Transistors Or Diodes Patents (Class 365/72)
  • Patent number: 8233309
    Abstract: A nonvolatile memory array architecture includes a resistive element between each common source/drain (intermediate) node and data line (or bit line), in an otherwise virtual ground-like memory array having serially-connected transistors coupled to the same word line. However, every N+1 transistors the corresponding resistive element is omitted (or generally kept in a low resistance state) to form transistor strings. This achieves an array density of 4F2*(N+1)/N, which approaches 4F2 array density for reasonable values of N. Such memory arrays are well suited for use in a three-dimensional memory array having distinct memory planes stacked above each other on multiple levels above a substrate.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: July 31, 2012
    Assignee: SanDisk 3D LLC
    Inventor: Luca G. Fasoli
  • Patent number: 8233311
    Abstract: The variable resistance nonvolatile storage device includes a memory cell (300) that is formed by connecting in series a variable resistance element (309) including a variable resistance layer (309b) which reversibly changes based on electrical signals each having a different polarity and a transistor (317) including a semiconductor substrate (301) and two N-type diffusion layer regions (302a, 302b), wherein the variable resistance layer (309b) includes an oxygen-deficient oxide of a transition metal, lower and upper electrodes (309a, 309c) are made of materials of different elements, a standard electrode potential V1 of the lower electrode (309a), a standard electrode potential V2 of the upper electrode (309c), and a standard electrode potential Vt of the transition metal satisfy Vt<V2 and V1<V2, and the lower electrode (309a) is connected with the N-type diffusion layer region (302b), the electrical signals being applied between the lower and upper electrodes (309a, 309c).
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: July 31, 2012
    Assignee: Panasonic Corporation
    Inventors: Kazuhiko Shimakawa, Yoshihiko Kanzawa, Satoru Mitani, Shunsaku Muraoka
  • Patent number: 8228725
    Abstract: Structures, systems and methods for transistors utilizing oxide nanolaminates are provided. One transistor embodiment includes a first source/drain region, a second source/drain region, and a channel region therebetween. A gate is separated from the channel region by a gate insulator. The gate insulator includes oxide insulator nanolaminate layers with charge trapping in potential wells formed by different electron affinities of the insulator nanolaminate layers.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 24, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 8228705
    Abstract: A memory cell includes a pair of sub-cells, each including an access transistor, a storage transistor, and an isolation transistor that are serially coupled in sequence with their source/drain connected. The isolation transistor is shared with a sub-cell of an adjacent memory cell and always turned off, wherein the storage transistor is always turned on. A wordline is coupled to a gate of the access transistor of each sub-cell, and complementary bit lines are respectively coupled to sources/drains of the access transistors of the pair of sub-cells, such that data bit may be accessed between the bit line and the corresponding storage transistor through the corresponding access transistor.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: July 24, 2012
    Assignees: Himax Technologies Limited, NCKU Research and Development Foundation
    Inventors: Soon-Jyh Chang, Ming-Liang Chung, Po-Ying Chen, Chung-Ming Huang
  • Patent number: 8222922
    Abstract: A logic device implementing configurations for ROM based logic uses arrays of memory cells to provide outputs based on inputs received at the logic device. The logic device stores values in the memory cells that are accessed when an input is received. The memory cells are transistors that provide values of ‘1’ or ‘0.’ Various configurations reduce the number of transistors while implementing the memory block by utilizing a single bitline or a dynamic precharge implementation.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: July 17, 2012
    Assignee: Toshiba America Research, Inc.
    Inventor: Bipul C. Paul
  • Patent number: 8223546
    Abstract: According to one embodiment, a multi-dot flash memory includes an active area, a floating gate arranged on the active area via a gate insulating film and having a first side and a second side facing each other in a first direction, a word line arranged on the floating gate via an inter-electrode insulating film, a first bit line arranged on the first side of the floating gate via a first tunnel insulating film and extending in a second direction intersecting the first direction, and a second bit line arranged on the second side of the floating gate via a second tunnel insulating film and extending in the second direction. The active area has a width in the first direction narrower than that between a center of the first bit line and a center of the second bit line.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Watanabe, Makoto Mizukami
  • Publication number: 20120169753
    Abstract: A memory device is provided which includes a memory circuit that allows a circuit which carries out a refresh operation to suitably carry out an original operation of the circuit even if an off-leakage current occurs in a transfer element used in a transfer section. A memory cell includes a switching circuit, a first retaining section, a transfer section, a second retaining section, a first control section, and a voltage supply, and the first control section is controlled to be in (i) a state in which the first control section carries out a first operation in which the first control section is in an active state or a non-active state and (ii) a state in which the first control section carries out a second operation.
