Determining Distance Patents (Class 342/118)
  • Patent number: 8723721
    Abstract: A multistatic radar surveillance system includes transmitter elements and receiver elements arranged according to a zone to be monitored, and a command and control unit that configures the elements and collects information relating to objects detected by the receiver elements. Each transmitter element transmits a signal, the bandwidth of which is substantially equal to the totality of a frequency band B allocated to the system. Each transmitter element transmits a common waveform to all of the transmitter elements, and the waveform is modulated by a binary signal specific to the element in question, this signal allowing each of the receiver elements receiving a signal to identify the transmitter element at the source of this signal. The coding applied to the waveform is defined so that the spread spectrum caused to the signal transmitted by the latter does not exceed the frequency band B allocated to the system.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: May 13, 2014
    Assignee: Thales
    Inventors: Michel Moruzzis, Daniel Muller, Jean-Marie Ferrier
  • Patent number: 8718919
    Abstract: A method and an apparatus for lane recognition for a vehicle that is equipped with an adaptive distance and speed control system are provided, the adaptive distance and speed controller having conveyed to it, using an object detection system, the relative speed of detected objects, a variable for determining the lateral offset of the detected objects with respect to the longitudinal vehicle axis, and the speed of the host vehicle. From the relative speed of the objects and the host-vehicle speed, a determination is made as to whether an object is oncoming, stationary, or moving in the same direction as the host vehicle. In combination with the calculated lateral offset of the detected object with respect to the longitudinal vehicle axis, the number of lanes present and the lane currently being traveled in by the host vehicle are determined.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: May 6, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Thilo Leineweber, Werner Urban, Ruediger-Walter Henn, Goetz Braeuchle, Martin Heinebrodt
  • Patent number: 8717227
    Abstract: A communication processing apparatus alternately transmits a carrier wave carrying a command and receives a response from a tag while transmitting an unmodulated carrier wave. A transmission control unit changes the phase of the unmodulated carrier wave transmitted from a transmission/reception circuit in response to start of reception of the reflected wave from the tag. The transmission/reception circuit includes a circuit for separating and detecting an I signal and a Q signal included in the reflected wave from the tag. A phase detection unit uses the I signal and the Q signal to detect change of the phase of the reflected wave. A distance calculation unit measures a time from a change of the phase of the unmodulated carrier wave to a detection of a corresponding change in the phase of the reflected wave, and uses the time to calculate the distance from the antenna to the tag.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: May 6, 2014
    Assignee: Omron Corporation
    Inventors: Hidekatsu Nogami, Hirokazu Kasai, Shuichi Matsui
  • Patent number: 8704704
    Abstract: Presented is a method for determining speeds (vr14, vr16) and distances (r14, r16) of objects (14, 16) relative to a radar system (12) of a motor vehicle (10), wherein a coverage area (EB) of the radar system (12) is divided into at least two part-areas (TB1, TB2, TB3), the coverage area (EB) is examined for reflecting objects (14, 16) in successive measuring cycles (MZ1, MZ2; MZi, MZi+1), wherein radar signals received in a measuring cycle (MZ1, MZ2; MZi, MZi+1) are processed separated in accordance with part-areas (TB1, TB2, TB3) and processed signals are assembled to form a total result differentiated in accordance with spatial directions. The method is characterized in that from signals received in a first measuring cycle (MZ1; MZi), hypotheses for the distance (r14, r16) and speed (vr14, vr16) of reflecting objects (14, 16) are formed and the hypotheses are validated in dependence on signals received in at least one further measuring cycle (MZ2; MZi+2).
