Light Wave Directional Modulation (e.g., Deflection Or Scanning Is Representative Of The Modulating Signal) Patents (Class 359/298)
  • Publication number: 20140177032
    Abstract: Disclosed is an imaging directional backlight apparatus comprising a waveguide, a light source array, and a further optical element for providing large area directed illumination from localized light sources. The imaging directional backlight may comprise a stepped waveguide that may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources. The further optical element may comprise a superlens comprising first and second aligned lens arrays that may be arranged to modify the output viewing windows to achieve enhanced window imaging from the directional backlight.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 26, 2014
    Applicant: RealD Inc.
    Inventors: Graham J. Woodgate, Jonathan Harrold, Michael G. Robinson
  • Patent number: 8760751
    Abstract: This disclosure provides systems, methods and apparatus related to an electromechanical display device. In one aspect, an analog interferometric modulator (AIMOD) includes a reflective display pixel having a movable reflective layer and a stationary absorber layer, the reflective layer and absorber layer defining a cavity therebetween. A color notch filter may be employed to produce an improved white state. In some implementations, the color notch filter is positioned on a side of the substrate opposite the absorber layer. In some other implementations, the color notch filter is positioned between the substrate and the movable reflective layer.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: June 24, 2014
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventors: Jian J. Ma, Tallis Y. Chang, John H. Hong, Ion Bita
  • Patent number: 8755110
    Abstract: An optical traveling-wave resonator that includes a magneto-optically active member through which an optical beam propagates on a non-planar optical propagation path circuit. The resonator further includes at least one mirror in the optical propagation path circuit and a magnetic field generator for applying a magnetic field to the magneto-optically active member such that resonant optical frequencies of normal modes corresponding to traveling waves in opposite directions are substantially different.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: June 17, 2014
    Inventor: Bruce A. Richman
  • Patent number: 8754859
    Abstract: An electro-optic display comprises, in order, a light-transmissive electrically-conductive layer; a layer of a solid electro-optic material; and a backplane (162) bearing a plurality of pixel electrodes. A peripheral portion of the backplane extends outwardly beyond the layer of solid electro-optic material and bears a plurality of radiation generators (166) and a plurality of radiation detectors (168), the radiation generators and detectors together being arranged to act as a touch screen.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: June 17, 2014
    Assignee: E Ink Corporation
    Inventors: Holly G. Gates, Robert W. Zehner, Russell J. Wilcox, Matthew J. Aprea
  • Publication number: 20140160554
    Abstract: Disclosed is an image display apparatus, including a display device displaying right-eye images and left-eye images. A light-modulating device attached to the display device; and a temperature sensor monitoring the light-modulating device temperature. The light-modulating device deflects the right-eye and left-eye images to an observer's right and left eyes respectively without a temperature variation in the temperature sensor.
    Type: Application
    Filed: December 12, 2012
    Publication date: June 12, 2014
    Applicant: DELTA ELECTRONICS, INC.
    Inventors: Yeong-Feng WANG, Ching-Tung HSU, Yen-I CHOU, Chia-Yen LEE, Meng-Han LIU, Ming-Wei TSAI
  • Patent number: 8730557
    Abstract: A series bias voltage increases the sensitivity of a MEMS ribbon to control signal voltages. This effect is obtained because of the nonlinear dependence of ribbon deflection on applied voltage. The resulting low-voltage operation of MEMS ribbons makes them more compatible with high speed electronics.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: May 20, 2014
    Assignee: Alces Technology, Inc.
    Inventors: David M Bloom, Matthew A Leone
  • Publication number: 20140133011
    Abstract: A microscope which makes possible a spectrally-flexible excitation and detection of fluorescence in an economical manner. For this purpose, means for frequency conversion are arranged in the common beam path and a filter for excitation light is arranged in addition to the main beam splitter in the detection beam path. The frequency conversion achieves a spectral delimitation between illumination light, which is emitted by the light source, and excitation light which brings about fluorescence excitation in the specimen. Because the frequency conversion takes place in the common beam path after the main beam splitter, it is possible for both a spatial separation of illumination light, and excitation light and fluorescent light (detection light) emitted by the specimen, to be carried out in an economical manner at the main beamsplitter according to spectral bands because of the spectral difference between illumination light and excitation light.