    Type: Application
    Filed: April 23, 2010
    Publication date: July 5, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Yuhichiroh Murakami, Shige Furuta, Yasushi Sasaki, Seijirou Gyouten, Shuji Nishi
  • Patent number: 8208282
    Abstract: A memory cell is provided that includes a first conductor, a second conductor, a steering element that is capable of providing substantially unidirectional current flow, and a state change element coupled in series with the steering element. The state change element is capable of retaining a programmed state, and the steering element and state change element are vertically aligned with one another. Other aspects are also provided.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: June 26, 2012
    Assignee: SanDisk 3D LLC
    Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, Paul Michael Farmwald, James M. Cleeves
  • Publication number: 20120155143
    Abstract: A semiconductor device includes a plurality of gates of high voltage transistors configured to couple a plurality of global word lines to a plurality of local word lines and the plurality of local word lines arranged over each of the gates. The plurality of local word lines is arranged within a width of the gate.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Sun Mi CHOI
  • Publication number: 20120147652
    Abstract: A three-dimensional array adapted for memory elements that reversibly change a level of electrical conductance in response to a voltage difference being applied across them. Memory elements are formed across a plurality of planes positioned different distances above a semiconductor substrate. Bit lines to which the memory elements of all planes are connected are oriented vertically from the substrate and through the plurality of planes.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 14, 2012
    Inventor: Roy E. Scheuerlein
  • Patent number: 8199551
    Abstract: A semiconductor device including a memory cell is provided. The memory cell comprises a transistor and a capacitor, and one of a resistor and a diode. A gate of the transistor is electrically connected to a word line, and one of a source and a drain of the transistor is electrically connected to a bit line. One terminal of the capacitor is electrically connected to the other of the source and the drain of the transistor, and the other terminal of the capacitor is electrically connected to a wiring. One terminal of one of the resistor and the diode is electrically connected to the other of the source and the drain of the transistor, and the other terminal of one of the resistor and the diode is electrically connected to the wiring.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 12, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Takanori Matsuzaki
  • Patent number: 8194486
    Abstract: A semiconductor device includes a bit line connected to a plurality of memory cells in a memory block and a sense amplifier having a first node connected to the bit line and a second node, which is not connected to any bit line. The second node has a capacitive load less than that of the bit line. The sense amplifier amplifies a first data using a voltage difference between the first node and the second node caused by a charge sharing operation, and a second data using a capacitive mismatch between the first node and the second node.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: June 5, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-chul Yoon, Seong-jin Jang, Dong-hak Shin, Soo-hwan Kim, Hyuk-joon Kwon, Jong-min Oh
  • Publication number: 20120134195
    Abstract: The present invention relates to a memory device having 4F2 size cells and a method for fabricating the same. The memory device comprises plural word lines arranged parallel to each other in one direction, plural bit lines arranged parallel to each other, and plural memory cells having a transistor that fills a groove between two adjoining memory cells in a direction of the bit lines. A side wall between the two adjoining memory cells is simultaneously covered by an insulating film formed between the gate terminal and the two memory cells. The gate terminal is connected electrically to a word line, drain terminals of two adjoining memory cells are connected electrically to a bit line, and the gate and drain terminals are alternately arranged. One of the plural memory cells is buried in the substrate, and is electrically connected with a substrate or a well formed in the substrate.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 31, 2012
    Inventor: Jai-Hoon Sim
  • Patent number: 8189367
    Abstract: A single event upset (SEU) hardened memory cell to be utilized in static random access memories is disclosed. The SEU hardened memory cell includes a first transistor, a second transistor and a first resistor connected between a source of the first transistor and a drain of the second transistor. The SEU hardened memory cell also includes a third transistor, a fourth transistor and a second resistor connected between a source of the third transistor and a drain of the fourth transistor. The first resistor is also connected between a gate of the third transistor and the drain of the second transistor. The second resistor is also connected between a gate of the first transistor and the drain of the fourth transistor.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: May 29, 2012
