: A pure-silicon digital oscillator includes a baseband generator for generating a standard baseband, and a clock pulse monitoring and modulating circuit for performing a frequency calibration to the standard baseband to produce a calibrated baseband, while storing an error value produced during the calibration into a data storage device, such that a frequency generator can generate an output frequency according to a numerical value of the calibrated baseband. After the output frequency is processed by a digital signal processing to form a digital output frequency to be inputted into a square wave generator, the square wave generator outputs a higher digital frequency according to the numerical value of the digital output frequency, and the higher digital frequency is provided for a digital power supply control device to drive currents and modulate voltages.
    Type: Application
    Filed: February 29, 2012
    Publication date: June 28, 2012
    Inventors: Chung-Chih TUNG, Ta-I LIU
  • Patent number: 8208596
    Abstract: A system and method for effectively utilizing a dual-mode phase-locked loop to support a data transmission procedure includes a voltage controlled oscillator that generates a receiver clock signal in response to VCO input control signals. A binary phase detector generates a BPD output signal during a BPD mode by comparing input data and the receiver clock signal. In addition, a lock-assist circuit generates a PFD output signal during a PFD mode by comparing a reference signal and a divided receiver clock signal. A loop filter performs a BPD transfer function to generate a VCO input control signal from the BPD output signal during the BPD mode. The same loop filter also performs a PFD transfer function to generate the VCO input control signal from the PFD output signal during the PFD mode.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: June 26, 2012
    Assignees: Sony Corporation, Sony Electronics Inc.
    Inventor: Jeremy Chatwin
  • Publication number: 20120154058
    Abstract: A ring oscillator is disclosed. The ring oscillator includes a first tri-path inverter, a second tri-path inverter and a third tri-path inverter. The second tri-path inverter is connected to the first tri-path inverter. The third tri-path inverter is connected to the first and second tri-path inverters to provide feedback for oscillations.
    Type: Application
    Filed: October 7, 2011
    Publication date: June 21, 2012
    Inventors: Neil E. Wood, Andrew T. Kelly, Bin Li, Daniel M. Pirkl
  • Publication number: 20120154059
    Abstract: A multi-phase clock and data recovery circuit system including a voltage controlled oscillator including plural identical structural cells coupled in a ring, the voltage controlled oscillator providing plural phased shifted signals having the same frequency. The circuit further includes a feedback loop including plural data samplers adapted to receive the plural phase shifted signals provided by the voltage controlled oscillator and a phase detector coupled to coupled to a phase alignment circuit receiving output signals generated by the plural data samplers and generating control signals to the voltage controlled oscillator at a bit rate of the input signal.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicant: NXP B.V.
    Inventors: Arnoud Pieter van der Wel, Gerrit Willem den Besten
  • Publication number: 20120146828
    Abstract: A circuit includes a digital-to-analog converter with non-uniform resolution for converting a digital signal into an analog signal. The digital-to-analog converter includes high-resolution circuitry, reduced-resolution circuitry coupled to the high-resolution circuitry and a switch coupled to the high-resolution circuitry and to the reduced-resolution circuitry. The switch couples one of the high-resolution circuitry and the reduced-resolution circuitry to an output node. The circuit also includes a decoder coupled to the switch. The decoder receives the digital signal to control the switch.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: Chiewcharn Narathong, Jong Min Park, Tsai-Pi Hung
  • Patent number: 8193866
    Abstract: For decreasing errors within an analog phase-locked loop, an all-digital phase-locked loop (ADPLL) with only digital components and digital operations is used. The ADPLL may also be used for direct frequency modulation (DFM). By modulating certain parameters within the ADPLL by following an all-pass frequency response, a loop gain of the ADPLL may be precisely modulated, and an available bandwidth of the ADPLL is also significantly broadened.
    Type: Grant
    Filed: August 31, 2008
    Date of Patent: June 5, 2012
    Assignee: Mediatek Inc.
    Inventor: Hsiang-Hui Chang
  • Patent number: 8193867
    Abstract: A voltage control signal at a voltage control signal input terminal is used to adjust an output frequency of an oscillator circuit. The voltage level of the voltage control signal is converted in a one-bit analog-to-digital converter (ADC) to a digital output indicative of the voltage level. Successive digital representations of the voltage level of the voltage control signal are upsampled to generate upsampled blocks of data. A dither circuit inserts a digital dither in the upsampled blocks of data to generate dithered upsampled data, which is used to generate a control signal for a feedback divider of a phase-locked loop circuit and thereby adjust the output frequency.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: June 5, 2012
    Assignee: Silicon Laboratories Inc.
