Responsive To External Condition Patents (Class 361/280)
  • Patent number: 10349178
    Abstract: Embodiments of the present invention relate to microphones diaphragms. In one embodiment, a sensor comprising a diaphragm comprised of a composition having a plurality of individual graphene sheets. An emitter formed in a manner to transmit lights towards a surface of the diaphragm. A collector that captures at least a portion of light that is reflected by the diaphragm. A converter is in communication with the detector that converts a signal that is generated by the sensor to a digital signal for processing. The graphene-based composition includes graphene sheets.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: July 9, 2019
    Assignee: VORBECK MATERIALS, CORP.
    Inventors: John S Lettow, Dan F Scheffer, Kenneth E Fritsch
  • Patent number: 10336605
    Abstract: There is provided a MEMS sensor including: a mass body; a support part floatably supporting the mass body; and a flexible beam having one end connected to the mass body and the other end connected to the support part. At least one end of the flexible beam connected to the mass body or the support part includes a curved portion to maximize an effective length supporting a load.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: July 2, 2019
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jong Woon Kim, Chang Hyun Lim, Sung Jun Lee, Jong Beom Kim
  • Patent number: 10267822
    Abstract: A sensor having a particle barrier is described. In an example, a sensor includes: first and second electrode sets respectively disposed upon a planar support surface and a proof mass that is compliantly displaceable along a first axis substantially parallel to the planar support surface; and a first barrier disposed on the planar support around the first electrode set having a height less than a gap between the planar support and the proof mass to mitigate particle migration into the first or second electrode set.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: April 23, 2019
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jennifer Wu, Rodney L. Alley, Robert G. Walmsley, Donald J. Milligan
  • Patent number: 10249458
    Abstract: An electronic seal includes a housing, a cover, at least one touch piece, and, a transmission mechanism. The housing has at least one through track, in which the through track is disposed on the bottom of the housing. The cover is disposed on the housing and covers the housing. The touch piece is movably disposed on the through track and is partially exposed out of the housing. The transmission mechanism includes a driving member, in which the driving member drives the touch piece to move along the through track when the driving member is actuated relative to the housing.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: April 2, 2019
    Assignee: CHICONY POWER TECHNOLOGY CO., LTD.
    Inventor: Chao-Sheng Huang
  • Patent number: 10234477
    Abstract: Systems and methods are described herein for detecting and measuring inertial parameters, such as acceleration. In particular, the systems and methods relate to vibratory inertial sensors implementing time-domain sensing techniques. Within a composite mass sensor system, a sense mass may oscillate at a frequency different from its actuation frequency, allowing flexibility when integrating the sensor into drive systems without sacrificing sensitivity.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: March 19, 2019
    Assignee: Google LLC
    Inventors: Ozan Anac, Xiaojun Huang
  • Patent number: 10168350
    Abstract: A physical quantity sensor includes an element piece, in which the element piece includes a support portion that includes a first support portion, a second support portion, and a third support portion that links the first and second support portions, and is connected to a base substrate at the third support portion, a movable electrode portion that is positioned between the first and second support portions, and includes a movable electrode finger, an elastic portion that links the movable electrode portion and the support portion and has elasticity, and a fixed electrode portions having fixed electrode fingers that are arranged facing the movable electrode finger.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: January 1, 2019
    Assignee: Seiko Epson Corporation
    Inventor: Satoru Tanaka
  • Patent number: 10150069
    Abstract: A water level sensor device of a fuel filter may include a printed circuit board and a water level sensor composed of electrically conductive plastic. The water level sensor may be coupled to the printed circuit board via an electrically conductive metal element. The metal element may be coupled to the water level sensor via a press-fit assembly. The metal element may include a sharp-edged fastening contour configured to tear open the plastic of the water level sensor when the metal element is pressed against the water level sensor.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: December 11, 2018
    Assignee: Mahle International GmbH
    Inventors: Daniel Dobernig, Gert Pfeiffer, Werner Schadler, Alfred Weinberger, Peter Zotter
  • Patent number: 9921175