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: David C. Lawson, Jason F. Ross
  • Patent number: 8189376
    Abstract: An integrated circuit device (e.g., a logic or memory device) having a memory section including a plurality of memory cells, wherein each memory cell thereof includes at least one n-channel transistor having a gate, gate dielectric and first, second and body regions, wherein the gate of the at least one n-channel transistor of each memory cell includes one or more gate materials, disposed on or over the gate dielectric material. The one or more gate materials may include a semiconductor material having one or more acceptor-type doping species disposed therein. The integrated circuit device may further include a logic section including at least one n-channel transistor having a gate, gate dielectric and first, second and body regions, wherein the gate of the n-channel transistor of the logic section may include a gate semiconductor material disposed on or over the gate dielectric material.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: May 29, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Viktor Koldiaev
  • Publication number: 20120127775
    Abstract: The invention discloses an integrated circuit (10) for securely storing a codeword. The value of the codeword is dependent on the mobility (?A, ?B, ?C) of at least one transistor (TRA, TRB, TRC) of the integrated circuit. The invention further discloses a reader means (15), a method for determining the value of the codeword from the integrated circuit (10), and a method for altering the value of the codeword.
    Type: Application
    Filed: August 12, 2008
    Publication date: May 24, 2012
    Applicant: NXP B.V.
    Inventors: Marcel Pelgrom, Maarten Vertregt, Hans Paul Tuinhout
  • Patent number: 8184466
    Abstract: According to one embodiment, a semiconductor storage device includes a first memory cell, a second memory cell and a third memory cell. The first memory cell forms a connection path used for storage of data. The second memory cell varies a connection place from a connection place of the connection path formed in the first memory cell, and stores data different from the data stored in the first memory cell is stored. The third memory cell varies a connection place from the connection place of the connection path formed in the second memory cell, and stores data same as the data stored in the first memory cell is stored.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: May 22, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Kohara, Takehiko Hojo
  • Publication number: 20120120704
    Abstract: A single event upset (SEU) hardened memory cell to be utilized in static random access memories is disclosed. The SEU hardened memory cell includes a first transistor, a second transistor and a first resistor connected between a source of the first transistor and a drain of the second transistor. The SEU hardened memory cell also includes a third transistor, a fourth transistor and a second resistor connected between a source of the third transistor and a drain of the fourth transistor. The first resistor is also connected between a gate of the third transistor and the drain of a the second transistor. The second resistor is also connected between a gate of a the first transistor and the drain of the fourth transistor.
    Type: Application
    Filed: February 8, 2008
    Publication date: May 17, 2012
    Inventors: David C. Lawson, Jason F. Ross
  • Publication number: 20120120706
    Abstract: A plurality of contact plugs to be connected to a drain region or a source region of each of transistors constituting a sub-word line driver that drives a sub-word line are formed, by using a SAC line technique of selectively etching an insulation layer that covers each of the transistors by using a mask having line-shaped openings provided across a portion in which the contact plugs of each of the transistors are to be formed.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 17, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Takeshi OHGAMI
  • Publication number: 20120120705
    Abstract: The present invention efficiently decides line failure and contact failure in a semiconductor device. The semiconductor device has a plurality of bit line groups in which connection with local I/O lines is controlled by the same column selection signal line. A failure detecting circuit compares a first data group read from a first bit line group and a second data group read from a second bit line group to detect whether or not connection failure (contact failure) with the column selection signal line occurs in one of the first and second bit line groups.
    Type: Application
    Filed: September 27, 2011
    Publication date: May 17, 2012
    Applicant: Elpida Memory, Inc.