    Type: Application
    Filed: July 5, 2012
    Publication date: May 15, 2014
    Inventors: Daniel Schwedt, Ralf Wolleschensky
  • Patent number: 8717660
    Abstract: This disclosure provides systems, methods and apparatus for enhancing the brightness and/or contrast ratio of display devices. In one aspect, the display devices can include an annular diffuser that is configured to scatter light into a ring shaped region. The annular diffuser can include a plurality of axicon lenses or holographic features. The reflective display can include an annular diffuser to shift the direction along which most of the modulated light is scattered away from the direction along which light is specularly reflected by the display devices to reduce specular glare and enhance brightness and/or contrast ratio.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: May 6, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Jian J. Ma, John H. Hong, Bing Wen
  • Patent number: 8711495
    Abstract: A micro-electro-mechanical systems (MEMS) autofocus actuator having a support member for supporting a lens element, the support member including a stationary portion and a movable portion, the movable portion attached to the stationary portion by a movable support beam. An electrostatic drive member is attached to the stationary portion and the movable portion to drive movement of the movable portion with respect to the stationary portion. A lens holder is suspended within the support member by a resilient arm member attached to the movable portion and a deflection beam attached to the stationary portion so that in a non-actuated state, the lens element is in a first focal position that is substantially out-of-plane with respect to the stationary portion, and in an actuated state, the lens element is in a second focal position, the second focal position being different from the first focal position.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: April 29, 2014
    Assignee: Apple Inc.
    Inventor: Richard J. Topliss
  • Patent number: 8699117
    Abstract: Provided is a electrophoresis type display device includes a pixel electrode and a common electrode on a substrate and inducing an in-plane electric field; an electric charge layer on the pixel electrode and common electrode and having a plurality of first particles and a plurality of second particles, the first and second particles charged with opposite polarities; and a backlight unit supplying light toward the substrate.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: April 15, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Hyun-Sik Seo, Chang-Dong Kim, Seung-Han Paek, Dae-Hyun Nam
  • Patent number: 8699121
    Abstract: An illumination system of a microlithographic projection exposure apparatus comprises an optical raster plate having a light entrance surface. An irradiance distribution on the light entrance surface determines an angular light distribution of projection light when it impinges on a mask to be illuminated. The illumination system further comprises a control unit and a spatial light modulator which produces on the light entrance surface of the optical raster plate a plurality of light spots whose positions can be varied. At least some of the light spots have, along a reference direction (X), a spatial irradiance distribution comprising a portion in which the irradiance varies periodically with a spatial period P.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: April 15, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Markus Deguenther
  • Patent number: 8699138
    Abstract: Systems for providing high-intensity and high-quality illumination and other electromagnetic radiation (EMR) to target regions. The systems each include multiple EMR sources and a radiation combiner for combining the output radiation of the multiple sources. In some examples, the EMR sources are visible light sources, such as light-emitting diodes and laser diodes. In some of those examples, the light sources are of differing colors that are combined to form output illumination having user-selected qualities, such as color and intensity. The output of the radiation combiner can be directed into an optical fiber or bundle of optical fibers for remote delivery of the output to a target, such as in endoscopy and remote-illumination microscopy. Systems disclosed can also include additional EMR beams, such as visible light beams used for pointing/targeting and non-visible beams used, for example, for heating and fluoroscopic excitation of dyes/stains, among other things.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 15, 2014
    Assignee: Nathaniel Group, Inc.
    Inventors: Jeffrey Cogger, James Hermanowski, Joel Melnick
  • Patent number: 8693813
    Abstract: A magnetically actuated photonic crystal sensor is disclosed. An optical fiber comprises at least one photonic crystal means coupled to a first end thereof, and a magnetic material coupled to the at least one photonic crystal means.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: April 8, 2014
    Assignee: The Boeing Company
    Inventors: Michael A. Carralero, Olav Solgaard, Ty A. Larsen
  • Patent number: 8693075
    Abstract: Optical beams emitted by optical sources are incident on a mirror surface of a scan mirror in a substantially vertical direction and reflected in a substantially vertical direction by the scan mirror. The mirror surface of the scan mirror is driven to repeatedly rotate two-dimensionally by a predetermined scan angle by a scan mirror drive circuit. A polarized beam splitter causes the optical beam emitted by the optical source to be incident on the scan mirror through a quarter wave plate, and outputs the optical beam that has been reflected by the scan mirror and passed through the quarter wave plate toward the screen. A scan angle expander is arranged on the output side of the polarized beam splitter, whereby the scan angle of the optical beam is increased by N times.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 8, 2014
    Assignee: Hitachi Media Electronics Co., Ltd.