    Abstract: The present invention refers to a sensor (10) having a layer arrangement (12), wherein the layer arrangement (12) comprises at least a base layer (14), a middle layer (16) and an outer layer (18), wherein the middle layer (16) is arranged at least partly upon and in contact with the base layer (14) and wherein the outer layer (18) is arranged at least partly upon and in contact with the middle layer (16), wherein the base layer (14) comprises a metal, wherein the middle layer (16) comprises a metal oxide, and wherein the outer layer (18) is porous and comprises a material selected from the group comprising electrically conductive carbon compounds such as, more particularly, graphite or carbon nanotubes (CNTs), organic electrical conductors and base metals, and wherein electrical contacts can be formed with the base layer (14) and outer layer (18) for a conductivity measurement and/or a resistance measurement.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: March 20, 2018
    Assignee: HEINRICH-HEINE UNIVERSITÄT DÜSSELDORF
    Inventors: Klaus Schierbaum, Mhamed El Achhab, Christiane Schüle
  • Patent number: 9869692
    Abstract: A micromechanical Z-sensor, including a rocker having trough structures which is twistably supported with the aid of a spring device, the rocker having a mass distribution which is asymmetric with respect to the spring device, first electrodes situated above the trough structure, and second electrodes situated below the rocker, and a catch device including at least one spring element against which a stop element which is anchored to a substrate is able to strike, at least two catch devices which are spatially separated from each other being provided per rocker arm of the rocker.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: January 16, 2018
    Assignee: ROBERT BOSCH GMBH
    Inventor: Guenther-Nino-Carlo Ullrich
  • Patent number: 9835646
    Abstract: A functional device includes a fixed electrode portion including a first fixed electrode portion and a second fixed electrode portion, a first wiring portion connected to the first fixed electrode portion, and a second wiring portion connected to the second fixed electrode portion. At least one of the first wiring portion and the second wiring portion is provided with a branch portion. One wiring line extending from the branch portion is connected to the fixed electrode portion, and another wiring line extending from the branch portion is provided along the first wiring portion or the second wiring portion.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: December 5, 2017
    Assignee: Seiko Epson Corporation
    Inventor: Satoru Tanaka
  • Patent number: 9837935
    Abstract: An all-silicon electrode capacitive transducer comprising: a movable silicon microstructure coupled to a glass substrate, the movable silicon microstructure having a movable silicon electrode, the glass substrate having a top surface and at least one recess, the movable silicon electrode having a first flat surface parallel to a plane of the top surface of the glass substrate, the movable silicon electrode having a first electronic work function; and a stationary silicon electrode coupled to a glass substrate, the stationary silicon electrode located adjacent to the movable silicon electrode, the stationary silicon electrode configured to sense or actuate displacement of the movable silicon microstructure, wherein the stationary silicon electrode has a second flat surface parallel to the first flat surface, the stationary silicon electrode having a second electronic work function equal to the first electronic work function.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: December 5, 2017
    Assignee: Honeywell International Inc.
    Inventors: Burgess R. Johnson, Ryan Supino
  • Patent number: 9829505
    Abstract: An electronic device includes an accommodation space formed between a first base material and a second base material so as to seal a space therebetween, and a functional element in the accommodation space. The accommodation space is formed in an inner region of a bonding portion between the first base material and the second base material. The electronic device includes wirings extending from the inner region through the bonding portion to the outside of the accommodation space. The bonding portion includes a first bonding region and a second bonding region. The wiring includes a first wiring portion having a first direction toward the outside through the first bonding region from the inner region and a second wiring portion having a second direction toward the outside through the second bonding region from the inner region. The first and the second directions are different.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 28, 2017
    Assignee: Seiko Epson Corporation
    Inventor: Makoto Furuhata
  • Patent number: 9776853
    Abstract: A mechanism for reducing stiction in a MEMS device by decreasing surface area between two surfaces that can come into close contact is provided. Reduction in contact surface area is achieved by increasing surface roughness of one or both of the surfaces. The increased roughness is provided by forming a micro-masking layer on a sacrificial layer used in formation of the MEMS device, and then etching the surface of the sacrificial layer. The micro-masking layer can be formed using nanoclusters. When a next portion of the MEMS device is formed on the sacrificial layer, this portion will take on the roughness characteristics imparted on the sacrificial layer by the etch process. The rougher surface decreases the surface area available for contact in the MEMS device and, in turn, decreases the area through which stiction can be imparted.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: October 3, 2017
    Assignee: NXP USA, Inc.