    Inventors: Zhuo Fu, Susumu Hara
  • Publication number: 20120133444
    Abstract: The present invention discloses a phase-locked loop device and a clock calibration method thereof, wherein the phase-locked loop device comprises a first oscillating module, a second oscillating module, a comparison module and a control module. The first oscillating module generates a first clock signal. The second oscillating module generates a second clock signal. After comparing the first clock signal with the second clock signal, the comparison module generates a difference signal. According to the difference signal, the control module, electrically connected with the first oscillating module, the second oscillating module and the comparison module, interactively tunes the first clock signal and the second clock signal to be as close as possible.
    Type: Application
    Filed: January 26, 2011
    Publication date: May 31, 2012
    Applicant: TINNOTEK INC.
    Inventors: CHAO-WEN TZENG, PEI-YING CHAO, SHAN-CHIEN FANG, SHI-YU HUANG
  • Patent number: 8188796
    Abstract: A clock system includes a digital phase/frequency detector (DPFD), a buffer, a digitally-controlled oscillator (DCO) including a sigma-delta modulator (SDM), an adder, a first frequency divider. The DPFD may have a first input for a reference input clock, a second input for a feedback signal, the DPFD generating an output representing a difference between the reference input clock and the feedback signal. The buffer may be coupled to the DPFD for storing the difference signal over time. The SDM may have a control input coupled to the buffer. The adder may have inputs coupled to the SDM and a source of an integer control word. The first frequency divider may have an input for receiving an external clock signal and a control input coupled to the adder, the DCO generating an output clock signal having an average frequency representing a frequency of the external clock signal divided by (N+F/M).
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: May 29, 2012
    Assignee: Analog Devices, Inc.
    Inventors: Dan Zhu, Reuben Pascal Nelson, Timir Raithatha, Wyn Palmer, John Cavey, Ziwei Zheng
  • Patent number: 8188802
    Abstract: An apparatus for generating an oscillating signal including an oscillator configured to generate the oscillating signal, a controller configured to generate a control signal that controls a characteristic (e.g., amplitude or frequency) of the oscillating signal, and a power supply configured to supply power to the oscillator as a function of the control signal. The power supply may be configured to supply power to the oscillator as a function of the amplitude or frequency of the oscillating signal to improve power efficiency.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: May 29, 2012
    Assignee: QUALCOMM Incorporated
    Inventor: Jorge A. Garcia
  • Patent number: 8189403
    Abstract: A high speed linear differential amplifier (HSLDA) having automatic gain adjustment to maximize linearity regardless of manufacturing process, changes in temperature, or swing width change of the input signal. The HSLDA comprises a differential amplifier, and a control signal generator including a replica differential amplifier, a reference voltage generator, and a comparator. The comparator outputs a control signal that automatically adjusts the gain of the high speed linear differential amplifier and of the replica differential amplifier. The replica differential amplifier receives predetermined complementary voltages as input signals and outputs a replica output signal to the comparator. The reference voltage generator outputs a voltage to the comparator at which linearity of the output signal of the differential amplifier is maximized. The control signal equalizes the voltage level of the replica output signal and the reference voltage, and controls the gain of the differential amplifier.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: May 29, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Soo Sohn, Jeong-Don Lim, Kwang-Il Park
  • Publication number: 20120126854
    Abstract: A frequency regeneration circuit according to the present invention compares a width of a single pulse of input data with a time width of a 1/n clock cycle defined by a phase difference of multi-phase clock signals (where n is a natural number) in order to regenerate a frequency that is 1/n of a rate of the input data.
    Type: Application
    Filed: August 4, 2009
    Publication date: May 24, 2012
    Applicant: NEC CORPORATION
    Inventor: Kouichi Yamaguchi
  • Patent number: 8183944
    Abstract: A system and method is disclosed that provides a technique for generating an accurate time base for MEMS sensors and actuators which has a vibrating MEMS structure. The accurate clock is generated from the MEMS oscillations and converted to the usable range by means of a frequency translation circuit.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: May 22, 2012
    Assignee: Invensense, Inc.