    Inventors: Takeshi Nakao, Kunikazu Ohnishi, Hiromi Kita, Norio Hosaka
  • Patent number: 8681079
    Abstract: An optical device suitable for forming a pixel in a video display. The optical device includes a first layer having a first refractive index; a second layer over the first layer, the second layer having a second refractive index less than the first refractive index; and a third layer over the second layer, the third layer having a third refractive index larger than the second refractive index; and a fourth layer that is at least partially optically absorptive, wherein the optical stack and the fourth layer are a first distance from one another when the device is in a first state and are a second distance from one another when the device is in a second state, the first distance different from the second distance.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: March 25, 2014
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Gang Xu
  • Patent number: 8668640
    Abstract: Endoscopes and other viewing devices that control the light that contacts a sample and/or that is detected emanating from a sample. The viewing devices are particularly well suited for in vivo imaging, although other uses are also included. The viewing devices, and methods related thereto, comprise a spatial light modulator in the illumination and/or detection light path so that light transmitted to the target via a bundle of light guides or optical system is transmitted substantially only into the cores of the light guide bundle and not into the cladding surrounding the light guides, filler between the light guides in the bundle, or undesired light guides. Also, methods and apparatus for mapping the pixels of the spatial light modulator to the cores of the light guides in the bundle (preferably at least 3 pixels (e.g., at least 3 mirrors for a digital micromirror device) for each core), as well as for mapping the light guides of one light guide bundle to another.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: March 11, 2014
    Assignee: Motic China Group Co., Ltd.
    Inventors: Calum E. MacAulay, Andrew L. P. Dlugan, Pierre Lane
  • Patent number: 8659813
    Abstract: Briefly, in accordance with one or more embodiments, a beam scanner may comprise a nanophotonics chip to provide a scanned output beam. The nanophotonics chip comprises a substrate, a grating in-coupler formed in the substrate to couple a beam from a light source into the substrate, a modulator to modulate the beam, and a photonic crystal (PC) superprism to provide a scanned output beam that is scanned in response to the modulated beam.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: February 25, 2014
    Assignee: Microvision, Inc.
    Inventors: Wyatt O. Davis, Taha Masood
  • Patent number: 8659816
    Abstract: This disclosure provides mechanical layers and methods of forming the same. In one aspect, a method of forming a pixel includes depositing a black mask on a substrate, depositing an optical stack over the black mask, and forming a mechanical layer over the optical stack. The black mask is disposed along at least a portion of a side of the pixel, and the mechanical layer defines a cavity between the mechanical layer and the optical stack. The mechanical layer includes a reflective layer, a dielectric layer, and a cap layer, and the dielectric layer is disposed between the reflective layer and the cap layer. The method further includes forming a notch in the dielectric layer of the mechanical layer along the side of the pixel so as to reduce the overlap of the dielectric layer with the black mask along the side of the pixel.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: February 25, 2014
    Assignee: Qualcomm Mems Technologies, Inc.
    Inventors: Yi Tao, Hojin Lee, Fan Zhong
  • Patent number: 8654434
    Abstract: An optical device compensates for decreased transmission of light caused by gaps between mirrors of a MEMS array. The optical device employs MEMS mirrors having non-reflecting regions on them disposed such that reflecting regions of the MEMS mirrors have substantially the same optical throughput, or an additional optical element having increased transmission at those spatial positions where light impinging on the gaps passes through. Alternatively, the optical device may employ a filter having spectral transmission characteristic with increased transmission at those wavelengths of dispersed light that impinge on the gaps.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: February 18, 2014
    Assignee: Oclaro (New Jersey), Inc.
    Inventors: Gil Cohen, Yossi Corem, Roey Harel
  • Publication number: 20140043665
    Abstract: An illumination system of a microlithographic projection exposure apparatus comprises an optical raster plate having a light entrance surface. An irradiance distribution on the light entrance surface determines an angular light distribution of projection light when it impinges on a mask to be illuminated. The illumination system further comprises a control unit and a spatial light modulator which produces on the light entrance surface of the optical raster plate a plurality of light spots whose positions can be varied. At least some of the light spots have, along a reference direction (X), a spatial irradiance distribution comprising a portion in which the irradiance varies periodically with a spatial period P.