    Inventors: Shingo MITSUBORI, Hiroki FUJISAWA
  • Patent number: 8179707
    Abstract: Semiconductor memory devices with a memory cell array including a first word line and a second word line arranged in a first direction, a source line arranged in the first direction between the first word line and the second word line, a bit line pair including a first bit line and a second bit line arranged in a second direction perpendicular to the first direction, a first memory cell including a gate connected to the first word line and first and second regions respectively connected to the second bit line and the source line, and arranged in a third direction between the first direction and the second direction, and a second memory cell including a gate connected to the second word line, a third region and the second region respectively connected to the first bit line and the source line, and arranged in the third direction.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: May 15, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Whan Song, Yeong-Taek Lee
  • Patent number: 8174868
    Abstract: An embedded SRAM chip in a 32 nm or smaller technology generation includes a first SRAM array of first SRAM unit cells. Each first SRAM unit cell includes a data latch for data storage and at least two pass gates for data reading and writing access. The cell area is defined by a first X-pitch and a first Y-pitch, the X-pitch being longer than the Y-pitch. A plurality of logic transistors are formed outside of the first SRAM array, the plurality of logic transistors including at least first and second logic transistor having first and second gate pitches defined between their source and drain contacts. The second gate pitch is the minimum logic gate pitch for the plurality of logic transistors. The first Y-pitch is equal to twice the first gate pitch and the ratio of the first Y-pitch to twice the second logic gate pitch is greater than one.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: May 8, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhon Jhy Liaw
  • Publication number: 20120099360
    Abstract: In a memory cell, a transistor with extremely high off-resistance is used as a write transistor; a drain and a source of the write transistor are connected to a write bit line and an input of an inverter, respectively; and a drain and a source of a read transistor are connected to a read bit line and an output of the inverter, respectively. Capacitors may be intentionally disposed to the source of the write transistor. Alternatively, parasitic capacitance may be used. Since the data retention is performed using charge stored on these capacitors, a potential difference between power sources for the inverter can be 0. This eliminates leakage current between the positive and negative electrodes of the inverter, thereby reducing power consumption.
    Type: Application
    Filed: October 19, 2011
    Publication date: April 26, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Yasuhiko Takemura
  • Publication number: 20120099359
    Abstract: Representative implementations of memory devices have transistors between memory cells of a memory device. Memory devices may be arranged in memory arrays. The use of transistors may include alternately providing electrical isolation or current paths between pairs or groups of memory cells in a memory array.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 26, 2012
    Applicant: Infineon Technologies AG
    Inventors: Cyrille Dray, Alexander Ney, Karl Hofmann
  • Patent number: 8164938
    Abstract: A semiconductor memory device includes a first inverter and a second inverter each having an input and an output, the output of each of the first and second inverters being connected to the input of the other so that data is stored, a CMOS switch configured to connect the input of the first inverter and a write bit line, a read MOS transistor having a gate connected to the output of the first inverter, and a MOS switch configured to connect the read MOS transistor to a read bit line. The first and second inverters have different sizes and are connected to different source power supplies.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: April 24, 2012
    Assignee: Panasonic Corporation
    Inventors: Naoki Kuroda, Yoshinobu Yamagami
  • Patent number: 8159854
    Abstract: A piezo-effect transistor (PET) device includes a piezoelectric (PE) material disposed between first and second electrodes; and a piezoresistive (PR) material disposed between the second electrode and a third electrode, wherein the first electrode comprises a gate terminal, the second electrode comprises a common terminal, and the third electrode comprises an output terminal such that an electrical resistance of the PR material is dependent upon an applied voltage across the PE material by way of an applied pressure to the PR material by the PE material.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Bruce G. Elmegreen, Lia Krusin-Elbaum, Glenn J. Martyna, Xiao Hu Liu, Dennis M. Newns
  • Publication number: 20120087169
    Abstract: A non-volatile memory device includes a plurality of memory units provided in an array, each memory unit having a plurality of resistive memory cells and a local word line. Each resistive memory units has a first end and a second end, the second ends of the resistive memory cells of each memory unit being coupled to the local word line of the corresponding memory unit. A plurality of bit lines is provided, each bit line being coupled to the first end of one of the resistive memory cells. A plurality of select transistors is provided, each select transistor being assigned to one of the memory units and having a drain terminal coupled to the local word line of the assigned memory unit. First and second global word lines are provided, each global word line being coupled to a control terminal of at least one select transistor. First and second source lines are provided, each source line being coupled to a source terminal of at least one select transistor.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: Crossbar, Inc.