    Type: Grant
    Filed: June 16, 2007
    Date of Patent: April 22, 2014
    Assignee: VALEO Schalter und Sensoren GmbH
    Inventors: Urs Luebbert, Udo Haberland
  • Patent number: 8704702
    Abstract: The invention relates to a method for estimating an object motion characteristic from a radar signal. The method comprises the step of receiving radar data of an object from a multiple beam radar system. Further, the method comprises the steps of associating radar data with estimated height and/or cross-range information of object parts causing the corresponding radar data and fitting an object model with radar data being associated with a selected estimated height and/or cross-range information interval. The method also comprises the step of determining an object motion characteristic from the fitted object model.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: April 22, 2014
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventor: Philip van Dorp
  • Patent number: 8698669
    Abstract: Another embodiment of the disclosure relates to an altitude system for an aircraft. The aircraft radar system includes a processor configured to determine an altitude of the aircraft using runway position information, and an angle to the runway associated with a radar beam to the runway. The angle to the runway is being determined using a pointing angle of the antenna adjusted with an angular offset. The angular offset is determined from phase processing.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 15, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker, Patrick D. McCusker
  • Patent number: 8700306
    Abstract: Autonomous collision avoidance systems for unmanned aerial vehicles are disclosed. Systems illustratively include a detect and track module, an inertial navigation system, and an auto avoidance module. The detect and track module senses a potential object of collision and generates a moving object track for the potential object of collision. The inertial navigation system provides information indicative of a position and a velocity of the unmanned aerial vehicle. The auto avoidance module receives the moving object track for the potential object of collision and the information indicative of the position and the velocity of the unmanned aerial vehicle. The auto avoidance module utilizes the information to generate a guidance maneuver that facilitates the unmanned aerial vehicle avoiding the potential object of collision.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: April 15, 2014
    Assignee: L-3 Unmanned Systems Inc.
    Inventors: Davis S. Duggan, David A. Felio, Craig S. Askew
  • Patent number: 8698670
    Abstract: A high speed high dynamic range and low power consumption analog correlator for use in a radar sensor. The analog correlator combines various pulse replication schemes with various parallel integrator architectures to improve the detection speed, dynamic range, and power consumption of conventional radar sensors. The analog correlator includes a replica generator, a multiplier, and an integrator module. The replica generator generates a template signal having a plurality of replicated pulse compression radar (PCR) pulses. The multiplier multiplies a received PCR signal with the plurality of replicated PCR pulses. The integrator module is coupled to the multiplier and configured to generate a plurality of analog correlation signals, each of which is based on the multiplying between the received PCR signal and one of the replicated PCR pulses.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventor: Michiaki Matsuo
  • Patent number: 8692706
    Abstract: A sensor device for measuring the compression travel and/or the compression rate of wheels and/or axles of vehicles, in particular of commercial vehicles, may include at least one sensor measuring in a contactless manner. The sensor device may include a radar and/or high-frequency sensor generating a beam, which is emitted and received after reflection at a reference and reflection surface.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 8, 2014
    Assignee: Knorr-Bremse Systeme fuer Nutzfahrzeuge GmbH
    Inventor: Falk Hecker
  • Publication number: 20140085128
    Abstract: A first radar transmitter and a second radar transmitter transmit a first modulation signal and a second modulation signal which are generated by repeating a predetermined time of code sequences, each of which has a predetermined code length, using a first code width and a second code width, respectively. An A/D converter converts the modulation signal into a discrete signal in a sampling cycle shorter than a difference between the first code width and the second code width. A positioning section separates a plurality of reception signals using a first correlation value based on outputs from the A/D converter and a first delay section corresponding to the first code width and a second correlation value based on outputs from the A/D converter and a second delay section corresponding to the second code width.
    Type: Application
    Filed: May 25, 2012
    Publication date: March 27, 2014
    Applicant: Panasonic Corporation
    Inventors: Takaaki Kishigami, Yoichi Nakagawa, Hirohito Mukai
  • Patent number: 8681218
    Abstract: A system for providing RF spatial awareness of an environment includes an RF detection system and a control system. The RF detection system includes an antenna array for receiving RF signals from a plurality of RF sources; and, a receiver system operatively connected to the antenna array using digital beamforming (DBF) techniques for processing the received RF signals and providing measurements of the RF signals as output. The control system receives the measurements of the RF signals and displays a plurality of indicia indicating the RF sources, thereby providing a visual survey of the environment.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: March 25, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Dana J. Jensen, Steven E. Koenck
  • Patent number: 8682351
    Abstract: A system including a first wireless device and a second wireless network device. The first wireless network device is configured to transmit a data frame a first number of times, wherein the first number of times is determined based on a timing resolution associated with the first wireless network device, receive a respective acknowledgement frame in response to each transmission of the data frame, determine an accumulated delay period corresponding to a total time between each transmission of the data frame and reception of the respective acknowledgement frame, and calculate a distance between the first wireless network device and the second wireless network device based on the accumulated delay period and the first number of times. The second wireless network device is configured to receive each transmission of the data frame and transmit the respective acknowledgement frame in response to each transmission of the data frame.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: March 25, 2014
    Assignee: Marvell International Ltd.