    Type: Application
    Filed: October 2, 2013
    Publication date: February 13, 2014
    Inventor: Markus Deguenther
  • Publication number: 20140022619
    Abstract: A spatially multiplexed autostereoscopic display is arranged to provide landscape and portrait operation. Multiple optical windows may be provided by spatial and temporal multiplexing techniques. A fast response lens array pair is aligned with a fast response spatial light modulator, and synchronized to provide first and second sets of images with first and second respective directionalities to provide first and second sets of respective optical windows. The first and second sets of optical windows may each comprise two or more optical windows in each viewing lobe. The optical windows may be arranged with an inclination to the vertical of 25 degrees to 65 degrees. An observer tracking system may be arranged to direct left and right eye image data to the left and right eyes of an observer, respectively, for landscape and portrait orientations of the display.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 23, 2014
    Inventors: Graham J. Woodgate, Michael G. Robinson, Jonathan Harrold
  • Publication number: 20140016181
    Abstract: Optical devices including deterministic aperiodic patterning using spiral arrays exhibit circular symmetry in continuous Fourier space via polarization-insensitive planar diffraction. Far-field diffractive coupling in these structures leads to the formation of scattering resonances with circular symmetry and characteristic vortex behavior carrying orbital angular momentum. Plasmonic nanoparticle arrays with aperiodic spiral geometry can be used in fabrication of optical devices that benefit from polarization insensitive, enhanced light-matter coupling on planar surfaces, such as thin-film solar cells (enhanced light absorption and efficiency), photodetectors (enhanced light emission and efficiency), optical biosensors, and polarization devices.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 16, 2014
    Applicant: Trustees of Boston University
    Inventor: Luca Dal Negro
  • Publication number: 20140016051
    Abstract: For comfortable viewing of a 3-D scene at various viewing angles, a display having a large tracking range for a variable viewer distance is required. A controllable light-influencing element deflects light in coarse steps in a viewer range. Within said steps, the light is deflected by a further controllable light-influencing element continuously or with fine gradation. The light modulation device is suitable in holographic or autostereoscopic displays for guiding the visibility ranges of the image information to be displayed so as to follow the eyes of the viewers.
    Type: Application
    Filed: December 21, 2011
    Publication date: January 16, 2014
    Applicant: SEEREAL TECHNOLOGIES S.A.
    Inventors: Bo Kroll, Gerald Futterer, Norbert Leister, Stephan Reichelt
  • Patent number: 8625187
    Abstract: A DND chip is disclosed. In one aspect, the chip includes a 2D DND array of DND elements logically arranged in rows and columns, and a DND driver architecture for actuating the DND elements. The DND driver has a set of first drive lines along the rows and a set of second drive lines along the columns, a set of first line drivers for each biasing one line from the set of first drive lines and a set of second line drivers for each biasing a line from the set of second drive lines. A plurality of second line drivers are spatially grouped together to serve a block of DND elements, and that plurality of second line drivers are spatially covered substantially completely by at least some DND elements of the block of DND elements. A holographic visualization system including the DND chip is provided.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: January 7, 2014
    Assignee: IMEC
    Inventors: Geert Van Der Plas, Stefan Cosemans
  • Patent number: 8619352
    Abstract: The present invention provides a projection apparatus that includes a mirror element and a drive circuit for driving a laser light source for projecting an illumination light. The projection apparatus further includes mirror device for modulating the illumination light and a projection lens for projecting the modulated light from the mirror element. The mirror device is disposed on a device substrate and packaged in a package substrate made of a transparent silicon material with a metallic thermal transfer path connected to the device substrate and a cover glass covering the package substrate. The distance between the mirror and the bottom surface of the cover glass is larger than the focal length of the projection lens.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: December 31, 2013
    Assignee: Silicon Quest Kabushiki-Kaisha
    Inventors: Yoshihiro Maeda, Hirokazu Nishino, Akira Shirai, Hirotoshi Ichikawa, Fusao Ishii
  • Publication number: 20130301113
    Abstract: A deformable mirror is configured to be deformed by surface-parallel actuation. In one embodiment, the deformable mirror includes a first piezoelectric active layer on a first surface of a substrate. The first piezoelectric active layer has a substantially uniform thickness across the first surface of the substrate. The mirror also includes a first electrode layer on the first piezoelectric active layer. The first electrode layer has a plurality of electrodes arranged in a first pattern and has a substantially uniform thickness across the first piezoelectric active layer. The mirror may further include a second piezoelectric layer on the first electrode layer, and a second electrode layer on the second piezoelectric layer. The electrodes of the first and second electrode layers are configured to supply a voltage to the piezoelectric active layers upon actuation to thereby locally deform the shape of the mirror to correct for optical aberrations.