    Inventors: Robert F. Steimle, Ruben B. Montez
  • Patent number: 9753508
    Abstract: A system comprises a first proximity sensor adapted to detect a human. The system further comprises logic coupled to the first proximity sensor. The logic adjusts a temperature threshold based on whether a human has been detected.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: September 5, 2017
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Lee W. Atkinson, Luca DiFiore
  • Patent number: 9678100
    Abstract: A functional device according to an embodiment of the invention includes: an insulating substrate; a movable section; movable electrode fingers provided in the movable section; and fixed electrode fingers provided on the insulating substrate and arranged to be opposed to the movable electrode fingers. The fixed electrode fingers include: first fixed electrode fingers arranged on one side of the movable electrode fingers; and second fixed electrode fingers arranged on the other side of the movable electrode fingers. The first fixed electrode fingers and the second fixed electrode fingers are arranged to be spaced apart from each other.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: June 13, 2017
    Assignee: Seiko Epson Corporation
    Inventors: Mitsuhiro Yoda, Shuichi Kawano, Shigekazu Takagi, Seiji Yamazaki
  • Patent number: 9671302
    Abstract: A cold cathode ionization vacuum gauge includes an extended anode electrode and a cathode electrode surrounding the anode electrode along its length and forming a discharge space between the anode electrode and the cathode electrode. The vacuum gauge further includes an electrically conductive guard ring electrode interposed between the cathode electrode and the anode electrode about a base of the anode electrode to collect leakage electrical current, and a discharge starter device disposed over and electrically connected with the guard ring electrode, the starter device having a plurality of tips directed toward the anode and forming a gap between the tips and the anode.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: June 6, 2017
    Assignee: MKS Instruments, Inc.
    Inventors: Gerardo A. Brucker, Timothy C. Swinney, Brandon J. Kelly
  • Patent number: 9663349
    Abstract: A MEMS device and method for providing a MEMS device are disclosed. In a first aspect, the MEMS device comprises a first substrate and a second substrate coupled to the first substrate forming a sealed enclosure. A moveable structure is located within the sealed enclosure. An outgassing layer is formed on the first or second substrates and within the sealed enclosure. A first conductive layer is disposed between the moveable structure and the outgassing layer, wherein the first conductive layer allows outgassing species to pass therethrough.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: May 30, 2017
    Assignee: INVENSENSE, INC.
    Inventors: Jongwoo Shin, Houri Johari-Galle, Martin Lim, Joseph Seeger
  • Patent number: 9625487
    Abstract: The present invention provides a capacitive acceleration sensor with a bending elastic beam and a preparation method. The sensor at least includes a first electrode structural layer, a middle structural layer and a second electrode structural layer; wherein the first electrode structural layer and the second electrode structural layer are provided with an electrode lead via-hole, respectively; the middle structural layer includes: a frame formed on a SOI silicon substrate with a double device layers, a seismic mass whose double sides are symmetrical and a bending elastic beam with one end connected to the frame and the other end connected to the seismic mass, wherein anti-overloading bumps and damping grooves are symmetrically provided on two sides of the seismic mass, and the bending elastic beams at different planes are staggered distributed and are not overlapped with each other in space.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: April 18, 2017
    Assignee: SHANGHAI INSTITUTE OF MICROSYSTEM AND INFORMATION TECHNOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Lufeng Che, Xiaofeng Zhou, Yuelin Wang
  • Patent number: 9599524
    Abstract: A flexible tactile imager includes an array of sensing cells that measure shear force and normal force. The sensing cells include a first sub-cell and a second sub-cell. Each sub-cell includes multi-fingered capacitors configured to measure shear force in a first or second direction and to measure the normal force. The multi-fingered capacitors include a flexible printed circuit board, a comb-like fingered sense electrode and drive electrode patterned on a layer of the flexible printed circuit board, a deformable dielectric material positioned above the comb-like fingered sense and drive electrodes, the comb-like fingered floating electrode patterned above the deformable dielectric material, a first capacitance formed between the comb-like fingered sense electrode and the comb-like fingered floating electrode, and a second capacitance formed between the comb-like fingered drive electrode and the comb-like fingered floating electrode.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 21, 2017
    Assignee: University of Utah Research Foundation
    Inventors: Rajesh Surapaneni, Carlos H. Mastrangelo
  • Patent number: 9502993
    Abstract: Methods, apparatuses, and systems are disclosed for a transducer. The transducer can include a bottom plate formed from a first sheet of material, a top plate formed from a second sheet of material, and a middle portion. The middle portion includes a mid-upper element formed from a third sheet of material, with a mid-upper frame, a mid-upper mass, and a plurality of mid-upper attachment members coupling the mid-upper mass to the mid-upper frame. The middle portion can also include a central element formed from a fourth sheet of material, with the central element having a central frame and a central mass.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: November 22, 2016
