Decision Feedback Equalizer Patents (Class 375/233)
  • Publication number: 20130336378
    Abstract: Circuits and methods are provided for efficient feed-forward equalization when sample-and-hold circuitry is employed to generate n time-delayed versions of an input data signal to be equalized. To equalize the input data signal, m data signals are input to m feed-forward equalization (FFE) taps of a current-integrating summer circuit, wherein each of the m data signals corresponds to one of the n time-delayed versions of the input data signal. A capacitance is precharged to a precharge level during a reset period of the current-integrating summer circuit. An output current is generated by each of the m FFE taps during an integration period of the current-integrating summer circuit, wherein the output currents from the m FFE taps collectively charge or discharge the capacitance during the integration period. A gating control signal is applied to an FFE tap during the integration period to disable the FFE tap during a portion of the integration period in which the data signal input to the FFE tap is invalid.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicant: International Business Machines Corporation
    Inventors: Ankur Agrawal, John F. Bulzacchelli, Daniel J. Friedman, Zeynep Toprak Deniz
  • Patent number: 8611451
    Abstract: A method of operation in a receive circuit is disclosed. The method comprises entering an initialization mode followed by receiving training data from a lossy signaling path. The training data originates from a transmit circuit. The received training data is sampled and minimax transmit equalizer coefficients are generated based on the sampled data. The minimax transmit equalizer coefficients are then transmitted back to the transmit circuit. The initialization mode is exited and an operating mode initiated, where transmit data precoded by the minimax transmit equalizer coefficients is received.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: December 17, 2013
    Assignee: Aquantia Corporation
    Inventor: Hossein Sedarat
  • Patent number: 8611408
    Abstract: An equalizer (200A) comprises a feedforward filter (210), wherein the feedforward filter includes a plurality of feedforward filter taps, coefficients are associated with the plurality of feedforward filter taps, and values of all of the coefficients associated with the plurality of feedforward filter taps are dynamically determined. In some embodiments, the equalizer also comprises a decision feedback equalizer (216).
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: December 17, 2013
    Assignee: Entropic Communications, Inc.
    Inventors: Jingsong Xia, Richard W. Citta, Scott M. Lopresto
  • Patent number: 8611482
    Abstract: An apparatus comprising an inter symbol interference (ISI) cancellation circuit and a detector circuit. The inter symbol interference (ISI) cancellation circuit may be configured to minimize ISI at data sampling and crossing sampling points in a symbol interval of an input signal. The detector circuit may be configured to generate data samples and crossing samples at the data sampling and crossing sampling points in the symbol interval of the input signal.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 17, 2013
    Assignee: LSI Corporation
    Inventor: Lizhi Zhong
  • Patent number: 8611410
    Abstract: A system, method and memory medium for performing blind equalization. A block {un} of the baseband samples is received. A function J of a vector f is minimized to determine a minimizer fMIN. The function J depends on vector f according to J(f)=?(|yn|2??)2. The summation ? corresponds to a sequence {yn} of equalized samples. The sequence {yn} of equalized samples is related to the block {un} according to a convolution relation {yn}={un}*f. Parameter ? is a current modulus value. The current modulus value ? is updated to equal a ratio of a fourth moment of the sequence {yn} to a second moment of the sequence {yn}. The minimization and parameter update operations are repeated for a series of received blocks of baseband samples. The minimizer fMIN from a last of the repetitions is used to determine final equalized samples.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: December 17, 2013
    Assignee: National Instruments Corporation
    Inventors: Pratik Prabhanjan Brahma, Baijayanta Ray
  • Publication number: 20130329776
    Abstract: High data-rate magnetic coupling communication is realized with a small circuit size without sacrificing the communication distance. A received data acquisition circuit performs a decision-feedback equalization process on a received signal to obtain a shaped signal, and also performs sampling of the shaped signal with a sampling rate equal to or higher than a self-resonant frequency, according to a sampling clock, to obtain a data sample. A midpoint sample acquisition circuit performs sampling of the received signal at an intermediate timing of a sampling timing of the received data acquisition circuit to obtain a midpoint sample. A phase adjustment circuit adjusts a phase of the sampling clock, based on the data sample and the midpoint sample.