    Inventor: Kapil Chhabra
  • Patent number: 8674873
    Abstract: A signal processing apparatus performs an object detection process of detecting object data with respect to peak signals which indicate a difference in frequency between a transmitted signal of which the frequency is changed in a predetermined period and a received signal which is obtained by receiving a reflected wave that corresponds to a transmitted wave which is based on the transmitted signal and is reflected from an object, by deriving the peak signals in a first period where the frequency of the transmitted signal ascends and in a second period where the frequency of the transmitted signal descends and by pairing the peak signals in the first period and the second period. A continuity determination section determines a continuity between the object data and past object data detected prior to the object data.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: March 18, 2014
    Assignee: Fujitsu Ten Limited
    Inventors: Shinichi Shibata, Hideki Kajioka
  • Patent number: 8674875
    Abstract: The invention provides a security scanner that produces a radar profile of a clothed person or another object such as a bag carried by a person at a distance and does not require close proximity of the person or object to the scanner itself. The scanner includes a millimeter wave antenna system optimised for short-range active imaging and arranged to provide rapid high-resolution images of an object or person of interest and processing means for resolving the images so as to detect the presence of predetermined objects. The processing means preferably includes means for comparing contrasts in reflectivity in the scanned images with predetermined expected values from skin and light clothing. The processing means may also include means for detecting predetermined behavioral or physical traits such as the effect on gait on carried weighty objects or stiff structures strapped to the person from the images of a scanned object or person. The scanner may be incorporated within a turnstile access arrangement.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: March 18, 2014
    Assignee: MBDA UK Limited
    Inventors: Christopher Ralph Carter, Charles Anthony Rowatt
  • Publication number: 20140070980
    Abstract: Disclosed herein are a vehicle-to-vehicle (V2V) communication-based vehicle identification apparatus and an identification method thereof. The V2V communication-based vehicle identification apparatus includes a radar sensor unit sensing radar information corresponding to relative distances to object vehicles, a GPS module unit generating GPS information from GPS satellites, a V2V communication unit transmitting the generated GPS information to the object vehicles and receiving GPS information of the object vehicles from the object vehicles through vehicle to vehicle (V2V) communication, and a controller calculating probabilities that the GPS information of the object vehicles will be located at areas, set based on the sensed radar information, and identifying vehicles corresponding to the radar information and the GPS information of the object vehicles based on the calculated probabilities.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 13, 2014
    Applicant: MANDO CORPORATION
    Inventor: Man Bok PARK
  • Publication number: 20140071270
    Abstract: A device for measuring the body height of a person. In the area of an inner border of a building room at least one emitter for emitting a primary signal and at least one sensor for picking up a measuring signal are arranged. The emitter, as well as the sensor, is coupled to a control device. The control device is coupled to a display device.
    Type: Application
    Filed: October 17, 2012
    Publication date: March 13, 2014
    Applicant: SECA AG
    Inventors: Frederik Vogel, Marc-Oliver Von Maydell
  • Patent number: 8665139
    Abstract: Disclosed is a distance measuring apparatus which includes: a first pulse generating means (135) which generates reference signals; a second pulse generating means (137) which generates subject detection signals; a time measuring section (139) which measures a period of time from a time when a first pulse is generated to a time when a second pulse is generated; a first phase detecting section (141) which detects the first phase of a signal received using a signal at a first frequency; a second phase detecting section (163) which detects the second phase of a signal received using a signal at a second frequency; and a distance calculating section (165) which calculates the distance to the subject on the basis of output from the time measuring section, the first phase detecting section and the second phase detecting section.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: March 4, 2014
    Assignee: Nireco Corporation
    Inventors: Koichi Matsumoto, Yasumasa Kato
  • Patent number: 8665136
    Abstract: This disclosure provides an image processing device, which includes a relative trail image memory for storing a relative trail data group indicating relative changes in position of a target object detected by echo signals obtained corresponding to detection signals transmitted while changing a transmitting azimuth direction, with respect to a transmitting position from which the detection signals are transmitted, and an approaching target object determination processing module for determining whether the target object detected with the detection signals is an approaching target object that approaches the transmitting position based on relative trail data existing on the same sweep line among the relative trail data group stored in the relative trail image memory.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 4, 2014
    Assignee: Furuno Electric Company, Limited
    Inventors: Tatsuya Kojima, Takumi Fujikawa
  • Patent number: 8659471
    Abstract: Present novel and non-trivial systems and methods for generating aircraft height data are disclosed. A processor is configured to receive both first data comprised of radar-based reflection data of a stationary reference point based upon a horizontal distance between the geographic position of an aircraft and the geographic position of the stationary reference point (e.g., landing threshold point) and second data comprised of internally sourced vertical travel data more frequently than the first data. From the first data and second data, an instant vertical distance above the stationary reference point is determined by updating the first data with the second data. Then, instant height data representative of the instant vertical distance above the stationary reference point is generated. Provided with the instant height data, a presentation system comprised of display unit, aural alert unit and/or a tactile alert unit may present the instant vertical distance to the pilot.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 25, 2014
    Assignee: Rockwell Collins, Inc.