    Inventors: Harry Kuo, Hagop Nazarian
  • Publication number: 20120087168
    Abstract: A memory device including variable resistance elements comprises a plurality of memory cells configured to store data; a first signal transmission/reception unit and a second signal transmission/reception unit configured to transmit a signal to the memory cells or receive a signal from the memory cells; a first transmission line arranged to couple first ends of the memory cells to the first signal transmission/reception unit; and a second transmission line configured to couple second ends of the memory cells to the second signal transmission/reception unit, wherein a first resistance of a first signal path coupled between the first and second signal transmission/reception units through a first memory cell of the memory cells is substantially equal to a second electrical resistance of a second signal path coupled between a second memory cell and the first and second signal transmission/reception units through a second memory cell of the memory cells.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Inventor: Sang Min HWANG
  • Patent number: 8149605
    Abstract: An analog memory circuit, i.e. a sample and hold circuit, wherein the source and the gate of the switching transistor is maintained at a same potential prior and after the sampling process using a transistor circuitry. The analog memory circuit comprises a memory capacitor (102) connected at a first end to a first port (104), which is connected a reference potential (106). A drain of a first transistor (108) —switch transistor—is connected to a second end of the memory capacitor (102). A source of the first transistor (108) is connected to a second port (110), which is connected to circuitry (112) for providing an input signal for storage in the memory capacitor (102), and a gate of the first transistor (108) is connected to a third port (114), which is connected to a first current sink (116). A source of a second transistor (118) is connected to the source of the first transistor (108) and a drain of the second transistor (118) is connected to the gate of the first transistor (108).
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 3, 2012
    Assignee: NXP B.V.
    Inventor: Vitali Souchkov
  • Publication number: 20120075903
    Abstract: A select gate transistor has a select gate electrode composed of a first-level conductive layer and a second-level conductive layer. The first-level conductive layer has contact areas. The second-level conductive layer has its portions removed that are located above the contact areas. Two adjacent select gate electrodes that are adjacent to each other in the column direction are arranged such that the contact areas of one select gate electrode are not opposed to the contact areas of the other select gate electrode. One select gate electrode has its first- and second-level conductive layers removed in their portions that are opposed to the contact areas of the other select gate electrode.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroshi Watanabe, Hiroshi Nakamura, Kazuhiro Shimizu, Seiichi Aritome, Toshitake Yaegashi, Yuji Takeuchi, Kenichi Imamiya, Ken Takeuchi, Hideko Oodaira
  • Publication number: 20120075904
    Abstract: A semiconductor device includes a memory cell, a bit line coupled to the memory cell, first and second wells arranged adjacently to each other, the first and second wells being different in conductivity type from each other and defining a boundary therebetween, first and second transistors formed in the first and second wells, respectively, and being different in channel type from each other, gate electrodes of the first and second transistors being connected in common to the bit line, and a third transistor formed in the first well such that the third transistor is sandwiched between the boundary and the first transistor, and a gate of the third transistor being supplied with a bit line precharge signal.