    Inventors: Joseph Seeger, Goksen G. Yaralioglu, Baris Cagdaser
  • Patent number: 8183937
    Abstract: An integrated circuit frequency generator is disclosed. In some embodiments, the frequency generator comprises an electronic oscillator configured to generate an oscillator frequency and calibration circuitry configured to periodically calibrate the electronic oscillator with respect to a reference frequency source. When a primary power source is unavailable, an output frequency is generated from the oscillator frequency, and the reference frequency source is periodically pulse powered-on to calibrate the electronic oscillator.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 22, 2012
    Assignee: Silego Technology, Inc.
    Inventors: John Othniel McDonald, Crist Y. Lu, Ilbok Lee
  • Publication number: 20120112843
    Abstract: A phase locked loop (PLL) which has a desired frequency characteristic even though a manufacturing process of a semiconductor integrated circuit has fluctuations. The semiconductor integrated circuit includes the PLL and a control unit. The PLL has a phase frequency detector, a loop filter, a voltage controlled oscillator (VCO) and a divider. The VCO comprises a voltage-current converter (VIC) and a ring oscillator. In response to a control voltage, the VIC generates a control current for setting each operating current of the ring oscillator. The control unit switches the PLL to a calibration operating period of its open loop and a normal operating period of its closed loop.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 10, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Takashi KAWAMOTO
  • Patent number: 8174327
    Abstract: Example embodiments are directed toward configuration of a phase lock loop (PLL) circuits for low power operation. In particular embodiments, a fraction related to a desired gain of a PLL circuit is determined. A set of possible frequency-divider values and a set of possible feedback divider values are determined. A PLL configuration is selected from a combination of the sets of frequency divider and feedback divider values that forms a ratio indicated the determined fraction.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: May 8, 2012
    Assignee: NXP B.V.
    Inventor: Kevin Locker
  • Patent number: 8174332
    Abstract: A phase lock loop pre-charging system and method are described. In one embodiment, a phase lock loop pre-charge system includes a bias component for generating a pre-charge voltage, and an activation component for activating the bias component. In one exemplary implementation the pre-charge voltage is utilized to facilitate pre-charging of a phase lock loop voltage controlled oscillator. In one embodiment, the bias component includes replica bias components that track the voltage controlled oscillation control voltage over varying process, voltage and temperature characteristics. The phase lock loop pre-charging systems and methods can be utilized to reduce lock time for a circuit.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 8, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Carel J. Lombaard, Eugene O'Sullivan, Paul Walsh
  • Publication number: 20120105160
    Abstract: A voltage control signal at a voltage control signal input terminal is used to adjust an output frequency of an oscillator circuit. The voltage level of the voltage control signal is converted in a one-bit analog-to-digital converter (ADC) to a digital output indicative of the voltage level. Successive digital representations of the voltage level of the voltage control signal are upsampled to generate upsampled blocks of data. A dither circuit inserts a digital dither in the upsampled blocks of data to generate dithered upsampled data, which is used to generate a control signal for a feedback divider of a phase-locked loop circuit and thereby adjust the output frequency.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventors: Zhuo Fu, Susumu Hara
  • Patent number: 8169265
    Abstract: A phase lock loop circuit is provided. A phase frequency detector detects a phase difference between a feedback signal and a reference signal, and generates a phase error signal in response to the detected phase difference. A charge pump consists of at least one core device and outputs a current signal based on the phase error signal. An active loop filter receives and transfers the current signal into a control signal. Operating voltage of the active loop filter is higher than operating voltage of the charge pump. A controlled oscillator receives the control signal and generates an output signal in response to the control signal. A feedback divider receives the output signal to generate the feedback signal.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 1, 2012
    Assignee: Mediatek Inc.
    Inventor: Shiue-Shin Liu
  • Publication number: 20120098603
    Abstract: The frequency calibration device includes a logic unit for gating the clock signal according to a gating window signal to generate a gated clock signal, and a divider for dividing the gated clock signal by a divisor in frequency to generate a frequency indication signal, and output digits of the divider are set to the divisor in a calibration cycle, and the frequency indication signal is a most significant bit of the output digits.