    Inventor: Patrick D. McCusker
  • Patent number: 8659472
    Abstract: An apparatus includes a stable local oscillator, which includes a first control loop. The first control loop includes a first voltage-controlled oscillator configured to generate a first output signal and a first phase-locked loop. The apparatus also includes a frequency up-converter configured to increase a frequency of the first output signal. The apparatus further includes a second control loop configured to receive the up-converted first output signal. The second control loop includes a second voltage-controlled oscillator configured to generate a second output signal and a second phase-locked loop. The second control loop may further include a mixer having a first input coupled to the frequency up-converter, a second input coupled to the second voltage-controlled oscillator, and an output coupled to the second phase-locked loop. A reference frequency source may be configured to generate a signal identifying a reference frequency and to provide that signal to the phase-locked loops.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: February 25, 2014
    Assignee: Enraf B.V.
    Inventors: Bin Sai, Ronald C. Sehrier
  • Patent number: 8643538
    Abstract: A system and method for determining a position of a locus comprising a locator device for disposition at the locus; the locator device configured for receiving an electromagnetic signal from a beacon device, the locator device receiving at a distance from the beacon device within near field range of the electromagnetic signal; the locator device configured for distinguishing at least two characteristics of the electromagnetic signal sensed at the locus; the system employing the at least two characteristics to effect the determining of the position of the locus.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: February 4, 2014
    Assignee: Q-Track Corporation
    Inventors: Hans Gregory Schantz, Robert Edward DePierre, David Wesley Langford
  • Patent number: 8643535
    Abstract: A radar device capable of removing noise signals before digital conversion and detecting an object with high precision by a simple configuration is provided. In a transmitting RF unit 110, a signal switch 141 is switched so that the noise signal generated by the operation of a first switch 111 passes through a signal delaying device 142. The signal switch 141 is switched so that the noise signal generated by the operation of a second switch 112 passes through a signal delaying device 143. Furthermore, the signal switch 141 is switched so that a baseband pulse signal obtained when the first switch 111 and the second switch 112 are operated at the same time passes through a signal delaying device 144. In a signal synthesizer 145, synthesizing is carried out so that the noise signals mixed in pulse signals are cancelled out.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 4, 2014
    Assignees: Furukawa Electric Co., Ltd., Furukawa Automotive Systems Inc.
    Inventors: Sadao Matsushima, Toshihide Fukuchi
  • Patent number: 8643533
    Abstract: A weather radar system improves electronics for receiving radar returns. The weather radar system determines an altitude above ground level using return data derived from the weather radar returns. The weather radar system can utilize movement data related to movement of the aircraft to calculate the altitude. In addition, the weather radar system can utilize previous calculations of the altitude to determine the current altitude underneath the aircraft. The weather radar system can reduce the need for a radio altimeter.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: February 4, 2014
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Richard D. Jinkins, Richard M. Rademaker
  • Patent number: 8643536
    Abstract: A positioning system for radio frequency devices includes a two-way radio antenna, for vehicles, having a transmitting and a receiving element. Reference antennas have retro-directive arrays which can shape the signal beams in elevation; polarize transmission and reception signals according to a circular or a linear polarization, the polarized transmission retro-directively reflecting signals having the same polarization as the incident ones in the case of circular polarization, or retro-directively reflecting signals having orthogonal polarization in the case of linear polarization. An encoder is included for transmitting an identification code of the reference antenna. A controller processes the spatial and temporal data resulting from communication through the radio waves transmitted and received by the vehicle antennas and reflected by the reference antennas. The controller calculates the distance of the vehicle from the reference antennas that have reflected the signal transmitted by the antennas.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: February 4, 2014
    Assignee: Elettric 80 S.p.A.