    Type: Application
    Filed: December 5, 2011
    Publication date: March 29, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Yasuhiro MATSUMOTO, Yasuji KOSHIKAWA
  • Patent number: 8144494
    Abstract: A resistance change memory device including: a cell array having a resistance change type of memory cells disposed at the cross-points of word lines and bit lines, the resistance value of the memory cell being reversibly settable; a word line driver circuit configured to apply a selecting drive voltage to one selected in the word lines; and a bit line driver circuit configured to drive multiple bit lines in such a manner that a set mode and a reset mode are set simultaneously for multiple memory cells selected by the selected word line, the set mode being for changing a selected memory cell from a first resistance state into a second resistance state while the reset mode is for changing a selected memory cell from the second resistance state into the first resistance state.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: March 27, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Satoru Takase
  • Patent number: 8134853
    Abstract: Providing a serial array semiconductor architecture achieving fast program, erase and read times is disclosed herein. By way of example, a memory architecture can comprise a serial array of semiconductors coupled to a metal bitline of an electronic memory device at one end of the array, and a gate of a pass transistor at an opposite end of the array. Furthermore, a second metal bitline is coupled to a drain of the pass transistor. A sensing circuit that measures current or voltage at the second metal bitline, which is modulated by a gate potential of the pass transistor, can determine a state of transistors of the serial array. Because of low capacitance of the pass transistor, the serial array can charge or discharge the gate of the pass transistor quickly, resulting in read times that are significantly reduced as compared with conventional serial semiconductor array devices.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 13, 2012
    Assignee: Spansion LLC
    Inventors: Richard Fastow, Hagop Nazarian
  • Patent number: 8130529
    Abstract: A semiconductor device has a pair of gate electrodes extending adjacent to and non-parallel to each other, a source and/or drain region located between the pair of gate electrodes for forming a pair of transistors with the gate electrodes, and a contact electrode disposed between the pair of gate electrodes in contact with the source and/or drain region in a contact area so that the center of the contact area is shifted from the center of the source and/or drain region in a direction along which the distance between the pair of gate electrodes becomes greater.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: March 6, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Takuji Tanaka
  • Publication number: 20120044736
    Abstract: At least one junction diode fabricated in standard CMOS logic processes can be used as program selectors for the memory cells that can be programmed based on the directions of current flow. These memory cells are MRAM, RRAM, CBRAM, or other memory cells that have a resistive element coupled to the P terminal of the first diode and to the N terminal of a second diode. The diodes can be constructed by P+ and N+ active regions on an N well as the P and N terminals of the diodes. By applying a high voltage to a resistive element and switching the N terminal of the first diode to a low voltage while disabling the second diode, a current flows through the memory cell can change the resistance into one state. Similarly, by applying a low voltage to a resistive element and switching the P terminal of the second diode to a high voltage while disabling the first diode, a current flows through the memory cell can change the resistance into another state.
    Type: Application
    Filed: February 14, 2011
    Publication date: February 23, 2012
    Inventor: Shine C. Chung
  • Patent number: 8111542
    Abstract: This invention discloses a static random access memory (SRAM) cell comprising a pair of cross-coupled inverters having a storage node, and a NMOS transistor having a gate terminal, a first and a second source/drain terminal connected to the storage node, a read word-line (RWL) and a read bit-line (RBL), respectively, the RWL and RBL being activated during a read operation and not being activated during any write operation.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: February 7, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jui-Jen Wu, Yen-Huei Chen, Shao-Yu Chou, Hung-Jen Liao
  • Patent number: 8111540
    Abstract: A semiconductor memory device includes first and second bit line provided in the same level layer above a semiconductor substrate, a first variable-resistance element disposed under the first bit line, having one terminal connected to one end of a current path of a first MOSFET, a second variable-resistance element disposed under the second bit line, and having one terminal connected to one end of a current path of a second MOSFET, a first interconnect layer connecting the first bit line to the other terminal of the first variable-resistance element, and connecting the first bit line to the other end of the current path of the second MOSFET, and a second interconnect layer connecting the second bit line to the other terminal of the second variable-resistance element, and connecting the second bit line to the other end of the current path of the first MOSFET.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: February 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Asao, Takeshi Kajiyama, Tsuneo Inaba
  • Publication number: 20120026774
    Abstract: An object is to provide a semiconductor device in which lower power consumption is realized by lowering voltage for data writing without increase in types of power supply potentials. Another object is to provide a semiconductor device in which threshold voltage drop of a selection transistor is suppressed without increase in types of power supply potentials for data writing. A diode-connected transistor is electrically connected in series with a word line electrically connected to a gate of an n-channel selection transistor. A capacitor is provided between the word line and a bit line electrically connected to one of a source and a drain of the selection transistor; alternatively, the capacitance between the bit line and the word line is used. In data writing, the timing of selecting the word line is earlier than the timing of selecting the bit line.