    Type: Application
    Filed: March 23, 2011
    Publication date: April 26, 2012
    Inventors: Yi-Hsien Cho, Yu-Li Hsueh
  • Patent number: 8164391
    Abstract: A phase locked loop is used to synchronize the switching frequency of a high frequency switching power converter to a clock signal. A switching power converter integrated circuit is a tile-based power management unit and includes an oscillator and multiple tiles of switching power converters. The oscillator generates a clock signal having a clock frequency. A first switching power converter includes a switch and a phase locked loop and switches at a first frequency. The switch has a gate that receives a gate signal. The phase locked loop synchronizes the first frequency to a first integer multiple of the clock frequency. A second switching power converter switches at a second frequency that is a second integer multiple of the clock frequency. The first frequency is synchronized to a multiple of the clock frequency when a second edge of the gate signal coincides with a first edge of the clock signal.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: April 24, 2012
    Assignee: Active-Semi, Inc.
    Inventor: Steven Huynh
  • Patent number: 8159306
    Abstract: An integrated circuit (IC) with a low temperature coefficient and an associated calibration method are provided to lower the effect of the environmental temperature on the IC and at the same time to maintain the small area and low power consumption of the IC. The IC includes a first circuit, a second circuit and a calibration control circuit. The first circuit has a low temperature coefficient and generates a first output. The second circuit has a high temperature coefficient and generates a second output. The calibration control circuit detects the first and second outputs, and compares the first and second outputs according to a predefined relationship therebetween so as to generate an adjusting signal. The adjusting signal is for adjusting the second circuit such that the second circuit can have the characteristic of the low temperature coefficient.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: April 17, 2012
    Assignee: Realtek Semiconductor Corp.
    Inventor: Shian-Ru Lin
  • Patent number: 8154350
    Abstract: An apparatus is provided. The apparatus comprising a voltage controlled oscillator (VCO), an amplifier, a switch, a calibration capacitor, and a control loop. The VCO includes a capacitive network that receives a first tuning voltage that is based at least in part on an input signal and a switched capacitor array that is coupled to the capacitive network. The amplifier amplifies the difference between the reference voltage and the first tuning voltage. The switch receives the reference voltage and the amplified difference between the reference voltage and the first tuning voltage. The calibration capacitor receives the output from the switch and generates a second tuning voltage. The control loop receives the input signal and the second tuning voltage.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Kevin G. Faison
  • Patent number: 8149065
    Abstract: A phase-locked loop that supports a large frequency drift capability, yet maintains a low Kvco, and does not introduce noise or discontinuities in the frequency of the generated phase-locked loop output signal. The phase-locked loop may include a VCO with an LC tank circuit, the capacitance of which may be adjusted in incremental units. By gradually adjusting a control signal applied to a selected VCO LC tank circuit frequency adjustment control line, e.g., in a continuous ramped function, or time-averaged ramped function, from LOW-to-HIGH or from HIGH-to-LOW, over a period of time that is greater than the response time of the phase-locked loop, a frequency range supported by the VCO may be shifted to either a higher frequency range or a lower frequency range, as needed, to accommodate environmentally induced frequency drift in the VCO, without introducing noise or discontinuities in the frequency of the generated phase-locked loop output signal.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: April 3, 2012
    Assignee: Marvell International Ltd.