    Assignee: ION GEOPHYSICAL CORPORATION
    Inventor: Ken Kan Deng
  • Patent number: 9470711
    Abstract: A physical quantity sensor includes: a fixed portion; a fixed electrode portion; and a movable body that includes a support portion disposed around the fixed portion in plan view, a movable electrode portion supported by the support portion, extending along a first axis, and arranged to face the fixed electrode portion, and a coupling portion coupling the fixed portion with the support portion, and is displaceable along a second axis crossing the first axis.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: October 18, 2016
    Assignee: Seiko Epson Corporation
    Inventor: Satoru Tanaka
  • Patent number: 9458010
    Abstract: A method of making a semiconductor device forms anchors for one or more layers of material. The method includes depositing a first layer of material on a substrate, applying a mask over the first layer of material to mask nanoparticle-sized areas of the first material, removing portions of the first layer of material to form a first set of recesses around the nanoparticle-sized areas of the first material, depositing a second layer of material in the recesses and over the nanoparticle-sized areas so that a second set of recesses is formed in a top surface of the second layer of material, and forming a component of the semiconductor device over the second layer of material. Material of a bottom surface of the component is included in the second set of recesses.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: October 4, 2016
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ruben B. Montez, Robert F. Steimle
  • Patent number: 9452921
    Abstract: A microelectromechanical gyroscope that comprises two seismic masses suspended to form a plane of masses. The seismic masses are excited into rotary oscillation about a common primary axis that is in the plane of masses. Detected angular motion causes a rotary oscillation of the first seismic mass about a first detection axis, and of the second seismic mass about a second detection axis. The detection axes are perpendicular to the plane of masses and separated by a non-zero distance.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: September 27, 2016
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Anssi Blomqvist, Jaakko Ruohio
  • Patent number: 9335226
    Abstract: A force transducer, in particular a load cell, includes a spring body that deforms when loaded with a force or load to be measured. Two support parts, which are separated by a gap, are moved out of a position of rest. A capacitive displacement detector is used to detect the relative movement of the support parts, where the capacitor includes two electrode combs that are each held on one of the support parts and includes a multiplicity of electrode fingers. The electrode combs are configured designed and mounted on the two support parts such that the electrode fingers of the one electrode comb pass into the finger interspaces of the other electrode comb when the spring body is loaded so that the force transducer is resistant to overloading.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: May 10, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Karlheinz Amtmann, Dominik Braun, Jörg Hassel, Harry Hedler, Hans-Peter Lindner, Delphine Meunier, Daniel Reznik, Klaus Röther, Dirk Scheibner, Arno Steckenborn, Oliver Theile
  • Patent number: 9329041
    Abstract: An angular velocity sensor includes a vibrator located along x-y plane specified by x direction and y direction that are orthogonal to each other; a substrate that is separated away from the vibrator along z direction perpendicular to the x-y plane; an anchor device extended from the substrate to the x-y plane in which the vibrator is located; a linkage beam device that links the anchor device to the vibrator, the linkage beam being able to twist about the y direction; an excitation portion that vibrates the vibrator along the z direction; and a detection portion that detects an angular velocity based on a displacement along the x direction of the vibrator. The vibrator includes a linkage region to link with the linkage beam device, and the linkage region becomes a wave node when the vibrator vibrates along the z direction.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 3, 2016
    Assignee: DENSO CORPORATION
    Inventor: Takashi Katsumata
  • Patent number: 9285931
    Abstract: The electrostatic capacity coupling type touch panel includes X electrodes (XP) and Y electrodes (YP) which intersect each other via a first insulating layer, and a plurality of Z electrodes in floating states to each other via a second insulating layer. For the second insulating layer, a material which changes in thickness by pressing of touch is used. The Z electrode is disposed so as to overlap both an X electrode and a Y electrode which are adjacent to each other. In a pad part of the X electrode, an area is larger toward the center of the X electrode and an area is smaller toward the center of the adjacent X electrode. Therefore, the nonconductive input means can be used, and highly accurate position detection is realized with a small number of electrodes even when a touch area is small.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: March 15, 2016
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Display Co., Ltd.