    Type: Application
    Filed: July 20, 2011
    Publication date: February 2, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Yutaka SHIONOIRI
  • Publication number: 20120026773
    Abstract: Disclosed is a semiconductor memory apparatus comprising an upper mat and a lower mat with a sense amplifier array region in between, where the sense amplifier array region includes a plurality of sense amplifiers. There is also a plurality of bit lines configured to extend toward the sense amplifier array region from the upper mat, and a plurality of complementary bit lines configured to extend toward the sense amplifier array region from the lower mat. Bit lines of the upper mat and complementary bit lines of the lower mat are configured to be alternately disposed at a predetermined interval in the sense amplifier array region, and the sense amplifier is configured to be formed between a bit line and a corresponding complementary bit line.
    Type: Application
    Filed: December 9, 2010
    Publication date: February 2, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Myoung Jin LEE
  • Patent number: 8102699
    Abstract: A memory device includes a substrate and a plurality of cell arrays stacked above the substrate. The cell arrays have bit lines coupled to first ends of memory cells and word lines coupled to the other ends. Each of the memory cells includes a variable resistance element to be set at a resistance value. While a selected bit line is set at a certain potential, word lines coupled to different memory cells, which are coupled in common to the selected bit line, are sequentially driven, so that different memory cells are accessed in a time-divisional mode.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: January 24, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Haruki Toda
  • Publication number: 20120014157
    Abstract: A plurality of memory cells included in a memory cell array are divided into a plurality of blocks every plural rows. A common bit line is electrically connected to the divided bit lines through selection transistors in the blocks. One of the memory cells includes a first transistor, a second transistor, and a capacitor. The first transistor includes a first channel formation region. The second transistor includes a second channel formation region. The first channel formation region includes a semiconductor material different from the semiconductor material of the second channel formation region.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 19, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kiyoshi Kato, Takanori Matsuzaki, Hiroki Inoue, Shuhei Nagatsuka
  • Patent number: 8098521
    Abstract: A write-once read-many times memory device is made up of first and second electrodes, a passive layer between the first and second electrodes, and an active layer between the first and second electrode. The memory device is programmed by providing a charged species from the passive layer into the active layer. The memory device may be programmed to have for the programmed memory device a first erase activation energy. The present method provides for the programmed memory device a second erase activation energy greater than the first erase activation energy.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: January 17, 2012
    Assignee: Spansion LLC
    Inventors: Michael A. VanBuskirk, Colin S. Bill, Zhida Lan, Tzu-Ning Fang
  • Patent number: 8094496
    Abstract: A nonvolatile semiconductor memory device includes a multi-layer insulating film having at least charge storage layers and formed on bottom surfaces and both side surfaces of a plurality of trench portions respectively formed in portions between the plurality of active areas formed in a first direction, a plurality of gate electrodes filled in internal portions of the plurality of trench portions with the multi-layer insulating film, a plurality of first metal interconnections formed in a second direction and each functioning as a bit line or source line, and a plurality of first conductivity-type diffusion layer regions arranged in a staggered form in corresponding portions of the plurality of active areas which intersect with the plurality of first metal interconnections. The device further includes a plurality of connection contacts form to respectively connect the plurality of first conductivity-type diffusion layer regions to the plurality of first metal interconnections.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: January 10, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Umezawa
  • Publication number: 20110317466
    Abstract: Providing for a serial array memory transistor architecture that achieves high read speeds compared with conventional serial array memory is described herein. By way of example, the serial array memory can be connected to and can drive a gate voltage of a small capacitance pass transistor, to facilitate sensing memory transistors of the serial array. The pass transistor modulates current flow or voltage at an adjacent metal bitline, which can be utilized to sense a program or erase state(s) of the memory transistors. Due to the small capacitance of the pass transistor, read latency for the serial array can be significantly lower than conventional serial array memory (e.g., NAND memory). Further, various mechanisms for forming an amplifier region of the serial array memory comprising discrete pass transistor are described to facilitate efficient fabrication of the serial array memory transistor architecture.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 29, 2011
    Applicant: SPANSION LLC
    Inventors: Richard Fastow, Hagop Nazarian, Lei Xue
  • Patent number: 8077493