    Inventors: Randy Tsang, Yu-chi Lee, David Cousinard
  • Patent number: 8138840
    Abstract: A digital phase locked loop (DPLL) and method include an adjustable delay line configured to receive a reference clock as an input and to output a dithered reference clock signal. A phase and frequency detector (PFD) is configured to compare the dithered reference clock signal with a feedback clock signal to determine phase and frequency differences between the dithered reference clock signal and the feedback clock signal. A digitally controlled oscillator (DCO) is configured to receive early or late determinations from the PFD to adjust an output in accordance therewith, wherein the dithered reference clock signal distributes jitter response to enhance overall operation of the DPLL.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, John F. Bulzacchelli, Zeynep Toprak Deniz, Daniel J. Friedman, Alexander V. Rylyakov, Jose A. Tierno
  • Patent number: 8138842
    Abstract: A frequency synthesizer includes a voltage-controlled oscillator, a frequency range tuning circuit which detects a frequency control code that sets a voltage-controlled frequency range of the voltage-controlled oscillator corresponding to the frequency division ratio which is variably-set, and a frequency control code memory which stores the frequency control code detected by the frequency range tuning circuit corresponding to the frequency division ratio. In an initialization interval, the frequency range tuning circuit detects the frequency control code corresponding to the frequency division ratio which is variably-set, and the frequency control code memory stores the frequency control code which is detected. In a normal operation interval, in response to the frequency selection signal, the frequency control code, which is stored in the frequency control code memory and corresponds to the frequency division ratio which is variably-set, is output to the voltage-controlled oscillator.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: March 20, 2012
    Assignee: Fujitsu Limited
    Inventors: Masafumi Kondou, Toshihiko Mori
  • Patent number: 8134413
    Abstract: Techniques for synthesizing a signal having a desired frequency from an oscillation signal. In an aspect, a reference signal having a known frequency may be periodically used to determine a ratio between the desired frequency and the frequency of the oscillation signal. The oscillation signal may be decimated by the ratio to generate a synthesized signal having approximately the desired frequency. In an aspect, the decimation may be performed by generating a pulse in response to the output of an accumulator that accumulates in steps of the ratio. To save power, the oscillation signal may be derived from a low-power oscillator, while the reference signal may be turned on only during periodic calibration. Further aspects for improving the frequency accuracy of the synthesized signal are disclosed.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 13, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Daniel Filipovic, Hongbo Yan
  • Publication number: 20120056682
    Abstract: A semiconductor integrated circuit device includes a DCO and a storing unit that stores a temperature coefficient of an oscillation frequency and an absolute value of the oscillation frequency, which should be set in the DCO, corresponding to potential obtained from a voltage source that changes with a monotonic characteristic with respect to temperature.
    Type: Application
    Filed: November 10, 2011
    Publication date: March 8, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuji SATOH, Mototsugu HAMADA, Daisuke MIYASHITA
  • Patent number: 8130047
    Abstract: In many types of wireless applications (like wireless modems), it is important that the phase locked loops (PLLs) be able to synthesize clock frequencies in a wide tuning range. Because of the complexity of many conventional PLLs (which were deigned to cover wide tuning ranges), there was often a significant delay to achieve phase and frequency lock. Here, an open loop calibration system is provided to coarse tune a PLL very rapidly. Generally, this calibration system employs binary searches to coarsely adjust a voltage controlled oscillator (VCO) from a VCO bank to within a predetermined range around a target frequency.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Salvatore Finocchiaro, Francesco Dantoni
  • Patent number: 8126079
    Abstract: High-speed serial data signal transmitter and/or receiver circuitry is able to dynamically switch between handling data at two (or more) different data rates. Such a switch can be made very rapidly and with no requirement for reprogramming or reconfiguring the circuitry. Circuitry for glitchlessly switching between clock signals having different frequencies is also provided and may be used in the above-mentioned transmitter and/or receiver circuitry.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: February 28, 2012
    Assignee: Altera Corporation
    Inventors: Thungoc M. Tran, Sergey Shumarayev, Tim Tri Hoang, Weiqi Ding, Wilson Wong, Allen Chan
  • Patent number: 8125279
    Abstract: A device is provided having a local oscillator (LO) configured to generate a first signal comprising at least one of: timing information; frequency information; phase information; and combinations thereof. The device also has a LO error corrector comprising an input, the input configured to receive a second signal comprising at least one of: timing information; frequency information; phase information and combinations thereof, wherein the second signal is used for disciplining the LO. The LO error corrector is configured to: if the second signal is unavailable to discipline the LO, discipline the LO using a source that is less accurate than the second signal. Upon the second signal becoming at least temporarily available, the LO corrector determines an offset error of the LO relative to the second signal.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 28, 2012
    Assignee: Rockstar Bidco, LP
    Inventor: Russell Smiley
  • Patent number: 8125285
    Abstract: The problems of large oscillator signal frequency change per bit, small runtime tuning bandwidth, and large wiring layout (and therefore large integrated circuit (IC) layout) in digitally-controlled oscillators are addressed by using an array of addressable tuning units, storing a data bit with respect to each tuning unit, and based on the data bit and an address bit, adjusting the output of each tuning unit.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: February 28, 2012
    Assignee: Analog Devices, Inc.