    Inventors: Norio Mamba, Tsutomu Furuhashi, Kouichi Anno
  • Patent number: 9195329
    Abstract: These needs, and others, are met by at least one embodiment of the disclosed invention which provides for a touch sensitive screen for an electronic device wherein there is a sparse pattern of sensors disposed within the active area and a dense pattern of sensors disposed within the viewing area. In this configuration, the pixels in the active area may have a larger aspect ratio and provide a more pleasing image while the dense sensors disposed within the viewing area provide more accurate touch sensitivity. Further, the software, or other electronics, used to create the image, may be structured to position menus or other selectable images adjacent to the viewing area. Similarly, certain images, such as icons, can be programmed to be displayed directly under the sensors in the active area. Generally, this configuration provides for the best of both worlds; a bright, clear image with some touch sensitivity in the active area and a sensitive sensor grid in the viewing area where there are no pixels.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: November 24, 2015
    Assignee: BlackBerry Limited
    Inventors: Robert Lowles, James Alexander Robinson
  • Patent number: 9151641
    Abstract: The circuit arrangement according to the invention comprises a measuring apparatus that measures an electrical connection, and also one or more conductor patterns. The conductor pattern is connected to the measuring apparatus using an adaptor component, which fits the impedance produced by the conductor pattern to be suitable for the measuring apparatus.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: October 6, 2015
    Assignee: ELSI TECHNOLOGIES OY
    Inventor: Henry Rimminen
  • Patent number: 9116569
    Abstract: A portable electronic device comprises at least one force sensor configured to generate a force signal based at least in part on a force applied to a touch-sensitive display and a processor configured to receive the force signal and to provide a feedback signal when the force exceeds a force threshold. The at least one force sensor may be integrated into the touch-sensitive display.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 25, 2015
    Assignee: BlackBerry Limited
    Inventors: William Stacy, Robert J. Lowles
  • Patent number: 9103738
    Abstract: Pressure sensors and their methods of use are described. In one embodiment, a pressure sensor includes a probe body and a capacitive sensor disposed at a distal end of the probe body. The capacitive sensor produces a sensing capacitance. The pressure sensor also includes a shunt capacitance. In the described pressure sensor, a change in the sensing capacitance due to dimensional changes associated with a temperature change is offset by a corresponding change in the shunt capacitance.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 11, 2015
    Assignee: Dynisco Instruments LLC
    Inventors: Leo E. Barron, John A. Czazasty
  • Patent number: 9094764
    Abstract: A voice activity detection apparatus having a capacitive sensor and a voice activity detector sensor. The voice activity detector sensor detects vibration of human tissue associated with user speech. Utilization of the voice activity detector sensor output is tied to the output of the capacitive sensor, where the capacitive sensor detects whether it is in contact with user skin.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: July 28, 2015
    Assignee: Plantronics, Inc.