    Abstract: A semiconductor memory device includes a memory cell array disposing a plurality of memory cells at each intersection of word lines and bit lines, the memory cell including one pair of cross-connected inverters including a transistor, a first dummy transistor having a threshold voltage which has a certain relationship with a threshold voltage of the transistor of the memory cell, a dummy bit line connected to one end of the first dummy transistor, and the dummy bit line charged so as to have a predetermined voltage, a dummy transistor control circuit configured to control conduction of the first dummy transistor, and a word line driver configured to supply a word line voltage to the word line connected to the selected memory cell, and the word line driver configured to change a rise time of the word line voltage in accordance with a change in a voltage of the dummy bit line.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: December 13, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Katayama
  • Patent number: 8072806
    Abstract: A semiconductor memory device includes a plurality of memory cell transistors arranged in a matrix; a plurality of word lines commonly coupling the control gates of the plural memory cell transistors present in a identical first direction; a plurality of source lines commonly coupling the sources of the plural memory cell transistors present in the identical first direction; a plurality of bit lines commonly coupling the drains of the plural memory cell transistors present in a identical second direction intersecting the first direction; a first transistor having a drain coupled to the source line; a second transistor having a drain coupled to a source of the first transistor, a gate coupled to the word line and a source grounded; and a control line commonly coupling the gates of the plural first transistors.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: December 6, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Satoshi Torii
  • Publication number: 20110292709
    Abstract: A semiconductor device includes a sense amplifier circuit. The sense amplifier circuit includes a cross-coupled first transistor and second transistor that perform amplification. The sources of the cross-coupled transistors are respectively connected in series with a third transistor and a fourth transistor, and electrical current supply capability of the third and fourth transistors is controlled by a control voltage given to control electrodes of the third and fourth transistors. In a data retaining period, a minimum sub-threshold current necessary for retaining the data is flowed to the third and fourth transistors according to the control voltage, and bit line potential is maintained.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 1, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Shinichi TAKAYAMA, Akira KOTABE, Kiyoo ITOH, Tomonori SEKIGUCHI
  • Publication number: 20110286257
    Abstract: A semiconductor memory device includes a plurality of memory cell transistors arranged in a matrix; a plurality of word lines commonly coupling the control gates of the plural memory cell transistors present in a identical first direction; a plurality of source lines commonly coupling the sources of the plural memory cell transistors present in the identical first direction; a plurality of bit lines commonly coupling the drains of the plural memory cell transistors present in a identical second direction intersecting the first direction; a first transistor having a drain coupled to the source line; a second transistor having a drain coupled to a source of the first transistor, a gate coupled to the word line and a source grounded; and a control line commonly coupling the gates of the plural first transistors.
    Type: Application
    Filed: August 3, 2011
    Publication date: November 24, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Satoshi Torii
  • Publication number: 20110286256
    Abstract: A semiconductor device with a reduced area and capable of higher integration and larger storage capacity is provided. A multi-valued memory cell including a reading transistor which includes a back gate electrode and a writing transistor is used. Data is written by turning on the writing transistor so that a potential according to the data is supplied to a node where one of a source electrode and a drain electrode of the writing transistor and a gate electrode of the reading transistor are electrically connected to each other, and then turning off the writing transistor and holding a predetermined potential in the node. Data is read by supplying a reading control potential to a control signal line connected to one of a source electrode and a drain electrode of the reading transistor, and then detecting potential change of a reading signal line.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 24, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Koichiro Kamata
  • Patent number: 8064239
    Abstract: Data is stored in a quantum-well type structure with double gate control. According to an example embodiment, a transistor-based data storage circuit includes a gate, a back gate and a semiconductor channel between the gate and the back gate. Carriers are stored in a storage pocket structure in the channel, in response to biases applied to the gate and back gate. Current passing through the channel is sensed and used to detect the stored carriers and, correspondingly, a memory state of the storage circuit.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 22, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mehmet Günhan Ertosun, Krishna Chandra Saraswat, Pawan Kapur