    Inventor: Ward Titus
  • Patent number: 8125277
    Abstract: A frequency synthesizer has a fractional N1 loop and an integer N2 loop. The output frequency of the signal of the fractional N1 loop is constrained to values between adjacent harmonics of a reference frequency used in the fractional N1 loop. The signal of the fractional N1 loop is received by the integer N2 loop. The integer N2 loop provides an output signal. The output signal can be a high frequency signal such as 2-8 GHz signal.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 28, 2012
    Assignee: Rockwell Collins, Inc.
    Inventor: Paul L. Opsahl
  • Publication number: 20120044000
    Abstract: Methods and apparatus are provided in the present invention to adjust the frequency of an output clock close to within a required accuracy of an oscillation frequency. In another embodiment, a method comprises: entering a calibration mode; generating a first control word to control a timing of a clock synthesizer; adjusting the first control word until the timing of the clock synthesizer is sufficiently accurate with respect to a timing of a reference clock; sensing a temperature using a temperature sensor; storing a present value of an output of the temperature sensor and the first control word into a non-volatile memory; exiting the calibration mode; entering a normal operation mode; sensing the temperature using the temperature sensor; generating a second control word to control the timing of the clock synthesizer in accordance with an output of the non-volatile memory and the output of the temperature sensor.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 23, 2012
    Inventors: Hong-Yean Hsieh, Chia-Liang (Leon) Lin
  • Patent number: 8120431
    Abstract: An apparatus comprising a voltage controlled oscillator, a first charge pump, a second charge pump, a switch circuit and a comparator circuit. The voltage controlled oscillator may be configured to generate an output signal oscillating at a first frequency in response to a control signal. The charge pump circuit may be configured to generate a first component of the control signal in response to a first adjustment signal and a second adjustment signal. The second charge pump may be configured to generate a second component of the control signal in response to a first intermediate signal and a second intermediate signal. The switch circuit may be configured to generate the first intermediate signal and the second intermediate signal in response to the first adjustment signal and the second adjustment signal. The comparator circuit may be configured to generate the first and second adjustment signals in response to a comparison between (i) an input signal having a second frequency and (ii) the output signal.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 21, 2012
    Assignee: LSI Corporation
    Inventor: Chunbo Liu
  • Patent number: 8120432
    Abstract: A device is provided having a local oscillator (LO) configured to generate a first signal having timing information, frequency information, phase information or combinations thereof. The device also includes a prioritizer comprising at least two inputs, each input configured to receive a respective second signal having timing information, frequency information, phase information or combinations thereof. The prioritizer is configured to determine an accuracy of at least one second signal of the at least two second signals in relation to a second signal assigned to be a most accurate of the at least two second signals. The prioritizer is also configured to order the at least two second signals from most accurate to least accurate. The LO is disciplined to correct an offset error of the LO relative to a most accurate second signal that is available to the device, based on the order of the at least two second signals.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 21, 2012
    Assignee: Rockstar Bidco, LP
    Inventors: Russell Smiley, Charles Nicholls
  • Patent number: 8121558
    Abstract: A local oscillator (LO) generator architecture using a wide tuning range oscillator is disclosed. In one embodiment, a wide tuning oscillator based LO generator system includes a wide tuning range oscillator for generating a signal with a first initial frequency or a second initial frequency in response to a control voltage, a first frequency controlling circuit for converting the first initial frequency of the signal into a final frequency, and a second frequency controlling circuit for converting the second initial frequency of the signal into the final frequency.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: February 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Gireesh Rajendran, Nir Tal, Ashish Lachhwani
  • Patent number: 8120435
    Abstract: A PLL circuit includes a phase detector, a loop filter (LF), a voltage-controlled oscillator (VCO), and a frequency divider. The phase detector compares a phase of a signal Fs which is input from outside with a phase of a signal Fo/N which is input from the frequency divider. The loop filter generates a signal Vin by removing alternating current components from a signal input from the phase detector. The voltage-controlled oscillator outputs a signal Fo based on the signal Vin input from the loop filter. The frequency divider converts the signal Fo output from the voltage-controlled oscillator into Fo/N (frequency division by N), and outputs it to the phase detector.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 21, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Takeshi Osada
  • Publication number: 20120025919
    Abstract: A phase locked loop is used to synchronize the switching frequency of a high frequency switching power converter to a clock signal. A switching power converter integrated circuit is a tile-based power management unit and includes an oscillator and multiple tiles of switching power converters. The oscillator generates a clock signal having a clock frequency. A first switching power converter includes a switch and a phase locked loop and switches at a first frequency. The switch has a gate that receives a gate signal. The phase locked loop synchronizes the first frequency to a first integer multiple of the clock frequency. A second switching power converter switches at a second frequency that is a second integer multiple of the clock frequency. The first frequency is synchronized to a multiple of the clock frequency when a second edge of the gate signal coincides with a first edge of the clock signal.