    Inventors: Vittorio Cavirani, Francesco Trotta, Luca Marcaccioli, Roberto Vincenti Gatti, Franco Manzini, Domenico Di Terlizzi
  • Patent number: 8638255
    Abstract: A reader device (110) for reading information transmitted from a transponder (130) via a backscatter signal (132) generated by the transponder (130) in response to a stimulus signal (112) generated by the reader device (110), the reader device (110) comprising a first power estimation unit (114) adapted for estimating a first power value indicative of the power of the stimulus signal (112) at a position of the transponder (130) by evaluating a power information included in the backscatter signal (132), a second power estimation unit (116) adapted for estimating a second power value indicative of the power of the backscatter signal (132) at a position of the reader device (110), and a distance estimation unit (118) adapted for estimating a distance (d1) between the reader device (110) and the transponder (130) based on the first power value and the second power value.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: January 28, 2014
    Assignee: NXP B.V.
    Inventor: Ulrich Muehlmann
  • Patent number: 8626418
    Abstract: A method and system for monitoring speed of a vehicle moving along a road that includes risk zones. The method determines: road conditions for each risk zone; a threshold speed of each risk zone based on the road conditions and on a distance to a posted speed limit within a high risk zone; a geographical position of the vehicle, a current risk zone in which the vehicle is moving based on the stored geographical position of the vehicle; and a current speed of the vehicle moving in the current risk zone which exceeds the threshold speed of a particular risk zone, resulting in performing a subsequent action (triggering an alarm within the vehicle, presenting a message to a driver in the vehicle, and/or automatically regulating the speed of the vehicle). The action is specific to the particular risk zone and dependent on the road conditions.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Bertrand Boulet, Francis Bredin
  • Patent number: 8624776
    Abstract: A radar or sonar system amplifies the signal received by an antenna of the radar system or a transducer of the sonar system is amplified and then subject to linear demodulation by a linear receiver. There may be an anti-aliasing filter and an analog-to-digital converter between the amplifier and the linear receiver. The system may also have a digital signal processor with a network stack running in the processor. That processor may also have a network interface media access controller, where the system operates at different ranges, the modulator may produce pulses of two pulse patterns differing in pulse duration and inter-pulse spacing, those pulse patterns are introduced and used to form two radar images with the two images being derived from data acquired in a duration not more than twenty times larger than the larger inter-pulse spacing, or for a radar system, larger than one half of the antenna resolution time. One or more look-up tables may be used to control the amplifier.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 7, 2014
    Assignee: Raymarine UK Limited
    Inventors: Richard Jales, Andrew Lawrence, Matthieu Maindrou
  • Patent number: 8624774
    Abstract: The invention concerns a method and system of locating objects by means of UWB signals, the system including a search device (D1), incorporated in a portable apparatus (11) and provided with a pair of antennae (A1, A2), and at least one target device (D2) attached to an object sought (12). The target device (D2) includes, in addition to the transceiver (34, 35), a very low power consumption wake up receiver (46) which, when the target device is in a standby state, can receive a UWB wake up signal to switch on said device. This target device is arranged for measuring a time difference (tdiff) between the respective receptions of two locating signals respectively emitted by the two antennae (A1, A2) of the search device and for transmitting said time difference in a return signal that further contains, in a preferred variant, a signal processing time (trproc). Thus, it is not necessary for the two devices to be synchronized.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: January 7, 2014
    Assignee: The Swatch Group Research and Development Ltd
    Inventor: Luca De Rosa
  • Patent number: 8624781
    Abstract: A system suitable for displaying a target. A first unit is arranged to generate a first information unit including the target's position relative to a first position. The first information unit is arranged to transfer the first information unit to a second unit existing at a second position which is separate from the first position. The second unit is arranged to generate a second information unit including the target's position relative to the second position, depending on the first information unit. The second unit is arranged to indicate the target's position to allow localization of the target.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: January 7, 2014
    Assignee: Bae Systems Bofors AB
    Inventors: Jan Christensen, Peter Freij, Jyri Viuhko, Johan Gunnarsson
  • Publication number: 20140002294
    Abstract: Embodiments of the invention provide apparatus (100) for detecting an erroneous measurement of a range of a target object 20 from a subject object (5) comprising: wireless transmission means (111) for transmitting a signal (111S) having a first frequency from the subject object (5) to the target object (20); detector means (113) for detecting a portion of the signal (113S) reflected from the target object (20) back to the subject object (5); range determination means (131) for determining the range (202) of the target object (20) from the subject object (5) by reference to a time of flight of said portion of the signal (111S), (113S) from the transmission means (111) to the detector means (113); and rate determination means (131) for determining the rate of change of the range (203) by reference to a difference between the first frequency and an apparent frequency of the reflected portion of the signal (113S) detected by the detector means (113), the apparatus (100) being arranged to provide an indication (20
    Type: Application
    Filed: September 16, 2011
    Publication date: January 2, 2014
    Applicant: JAGUAR CARS LIMITED
    Inventors: Paul Widdowson, Mark Cund
  • Publication number: 20130338515
    Abstract: A wireless detection device is provided, comprising a voltage control oscillation unit, a transceiving unit, demodulation unit and processing unit. The voltage control oscillation unit generates different oscillation signals according to analog control voltages and corresponding injection signals. The transceiving unit outputs first wireless signals to a predetermined area according to the oscillation signals and receives second wireless signals generated by reflection of the first wireless signals to generate the injection signal. The demodulation unit demodulates the oscillation signals into first voltage signals. The processing unit subtracts the corresponding analog control voltages from the first voltage signals to generate second voltage signals, and when the variation of the second voltage signals exceeds a predetermined value on a target frequency in frequency domain, the processing unit calculates a real distance between an object and the transceiving unit.