    Inventor: Douglas Rosener
  • Patent number: 9038466
    Abstract: A micromechanical component is described having a substrate which has at least one stator electrode fixedly mounted with respect to the substrate, a movable mass having at least one actuator electrode fixedly mounted with respect to the movable mass, and at least one spring via which the movable mass is displaceable. The movable mass is structured from the substrate with the aid of at least one separating trench, at least one outer stator electrode spans at least one section of the at least one separating trench and/or of the movable mass, the at least one actuator electrode protrudes between the at least one outer stator electrode and the substrate, and at least one inner stator electrode protrudes between the at least one actuator electrode and the substrate. A related manufacturing method is also described for a micromechanical component.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: May 26, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventor: Jochen Reinmuth
  • Patent number: 8973250
    Abstract: Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are provided. The method of forming a MEMS structure includes forming a wiring layer on a substrate comprising actuator electrodes and a contact electrode. The method further includes forming a MEMS beam above the wiring layer. The method further includes forming at least one spring attached to at least one end of the MEMS beam. The method further includes forming an array of mini-bumps between the wiring layer and the MEMS beam.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: March 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Christopher V. Jahnes, Anthony K. Stamper
  • Patent number: 8971012
    Abstract: The present invention relates to a variable-area capacitor for a micromechanical sensor, a micromechanical comb grid capacitor accelerometer and a micromechanical comb grid capacitor gyroscope. Among them, the variable-area capacitor structure comprises of a movable and a fixed electrodes in each capacitor unit; a front surface of aforesaid movable electrode is parallel to that of aforesaid fixed electrode; the front surface of aforesaid movable electrode is in a rectangular shape, and the front surface of the fixed electrode is in a triangular or sawteeth shape or the front surface of the movable electrode is in a triangular or sawteeth shape, and the front surface of the fixed electrode is in a rectangular form; the triangular front surface is only overlapped with one long side of aforesaid rectangular front surface. Micromechanical sensors with variable-area capacitor structures of the invention can adjust elasticity coefficient as compared with present technology.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: March 3, 2015
    Assignee: Zhejiang University
    Inventors: Zhonghe Jin, Shichang Hu, Xia Zhang, Huijie Zhu
  • Publication number: 20140376149
    Abstract: A method of manufacturing a variable capacitor includes forming a capacitor conductor. The method also includes forming a phase change material adjacent the capacitor conductor. The method further includes forming a first contact on the capacitor conductor. The method additionally includes forming a second contact and a third contact on the phase change material.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 25, 2014
    Inventor: Mark C. LAMOREY
  • Patent number: 8854792
    Abstract: An electrical contactor for use in a high voltage bus utilizes two capacitor plates and a dielectric element movable in a gap between the plates under a charging voltage applied to the plates. The dielectric element is biased to a contactor off, or open, position by a biasing element, such as a spring. Once activated, the contactor remains closed under the influence of the charging voltage across the capacitor plates, yet does not draw a current during this state. The contactor may be released by a controllable discharge circuit placed across the capacitor plates.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: October 7, 2014
    Assignee: Chrysler Group LLC
    Inventor: Adam Timmons
  • Publication number: 20140240893
    Abstract: A multi-layered capacitor includes three or more capacitor layers. A first layer includes a first DC-biased, tunable capacitor. A second layer, acoustically coupled to the first layer, includes a second DC-biased, tunable capacitor. A third layer, acoustically coupled to the second layer, includes a third DC-biased, tunable capacitor. Each dielectric of the first, second, and third capacitors has a resonance of about the same frequency, within 5%, and inner electrodes of the first, second, and third capacitors have a resonance of about the same frequency, within 5%. The resonance of each layer is a function of at least thickness, density, and material. The first, second, and third layers are biased to generate destructive acoustic interference, and the multi-layer capacitor is operable at frequencies greater than 0.1 GHz.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 28, 2014
    Applicant: BlackBerry Limited
    Inventors: Mircea Capanu, Andrew Vladimir Claude Cervin, Marina Zelner
  • Patent number: 8776337
    Abstract: The present disclosure includes methods of forming capacitive sensors. One method includes forming a first electrode array of the capacitive sensor on a first structure. Forming the first electrode array can include: forming a dielectric material on a substrate material; forming an electrode material on the dielectric material; removing portions of the electrode material to form a number of electrodes separated from each other; and removing at least a portion of the dielectric material from between the number of electrodes. The method can include bonding the first structure to a second structure having a second electrode array of the capacitive sensor formed thereon such that the number of electrodes of the first electrode array face a number of electrodes of the second electrode array.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 15, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Brian D. Homeijer, Robert G. Walmsley, Rodney L. Alley, Dennis M. Lazaroff, Sara J. Homeijer