    Type: Application
    Filed: July 28, 2010
    Publication date: February 2, 2012
    Inventor: Steven Huynh
  • Publication number: 20120019327
    Abstract: Aspects of the disclosure provide a phase-locked loop (PLL). The PLL includes a voltage-controlled oscillator (VCO), a detector module, and a ramp module. The VCO has a first capacitor unit and a second capacitor unit. The VCO is configured to generate an oscillating signal having a frequency based on a first capacitance of the first capacitor unit and a second capacitance of the second capacitor unit. The detector module is configured to generate a voltage signal as a function of the oscillating signal and a reference signal. The voltage signal is used to control the first capacitor unit to stabilize the frequency of the oscillating signal. The ramp module is configured to generate a ramp signal based on the voltage signal. The ramp signal is used to control the second capacitor unit to ramp the second capacitance from a first value to a second value.
    Type: Application
    Filed: May 10, 2011
    Publication date: January 26, 2012
    Inventors: Luca ROMANO, Randy Tsang
  • Publication number: 20120019328
    Abstract: A high frequency signal processing device is capable of carrying out high-accuracy modulation by a PLL circuit. A digital loop is configured in addition to an analog loop having, for example, a phase frequency detector, a charge pump circuit, and a loop filter. A digital calibration circuit is provided which searches for the optimal code set to a capacitor bank upon frequency modulation. Upon the search for the optimal code, a calibration controller first sets a division ratio based on a center frequency to a divider and determines the value of a voltage control signal using the analog loop. Then, the loop filter holds the value of the voltage control signal therein, and a division ratio corresponding to a “center frequency+modulated portion” is set to the divider, thereby operating the digital loop. The optimal code is obtained by a convergent value of the digital loop.
    Type: Application
    Filed: June 22, 2011
    Publication date: January 26, 2012
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Kenichi SHIBATA, Toshiya UOZUMI
  • Publication number: 20120013406
    Abstract: A clock system includes a digital phase/frequency detector (DPFD), a buffer, a digitally-controlled oscillator (DCO) including a sigma-delta modulator (SDM), an adder, a first frequency divider. The DPFD may have a first input for a reference input clock, a second input for a feedback signal, the DPFD generating an output representing a difference between the reference input clock and the feedback signal. The buffer may be coupled to the DPFD for accumulating the difference signal over time. The sigma-delta modulator (SDM) may have a control input coupled to the buffer. The adder may have inputs coupled to the (SDM) and a source of an integer control word. The first frequency divider may have an input for a clock signal and a control input coupled to the adder, the DCO generating an output clock signal having an average frequency representing a frequency of the input clock signal divided by (N+F/M), wherein N is determined by the integer control word and F/M is determined by an output of the SDM.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Applicant: Analog Devices, Inc.
    Inventors: Dan ZHU, Reuben Pascal Nelson, Timir Raithatha, Wyn Palmer, John Cavey, Ziwei Zheng
  • Publication number: 20120013407
    Abstract: The present invention is a method and system for compensation of frequency pulling in an all digital phase lock loop. The all digital phase lock loop can utilize a multi-phase oscillator including latches with substantially all of the latches paired with a corresponding dummy cell. The dummy cells can have impedance characteristics, such as variable capacitance values which correspond to the variable capacitance value of the latches such that the sum of the two variable capacitance values remains substantially constant, even when the polarity of the reference clock signal changes. The dummy cells can be, for example, variable capacitors or dummy latches. The phase lock loop can also include a multiplying unit. The multiplying unit can receive a reference clock signal and generate a frequency multiplied reference clock signal.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Inventors: Koji Takinami, Richard Strandberg, Paul Cheng-Po Liang