    Type: Application
    Filed: April 17, 2013
    Publication date: November 14, 2013
    Inventors: Sergio Pellegrino, Keith D. Patterson, Chiara Daraio, Eleftherios Gdoutos, Namiko Yamamoto, Risaku Toda, Victor E. White, Harish Manohara, John B. Steeves
  • Publication number: 20130300999
    Abstract: In imaging system (100), a spatial light modulator (101) is configured to produce images (102) by scanning a plurality light beams (104,105,106). A first optical element (107) is configured to cause the plurality of light beams to converge along an optical path (114) defined between the first optical element and the spatial light modulator. A second optical element (115) is disposed between the spatial light modulator and a waveguide (1401). The first optical element and the spatial light modulator are arranged such that an image plane (117) is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light (118) from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil (120) at an input of the waveguide.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Applicant: MICROVISION, INC.
    Inventors: Christian Dean DeJong, Joshua M. Hudman
  • Publication number: 20130301097
    Abstract: In imaging system (100), a spatial light modulator (101) is configured to produce images (102) by scanning a plurality light beams (104,105,106). A first optical element (107) is configured to cause the plurality of light beams to converge along an optical path (114) defined between the first optical element and the spatial light modulator. A second optical element (115) is disposed between the spatial light modulator and an output of the imaging system. The first optical element and the spatial light modulator are arranged such that an image plane (117) is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light (118) from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil (120) on the other side of the second optical element relative to the spatial light modulator.
    Type: Application
    Filed: May 8, 2012
    Publication date: November 14, 2013
    Applicant: MICROVISION, INC.
    Inventors: Joshua M. Hudman, Christian Dean DeJong
  • Patent number: 8582195
    Abstract: Systems and methods for generating a position reference grid and relative positioning of an object are presented. Radiation is emitted towards a digital micro-mirror device including a plurality of micro-mirrors. Additionally, one or more of a plurality of micro-mirrors are modulated such that at least a portion of the radiation reflected from the plurality of micro-mirrors is projected on to a designated location in a designated pattern representative of a position reference grid. The radiation reflected from the plurality of micro-mirrors is detected. Further, the detected radiation is interpreted as location coordinates in the position reference grid. Additionally, the location coordinates are communicated to the object moving in relation to the digital micro-mirror device for positioning the object at a designated position in the position reference grid.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 12, 2013
    Assignee: General Electric Company
    Inventors: James Gerard Lopez, Mark Allen Cheverton
  • Patent number: 8576148
    Abstract: An optical device suitable for forming a pixel in a video display. The optical device includes a first layer having a first refractive index; a second layer over the first layer, the second layer having a second refractive index less than the first refractive index; and a third layer over the second layer, the third layer having a third refractive index larger than the second refractive index; and a fourth layer that is at least partially optically absorptive, wherein the optical stack and the fourth layer are a first distance from one another when the device is in a first state and are a second distance from one another when the device is in a second state, the first distance different from the second distance.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: November 5, 2013
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Gang Xu
  • Patent number: 8570643
    Abstract: A method of making an optical element, the optical element including magnetic resonators that are anisotropically shaped and smaller than a wavelength of incident light, includes a first step of dispersing the magnetic resonators in a host medium, a second step of applying an external magnetic field to the host medium after the first step, and a third step of curing the host medium after the second step.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: October 29, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Daisuke Yamada
  • Publication number: 20130258451
    Abstract: A spatio-temporal directional light modulator is introduced. This directional light modulator can be used to create 3D displays, ultra-high resolution 2D displays or 2D/3D switchable displays with extended viewing angle. The spatio-temporal aspects of this novel light modulator allow it to modulate the intensity, color and direction of the light it emits within an wide viewing angle. The inherently fast modulation and wide angular coverage capabilities of this directional light modulator increase the achievable viewing angle, and directional resolution making the 3D images created by the display be more realistic or alternatively the 2D images created by the display having ultra high resolution.