    Type: Application
    Filed: March 6, 2013
    Publication date: December 19, 2013
    Applicant: National Sun Yat-Sen University
    Inventors: Tzyy-Sheng Horng, Fu-Kang Wang, Kang-Chun Peng
  • Patent number: 8606491
    Abstract: Methods and systems suitable for negotiating air traffic trajectory modification requests received from multiple aircraft that each has trajectory parameters. The methods include transmitting from at least a first aircraft a first trajectory modification request to alter the altitude, speed and/or lateral route thereof. A first conflict assessment is then performed to determine if the first trajectory modification request poses a conflict with the altitudes, speeds and lateral routes of other aircraft. If a conflict is not identified, the first trajectory modification request is granted and the first aircraft is notified of the first trajectory modification request being granted. Alternatively, if a conflict is identified, the first trajectory modification request is not granted and the first aircraft is notified thereof.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventors: Rajesh Venkat Subbu, Feng Xue, Mauricio Castillo-Effen, Joel Kenneth Klooster, Joachim Karl Hochwarth, Sergio Torres, Weiwei Chen
  • Patent number: 8604971
    Abstract: A method and apparatus is devised for detecting objects of interest in which frequency-scanned RF in the HF region of the electromagnetic spectrum is projected out across a given area and returns are detected and converted into image data in which phase, amplitude, range and frequency associated with the incoming data is correlated with frequency-dependent range templates to determine the existence of, the range of and the direction of the objects of interest.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: December 10, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John T. Apostolos, Richard J. Millard
  • Publication number: 20130321826
    Abstract: A motion sensing method for an object includes: receiving a distance detection result which is used for indicating distance detection information of the object in a neighborhood of a motion sensing apparatus; and determining whether to perform optical motion sensing upon the object of the neighborhood according to the distance detection result.
    Type: Application
    Filed: January 8, 2013
    Publication date: December 5, 2013
    Applicant: PixArt Imaging Inc.
    Inventors: Hsin-Chia Chen, Yu-Wei Wang, Ching-Lin Chung, Hui-Hsuan Chen, Ming-Tsan Kao
  • Patent number: 8598501
    Abstract: A sensor system uses ground emitters to illuminate a projectile in flight with a polarized RF beam. By monitoring the polarization modulation of RF signals received from antenna elements mounted on the projectile, both angular orientation and angular rate signals can be derived and used in the inertial solution in place of the gyroscope. Depending on the spacing and positional accuracies of the RF ground emitters, position information of the projectile may also be derived, which eliminates the need for accelerometers. When RF signals of ground emitter/s are blocked from the guided projectile, the sensor deploys another plurality of RF antennas mounted on the projectile nose to determine position and velocity vectors and orientation of incoming targets.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: December 3, 2013
    Assignee: Northrop Grumman Guidance an Electronics Co., Inc.