  • Patent number: 8767373
    Abstract: The invention relates to electronic device having an operation temperature range, wherein the electronic device comprises a tunable capacitor (CST) comprising a first electrode (BE), a second electrode (TE), and a dielectric (FEL) arranged between the first electrode (BE) and the second electrode (TE). The dielectric (FEL) comprises dielectric material (FEL) having a value of a relative dielectric constant (?r) varying at least within the operation temperature range. The electronic device further comprises a temperature varying means (RES) being thermally coupled to the tunable capacitor for providing a temperature of the dielectric (FEL) causing a predetermined capacitance of the tunable capacitor (CST). The invention, which relies on the idea of varying temperature to vary a capacitance of a capacitor stack, provides an alternative tunable capacitor type for the known types.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: July 1, 2014
    Assignee: NXP, B.V.
    Inventors: Yukiko Furukawa, Klaus Reimann, Friso Jacobus Jedema, Markus Petrus Josephus Tiggelman, Aarnoud Laurens Roest
  • Patent number: 8756996
    Abstract: In a micromechanical system having a substrate and an electrode situated over the substrate, the electrode is connected to the substrate via a vertical spring. The vertical spring is sectionally provided in a first conductive layer and sectionally provided in a second conductive layer, the second conductive layer being situated over the first conductive layer and the first conductive layer being situated over the substrate. The electrode is provided in a third conductive layer, which is situated over the second conductive layer.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: June 24, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Jochen Reinmuth
  • Publication number: 20140104746
    Abstract: An article of manufacture having an in-molded capacitive switch and method of making the same are shown and described. In one disclosed method, a conductive ink sensing zone is printed on a film. The film is formed to a desired shape and put in an injection mold. A molten plastic material is introduced into the injection mold to form a rigid structure that retains the film.
    Type: Application
    Filed: August 9, 2013
    Publication date: April 17, 2014
    Applicant: T-Ink, Inc.
    Inventor: Ronald H. Haag
  • Patent number: 8665579
    Abstract: There is proved a variable capacitor that includes a substrate, a signal line disposed on a surface of the substrate for feeding a signal, a ground electrode disposed on the surface, and a movable electrode opposed the signal line and the ground electrode, the movable electrode operable to move toward and away from the signal line and the ground electrode. The movable electrode can be displaced by an electrostatic attraction between the movable electrode and the signal line and between the movable electrode and the signal line. An amount of displacement of the movable electrode varies according to an amount of the voltage which generates the electrostatic attraction.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: March 4, 2014
    Assignee: Fujitsu Limited
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Xiaoyu Mi, Satoshi Ueda
  • Patent number: 8659868
    Abstract: Disclosed herein is a variable capacitor and its driving method, the variable capacitor including, a movable first electrode; and a second electrode formed with an insulating film, fixed in place, and its insulating film contacting the first electrode that is moved.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 25, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Chang Wook Kim, Dong Chan Park, Ju Young Song, Sang Hun Lee, Sung Bae Cho, Hyun Ho Yang, Jun Bo Yoon, Dong Hun Choi, Chang Hun Han
  • Patent number: 8627566
    Abstract: A ceramic header configured to form a portion of an electronic device package includes a mounting portion configured to provide a mounting surface for an electronic device. In addition, the ceramic header includes one or more conductive input-output connectors operable to provide electrical connections from a first surface of the ceramic header to a second surface of the ceramic header. The ceramic header also includes one or more thermally polished surfaces.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: January 14, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Moody K. Forgey, Mark A. Kressley
  • Patent number: 8570705
    Abstract: The present subject matter relates to MEMS tunable capacitors and methods for operating such capacitors. The tunable capacitor can feature a primary stationary actuator electrode on a substrate, a secondary stationary actuator electrode on the substrate, a stationary RF signal capacitor plate electrode on the substrate, a sprung cantilever disposed over the substrate, a beam anchor connecting a first end of the sprung cantilever to the substrate, and one or more elastic springs or other biasing members connecting a second end of the sprung cantilever to the substrate, the second end being located distally from the first end. The spring cantilever can be movable between an OFF state defined by the potential difference between the stationary and moveable actuator electrodes being zero, and an ON state defined by a non-zero potential difference between the stationary and moveable actuator electrodes.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: October 29, 2013
    Assignee: Wispry, Inc.