    Type: Application
    Filed: July 11, 2012
    Publication date: October 3, 2013
    Applicant: OSTENDO TECHNOLOGIES, INC.
    Inventors: Hussein S. El-Ghoroury, Zahir Y. Alpaslan, Jingbo Cai, Marty Maiers, Philip Warner, Dale A. McNeill
  • Patent number: 8545034
    Abstract: A light converting device includes a wide production conversion material and a narrow production conversion material to convert the source light into a first and second interim light, respectively. The conversion materials may be included in, or applied to, an enclosure. The first and second interim light may be included in a converted light. The converted light may be included with the source light to create a white light. The wide production conversion material may have wide absorption and scatter characteristics. The narrow production conversion material may have narrow absorption and scatter characteristics to substantially reduce inefficiencies caused by double conversion of light.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: October 1, 2013
    Assignee: Lighting Science Group Corporation
    Inventors: Fredric S. Maxik, Robert R. Soler, David E. Bartine, Eliza Katar Grove, Mark Andrew Oostdyk
  • Patent number: 8537456
    Abstract: A photonic crystal apparatus and method are provided. The photonic crystal apparatus includes an electromagnetic signal source configured to provide electromagnetic signals. The photonic crystal apparatus also includes a photonic crystal configured to receive the electromagnetic signals from the electromagnetic signal source and to direct the electromagnetic signals along a predefined path through the photonic crystal when the photonic crystal is undistorted. The photonic crystal apparatus may also include a driver configured to selectively cause a portion of the photonic crystal to alternate between a distorted state and an undistorted state. In instances in which the photonic crystal is in the distorted state, the photonic crystal is configured to redirect the electromagnetic signals in a different direction than the predefined path.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: September 17, 2013
    Assignee: The Boeing Company
    Inventor: Donald F. Wilkins
  • Publication number: 20130235441
    Abstract: Briefly, in accordance with one or more embodiments, a beam scanner may comprise a nanophotonics chip to provide a scanned output beam. The nanophotonics chip comprises a substrate, a grating in-coupler formed in the substrate to couple a beam from a light source into the substrate, a modulator to modulate the beam, and a photonic crystal (PC) superprism to provide a scanned output beam that is scanned in response to the modulated beam.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 12, 2013
    Applicant: MICROVISION, INC.
    Inventors: Wyatt O. Davis, Taha Masood
  • Publication number: 20130234935
    Abstract: A display assembly, comprising: a display device (30); a microlens array (34); and an eye tracker (8), for example a pupil tracker (8), and/or a head tracker; wherein plural pixels (150) or sub-pixels of the display device (30) are provided for each microlens (160) of the microlens array (34). The display may be adapted such that only certain pixels/sub-pixels (150) are activated/selected for any particular determined pupil/eye/head position, for example such that for each microlens (160), only one respective pixel/sub-pixel (150) is activated/selected for any particular determined pupil/eye/head position. The display device (30) may be a transparent display device (30), the microlens array (34) may be a switchable microlens array (34), and the display assembly may further comprise a light blocking device (32) that is switchable between a substantially light blocking state and a substantially light passing state.
    Type: Application
    Filed: October 24, 2011
    Publication date: September 12, 2013
    Applicant: BAE SYSTEMS PLC
    Inventor: Michael Stewart Griffith
  • Patent number: 8531759
    Abstract: Disclosed herein is a dielectric microstructure with a substantially unit dielectric constant K for use in microelectromechanical systems.