    Inventors: A. Douglas Meyer, Mostafa A. Karam, Charles A. Lee, Charles H. Volk
  • Patent number: 8600650
    Abstract: When a vehicle passes through an intersection that is stored in a collection target intersection database and for which direction-specific probe information is collected, a CPU of a navigation device generates a plurality of direction-specific probe information (entry link, exit link, section travel time, and the like) from a plurality of unit distance section information that is collected within a direction-specific traffic information acquisition section until the vehicle passes through the intersection, an entry link traveled before entering the intersection; and an exit link traveled after passing through the intersection, and transmits these to an information distribution center.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: December 3, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Tomoyuki Zaitsu, Shinji Kachi, Kenji Nagase, Tsuyoshi Iwata, Toshio Inoguchi, Kazunori Watanabe, Teruhide Hayashida
  • Patent number: 8599062
    Abstract: A system and method are disclosed for the generation and processing of waveforms utilized to modulate the carrier frequency of a microwave sensor employed, to determine the range and velocity of an object of interest. The system and method result in improved performance in environments with high levels of interference.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: December 3, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Wieslaw Jerzy Szajnowski
  • Publication number: 20130314271
    Abstract: Embodiments of vehicle-borne radar systems and methods of their operation are provided. The vehicle-borne radar system includes a transmit path and a first receive path. The transmit path is capable of producing a signal for transmission over an air interface (e.g., a frequency modulated continuous wave (FMCW) signal). The receive path includes a continuous-time (CT) sigma delta analog-to-digital converter (ADC), and the receive path is capable of receiving a reflected version of the signal from the air interface, and converting the reflected version along the receive path into a sequence of digital samples using the CT sigma delta ADC. In an embodiment, the transmit path and the receive path are integrated onto a single integrated circuit.
    Type: Application
    Filed: May 25, 2012
    Publication date: November 28, 2013
    Inventors: Brandt Braswell, Douglas A. Garrity, Mohammad Nizam U. Kabir
  • Patent number: 8594018
    Abstract: The present invention relates generally to methods and systems for radio ranging and more particularly to methods and systems for determining time of arrival (TOA) of a ranging signal at a reference wireless device in order to determine distance between the reference wireless device and a target wireless device.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: November 26, 2013
    Inventors: Anthony Richards, Stephen Braithwaite, Andrew Ackland
  • Patent number: 8593331
    Abstract: Example methods, apparatuses, and articles of manufacture are disclosed herein that may be utilized to facilitate or otherwise support RF ranging-assisted local motion sensing based, at least in part, on measuring one or more characteristics of a range between communicating devices in one or more established RF links.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: November 26, 2013
    Assignee: QUALCOMM Incorported
    Inventors: Ming-Chang Tsai, Amal Ekbal, David Jonathan Julian, Chong U. Lee
  • Patent number: 8593332
    Abstract: The present invention relates to a device for detecting objects. The device comprises at least one microwave-frequency transmitter and one microwave-frequency receiver. The receiver makes a relative rotary movement about the transmitter, a signal being transmitted toward an individual for several positions of the receiver on the circle of relative rotation, the signals reflected by points of an object and received by the receiver at the positions being supplied to processing means in order to form a radar image. The receiver and the transmitter can be installed on a disk with a very low moment of inertia. The invention applies notably for the detection of weapons or explosives carried by persons.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: November 26, 2013
    Inventors: Claude Chekroun, Gilles Chekroun
  • Patent number: 8581777
    Abstract: In an electronic scanning radar apparatus, a receiving unit includes a plurality of antennas receiving a reflected wave arriving from a target having reflected a transmitted wave as a received wave. A beat signal generating unit generates beat signals from the transmitted wave and the received wave. A frequency resolving unit resolves the beat signals in beat frequencies having a predetermined frequency bandwidth and calculates complex data based on the resolved beat signals for each beat frequency. An azimuth calculating unit estimates an order of a normal equation used to calculate a DOA of the received wave on the basis of eigenvalues of a primary order matrix having complex data calculated from the beat signals as elements, creates a secondary order normal equation based on the estimated order, and calculates the DOA of the received wave based on the created secondary order normal equation.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: November 12, 2013
    Assignee: Honda elesys Co., Ltd.