    Inventor: Dana DeReus
  • Patent number: 8564928
    Abstract: According to one embodiment, a MEMS device includes an electrode on a substrate, a movable structure which is supported in midair above the electrode by first and second anchor portions on the substrate, and moves toward the electrode, a first spring structure which connects the first anchor portion to the movable structure and uses a ductile material, and a second spring structure which connects the second anchor portion to the movable structure and uses a brittle material.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: October 22, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tamio Ikehashi, Tomohiro Saito, Yasushi Tomizawa, Kei Masunishi
  • Patent number: 8553389
    Abstract: An improved MEMS transducer apparatus and method is provided. The apparatus includes a movable base structure having a base surface region. An anchor structure is disposed within a substantially circular portion of the surface region typically at or near the center of the surface region. A spring structure is coupled to the anchor structure and at least one portion of the base surface region. A capacitor, having a fixed capacitor element and a movable capacitor element, are disposed near the base surface region. The fixed capacitor element can be coupled to the anchor structure and the movable capacitor element can be spatially disposed on a portion of the base surface region near the anchor structure.
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: October 8, 2013
    Assignee: mCube Inc.
    Inventors: Daniel N. Koury, Jr., Anthony F. Flannery, Jr.
  • Patent number: 8549917
    Abstract: An integrated microelectromechanical structure is provided with a driving mass, anchored to a substrate via elastic anchorage elements and designed to be actuated in a plane with a driving movement; and a first sensing mass and a second sensing mass, suspended within, and coupled to, the driving mass via respective elastic supporting elements so as to be fixed with respect thereto in said driving movement and to perform a respective detection movement in response to an angular velocity. In particular, the first and the second sensing masses are connected together via elastic coupling elements, configured to couple their modes of vibration.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 8, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Gabriele Cazzaniga, Luca Coronato, Giacomo Calcaterra
  • Patent number: 8514545
    Abstract: An article of manufacture having an in-molded capacitive switch and method of making the same are shown and described. In one disclosed method, a conductive ink sensing zone is printed on a film. The film is formed to a desired shape and put in an injection mold. A molten plastic material is introduced into the injection mold to form a rigid structure that retains the film.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: August 20, 2013
    Assignee: Ink-Logix, LLC
    Inventor: Ronald H. Haag
  • Publication number: 20130208397
    Abstract: A capacitive transducer (1) comprises a polymer film (2) having a first surface and a second surface, a first electrically conductive layer (3) arranged on the first surface of the polymer film (2), and a second electrically conductive layer (3) arranged on the second surface of the polymer film (2). The polymer film (2) is at least partly made from a material having a molecular weight which is at least 21,000 g/mol. The inventors have surprisingly found that silicone polymer materials with high molecular weights, such as liquid silicone rubbers (LSR) or high temperature vulcanizing (HTV) elastomers, have high electrical breakdown strengths, even though technical data sheets from manufacturers state almost identical electrical breakdown strengths similar to that of RTV-2 elastomers. Using such materials in capacitive transducers allows high electrical fields to be applied to transducers without risking electrical breakdown, thereby increasing performance of transducers.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Applicant: Danfoss A/S
    Inventor: Mohamed Yahia Benslimane