    Type: Grant
    Filed: December 28, 2008
    Date of Patent: September 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Larry Joseph Hombeck
  • Patent number: 8531755
    Abstract: The present invention describes a micro-mechanical light modulator including a two-dimensional array of modulating elements, in which small modulating elements are organized into larger modulating areas. Using smaller elements organized into larger areas increases the resonant frequency of the modulators and the modulation speed. In some implementations, multiple modulating elements are driven by shared signals, allowing the number of elements driven and the resulting area to increase without increasing the data traffic. In some implementations, an anamorphic optical path is used that leaves individual modulating elements of the micro-mechanical light modulator that are operated as a single area unresolved at an image plane of the workpiece being patterned. Devices and methods are described.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: September 10, 2013
    Assignee: Micronic Laser Systems AB
    Inventors: Torbjörn Sandström, Per Askebjer
  • Patent number: 8526100
    Abstract: The invention provides a display method for displaying an image by deposition of metal fine particles. The display method includes at least depositing metal fine particles, from an electrolytic solution that has at least a metal ion of the metal particles and that is provided between a pair of substrates having at least one translucent substrate, onto a surface of any one of the pair of substrates by imparting one stimulus. A concentration of the metal ion of the metal fine particles in the electrolytic solution after imparting the stimulus is about 200 mmol/l or less. The invention further provides a display device which uses the display method.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: September 3, 2013
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Jun Kawahara, Satoshi Tatsuura, Kei Shimotani, Yasuo Yamamoto
  • Patent number: 8520285
    Abstract: This methods and devices described herein relate to displays and methods of manufacturing cold seal fluid-filled displays, including MEMS. The fluid substantially surrounds the moving components of the MEMS display to reduce the effects of stiction and to improve the optical and electromechanical performance of the display. The invention relates to a method for sealing a MEMS display at a lower temperature such that a vapor bubble does not formforms only at temperatures about 15° C. to about 20° C. below the seal temperature. In some embodiments, the MEMS display apparatus includes a first substrate, a second substrate separated from the first substrate by a gap and supporting an array of light modulators, a fluid substantially filling the gap, a plurality of spacers within the gap, and a sealing material joining the first substrate to the second substrate.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: August 27, 2013
    Assignee: Pixtronix, Inc.
    Inventors: Eugene E. Fike, III, Joyce H. Wu, Jasper Lodewyk Steyn, Jignesh Gandhi
  • Patent number: 8520291
    Abstract: An illumination optical system which illuminates an irradiated plane with illumination light provided from a light source includes a spatial light modulator which is arranged in an optical path of the illumination optical system and cooperates with part of the illumination optical system to form a desired light intensity distribution at a pupil position of the illumination optical system or a position optically conjugated with the pupil position. A detection unit detects the light intensity distribution of the illumination light at a position in an optical path extending from the light source to the spatial light modulator. The detection unit includes a light receiving surface which receives some of the illumination light. A control unit controls the spatial light modulator based on the light intensity distribution detected by the detection unit.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: August 27, 2013
    Assignee: Nikon Corporation
    Inventor: Hirohisa Tanaka
  • Publication number: 20130201543
    Abstract: A light modulation device comprising an optical element and at least one addressable mask disposed adjacent to the optical element. The optical element comprises at least two sub-elements, each of the at least two sub-elements having at least one optical characteristic wherein at least one optical characteristic of one sub-element is discrete from at least one optical characteristic of another sub-element. The mask comprises at least two regions corresponding to the at least two sub-elements, each of the at least two regions being individually addressable to enable its corresponding sub-element to be light transmitting.
    Type: Application
    Filed: April 8, 2011
    Publication date: August 8, 2013
    Applicant: THE TECHNOLOGY PARTNERSHIP PLC
    Inventor: Roger Clarke
  • Patent number: 8494312
    Abstract: A magnetically actuated photonic crystal sensor is disclosed. An optical fiber comprises at least one photonic crystal means coupled to a first end thereof, and a magnetic material coupled to the at least one photonic crystal means.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: July 23, 2013
    Assignee: The Boeing Company
    Inventors: Michael A. Carralero, Olav Solgaard, Ty A. Larsen
  • Patent number: 8482833
    Abstract: The invention concerns a micromechanical element including a frame, a moving part rotating inside said frame, about an axis, two torsion beams connecting the moving part to said frame , aligned along the axis and provided with a portion of reinforced width, and stop members arranged on both sides of the reinforced portions, so as to limit the lateral movement of the moving part . According to the invention, the portions of reinforced width are integral with the frame , and the stop members are integral with the moving part.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 9, 2013
    Assignee: Sercalo Microtechnology Ltd.
    Inventors: Cornel Marxer, Peter Herbst
  • Patent number: 8482845
    Abstract: A lithographic projection apparatus is disclosed in which a space between the projection system and a sensor is filled with a liquid.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: July 9, 2013
    Assignee: ASML Netherlands B.V.