    Inventors: Junji Kanamoto, Itaru Izumi, Hiroyuki Akimoto
  • Patent number: 8576115
    Abstract: A vehicle length sensor for a vehicle such as a variable length truck, the sensor being provided with a mount for mounting the sensor on a vehicle and being arranged with a detection circuit arranged to measure, in use, a length of a vehicle to which the sensor is mounted. Typically, the detection circuit comprises a transmitter circuit, which is arranged to transmit radiation along the length of the vehicle, and a receiver circuit that is arranged to receive radiation that was transmitted by the transmitter circuit and reflected from the vehicle, and in which the detection circuit is arranged to determine from the reflected radiation the length of the vehicle. The sensor may also act as a lane change assistant, comparing the range of other vehicles to the length of the vehicle to which it is mounted.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: November 5, 2013
    Assignee: TRW Automotive US LLC
    Inventor: Mark Basten
  • Patent number: 8564474
    Abstract: This disclosure provides a method of setting a threshold according to a level of an echo signal of an unused component. The echo signals are generated by transmitting and receiving a radio wave with an antenna while the antenna revolves. The method of setting the threshold includes calculating a difference value between a level of the echo signal at an observing position and a level of the echo signal at a position comparatively on the antenna side and close to the observing position, selecting a process for setting a threshold from either one of a first threshold setting process and a second threshold setting process according to the difference value, and updating the threshold for the observing position by using the selected threshold setting processing.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: October 22, 2013
    Assignee: Furuno Electric Company Limited
    Inventor: Hitoshi Maeno
  • Patent number: 8564478
    Abstract: A high-frequency module according to the present embodiment includes a substrate, a circuit board, and a resonator. The substrate has an input-output portion for high-frequency signals formed on one surface thereof. The circuit board includes a dielectric waveguide line with its end face exposed, and is placed on the one surface of the substrate such that a virtual plane extending beyond the end face is intersected by the one surface of the substrate. The resonator includes input-output end portions for high-frequency signals at ends thereof, in which one of the input-output end portions is connected to the end face of the dielectric waveguide line, and the other thereof is connected to the input-output portion of the substrate.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 22, 2013
    Assignee: Kyocera Corporation
    Inventors: Djuniadi Arifin Sagala, Kazuki Hayata, Yuji Kishida
  • Patent number: 8564477
    Abstract: A high-frequency module according to the present embodiment includes a substrate, a circuit board, and a waveguide. The substrate has an input-output portion for high-frequency signals on one surface thereof. The circuit board has a dielectric waveguide line with its end face exposed, and is placed on the one surface of the substrate such that a virtual plane extending beyond the end face is intersected by the one surface of the substrate. The waveguide has openings at ends thereof, in which one of the openings is connected to the end face of the dielectric waveguide line, and the other opening is connected to the input-output portion of the substrate.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 22, 2013
    Assignee: Kyocera Corporation
    Inventors: Djuniadi Arifin Sagala, Kazuki Hayata, Yuji Kishida
  • Patent number: 8558730
    Abstract: A method for detecting precipitation in a region monitored by radar beams includes ascertaining a first average power of a first backscattered radar signal, ascertaining a second average power of a second backscattered radar signal, and detecting an existence of a homogenous medium when the average powers conform.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: October 15, 2013
    Assignee: Robert Bosch GmbH
    Inventor: Alebel Arage Hassen
  • Patent number: 8558731
    Abstract: A method of determining an angle within the beam to a target using an airborne radar includes receiving first data associated with first returns associated with a first portion of an antenna. The method further includes receiving second data associated with second returns associated with a second portion of an antenna, wherein the first portion is not identical to the second portion. The method further includes determining the angle within the beam to the target using the first and second data.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: October 15, 2013
    Assignee: Rockwell Collins, Inc.
    Inventor: Daniel L. Woodell
  • Patent number: 8559491
    Abstract: A method for measuring certain parameters of the impulse response of a propagation channel involving emitters and reflectors that are fixed or mobile, and for detecting and determining the parameters regarding the position and kinematics of the emitters and reflectors, or for auto-locating the reception system implementing the invention, in a system comprising N sensors receiving signals from the emitters or from the reflection on the reflectors. The method determines an ambiguity function which couples the spatial analysis and the delay-distance/Doppler-kinematic analysis, and determines at least one sufficient statistic ?(l,m,K) corresponding to the correlation between the known signal s(kTe) corresponding to the complex envelope of the signal emitted and the output of a filter w(l,m) where l corresponds to a temporal assumption and m corresponds to a frequency assumption.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: October 15, 2013
    Assignee: Thales
    Inventors: Pascal Chevalier, François Delaveau, François Pipon
  • Publication number: 20130268185
    Abstract: The present invention provides a system and method for relative localization that provides an orientation signal and a position signal between at least two vehicles. The present invention also provides for vehicle formation, such that there is a leading vehicle and a follower vehicle that maintain a specific formation relative to one another. The orientation, relative position and identity signals are utilized to control that formation. Each vehicle has at least three ultrasonic sensors, at least one ultrasonic source and an optional pair of FM receiver/transmitter. By installing several acoustic sensors whose relative position are known and by measuring the difference in the time of arrival of the same signal from the various sensors on the same vehicle, the difference in time can be converted into a difference of distance and then into relative position of the sensors from the source based on the Time Difference of Arrival (TDOA).
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence
    Inventors: Camille-Alain Rabbath, Alexandre Morris, Dominic Grenier