    Inventors: Joeri Lof, Erik Theodorus Maria Bijlaart, Roelof Aeilko Siebrand Ritsema, Frank Van Schaik, Timotheus Franciscus Sengers, Klaus Simon, Joannes Theodoor De Smit, Arie Jeffrey Maria Den Boef, Hans Butler, Sjoerd Nicolaas Lambertus Donders, Christiaan Alexander Hoogendam, Marcus Adrianus Van De Kerkhof, Aleksey Yurievich Kolesnychenko, Mark Kroon, Erik Roelof Loopstra, Hendricus Johannes Maria Meijer, Jeroen Johannes Sophia Maria Mertens, Johannes Catharinus Hubertus Mulkens, Joost Jeroen Ottens, Alexander Straaijer, Bob Streefkerk, Helmar Van Santen
  • Patent number: 8480243
    Abstract: The invention relates to an adaptive mirror based on a ceramic substrate having a corresponding reflector and piezoelectric actuators, a cooling device being integrated in the substrate. The invention likewise relates to a method for the production of such mirrors. The mirrors according to the invention are used for the modulation or deformation of a laser wavefront of high power.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 9, 2013
    Assignees: Fraunhofer-Gesellschaft zur Foerferung der Angewandten E.V., Friedrich-Schiller-Universitaet Jena
    Inventors: Claudia Bruchmann, Erik Beckert, Thomas Peschel, Christoph Damm
  • Publication number: 20130168536
    Abstract: A photonic crystal-metallic (PCM) structure receives an input light signal from a light source. The PCM structure includes a metal structure and a photonic crystal structure disposed adjacent the metal structure. The photonic crystal structure is configured to receive the input light signal such that the input light signal excites surface plasmons of the metallic structure and such that the input light signal is internally reflected within the photonic crystal structure.
    Type: Application
    Filed: May 26, 2011
    Publication date: July 4, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Yunbo Guo, Theodore B. Norris, James R. Baker, Lingjie Jay Guo, Nils G. Walter
  • Patent number: 8477030
    Abstract: An optical amplifier module includes a first optical amplifier to amplify main signal light to be supplied to a dispersion compensation fiber (DCF), a second optical amplifier to amplify the main signal light supplied from the DCF, a generating part to generate monitoring light having a wavelength longer than a wavelength of the main signal light, a multiplexing part to multiplex the monitoring light generated by the generating part and the main signal light to be supplied to the DCF, a demultiplexing part to demultiplex the monitoring light from the main signal light supplied from the DCF, and a detection part to detect a light intensity of the monitoring light demultiplexed by the demultiplexing part.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: July 2, 2013
    Assignee: Fujitsu Limited
    Inventors: Tomotaka Otani, Toshihiro Ohtani
  • Publication number: 20130163069
    Abstract: Graphene may support electromagnetic radiation and be able to support a variety of optical devices. In general, graphene may exhibit changeability in properties such as the conductivity and the like of graphene. Graphene may comprise carbon and be of a thickness of a single atomic layer. In another embodiment, Graphene may be thicker than a single atomic layer, but may be able to exhibit changeability in the properties noted above. Disclosed herein is the guiding and manipulating of optical signals on layers of graphene to create waveguides, ribbon waveguides, beamsplitters, lenses, attenuators, mirrors, scatterers, Fourier optics, Luneburg lenses, metamaterials and other optical devices.
    Type: Application
    Filed: June 8, 2011
    Publication date: June 27, 2013
    Applicant: The Trustees of The University of Pennsylvnia
    Inventors: Nader Engheta, Ashkan Vakil
  • Patent number: 8472098
    Abstract: A wafer-level manufacturing method produces stress compensated x-y gimbaled comb-driven MEMS mirror arrays using two SOI wafers and a single carrier wafer. MEMS structures such as comb drives, springs, and optical surfaces are formed by processing front substrate layer surfaces of the SOI wafers, bonding together the processed surfaces, and removing the unprocessed SOI layers to expose second surfaces of the front substrate layers for further wafer-level processing. The bonded SOI wafers are mounted to a surface of the carrier wafer that has been separately processed. Processing wafer surfaces may include formation of a stress compensation layer to counteract physical effects of MEMS mirrors. The method may form multi-layered conductive spring structures for the mirrors, each spring having a first conducting layer for energizing a comb drive, a second conducting layer imparting a restoring force, and an insulating layer between the first and second conducting layers.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: June 25, 2013
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Chialun Tsai, Jeffrey F. DeNatale