    Type: Application
    Filed: May 10, 2013
    Publication date: December 12, 2013
    Inventor: Kouichi Yamaguchi
  • Patent number: 8605847
    Abstract: In described embodiments, a transceiver includes a clock and data recovery module (CDR) with an eye monitor and a cycle slip monitor. The cycle slip detector monitors a CDR lock condition, which might be through detection of slips in sampling and/or transition timing detection. The cycle slip detector provides a check point to sense system divergence, allowing for a mechanism to recover CDR lock. In addition, when the CDR is out-of-lock, the various parameters that are adaptively set (e.g., equalizer parameters) might be invalid during system divergence. Consequently, these parameters might be declared invalid by the system and not used.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: December 10, 2013
    Assignee: LSI Corporation
    Inventors: Mohammad Mobin, Mark Trafford, Ye Liu, Vladimir Sindalovsky, Amaresh Malipatil
  • Publication number: 20130322512
    Abstract: A decision feedback equalizer (DFE) slice for a receiver includes a plurality of non-speculative DFE taps; and 3 speculative DFE taps, wherein the 3 speculative DFE taps comprise first and second multiplexer stages, each of the first and second multiplexer stages including 4 comparator latches, each of the 4 comparator latches having a programmable offset; and a multiplexer that receives 4 comparator latch outputs from the 4 comparator latches and outputs a multiplexer stage output, wherein the multiplexer is controlled by previous symbol decisions dn-2 and dn-3; and wherein the 3 speculative taps further comprise a 2:1 decision multiplexer stage that receives the multiplexer stage outputs of the first and second multiplexer stages and is controlled by a previous symbol decision dn-1 to output a slice output signal dn.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pier A. Francese, Christian I. Menolfi, Thomas H. Toifl
  • Publication number: 20130322506
    Abstract: A signaling system includes a pre-emphasizing transmitter and an equalizing receiver coupled to one another via a high-speed signal path. The receiver measures the quality of data conveyed from the transmitter. A controller uses this information and other information to adaptively establish appropriate transmit pre-emphasis and receive equalization settings, e.g. to select the lowest power setting for which the signaling system provides some minimum communication bandwidth without exceeding a desired bit-error rate.
    Type: Application
    Filed: May 16, 2013
    Publication date: December 5, 2013
    Applicant: Rambus, Inc.
    Inventors: Jared L. Zerbe, Fred F. Chen, Andrew Ho, Ramin Farjad-Rad, John W. Poulton, Kevin S. Donnelly, Brian S. Leibowitz
  • Patent number: 8599909
    Abstract: This disclosure describes systems and methods for determining a voltage margin (or margin) of a serializer/deserializer (SerDes) receiver in mission mode using a SerDes receiver. This is done by time-division multiplexing a margin determination and a tap weight adaptation onto the same hardware (or software, or combination of hardware and software). In other words, some parts of a SerDes receiver (e.g., an error slicer and an adaptation module) can be used for two different tasks at different times without degrading the effectiveness or bandwidth of the receiver. Hence, the disclosed systems and methods allow a SerDes receiver to determine the SerDes margin in mission mode and without any additional hardware or circuitry on the receiver chip.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: December 3, 2013
    Assignee: Oracle International Corporation
    Inventors: Drew G. Doblar, Dawei Huang, Deqiang Song
  • Patent number: 8599914
    Abstract: A receiver may be operable to receive a signal. A sequence estimation module of the receiver may generate estimated symbols corresponding to the received signal. The generating of the estimated symbols may use tap information associated with one or both of a pulse shaper via which the signal was transmitted and an input filter of the receiver. The sequence estimation module may generate a reconstructed signal based on the estimated symbols and the tap information. A feed forward equalizer (FFE) of the receiver may adapt a plurality of tap coefficients of the FFE based on the reconstructed signal. The signal may be equalized via the FFE. The adaptation of the tap coefficients of the FFE may be based on a least-mean-square (LMS) process for minimizing a mean square of the error signal. An output signal of the FFE may comprise a power gain compensation.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: December 3, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8594207
    Abstract: In an Orthogonal Frequency Division Multiplexing communication system, wherein frequency bandwidth may be represented by multiple Resource Block Group (RBG) levels, wherein each RBG level comprises a division of the frequency bandwidth into a number of RBGs different from the number of RBGs of the other RBG levels, a user equipment measures a channel quality associated with one or more RBGs of one or more RBG levels of the multiple RBG levels, selects an RBG of from among the measured RBGs based on the measured channel qualities, and reports channel quality information associated with the selected RBG to a radio access network, wherein reporting comprises providing an index to the selected RBG and providing channel quality information for the indexed RBG.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: November 26, 2013
    Assignee: Motorola Mobility LLC
    Inventors: Weimin Xiao, Amitabha Ghosh, Rapeepat Ratasuk
  • Publication number: 20130308694
    Abstract: A decision feedback equalizer that can operate at higher speed is provided. The decision feedback equalizer includes a weighting addition circuit (adder 21, coefficient units Tap1a, Tap2 to Tapn) that sums an input signal to weighted versions of feedback signals FB1 to FBn, n being an integer not less than 2. The decision feedback equalizer also includes a decision circuit 11 that decides whether or not the result of addition by the weighting addition circuit is not less than a defined threshold value and that outputs the result of the decision to outside and to a shift register (latch circuits L2 to Ln). The decision circuit operates in synchronism with a clock signal. The shift register sequentially holds the result of decision of the decision circuit 11 in synchronism with the clock signal, and outputs the contents held by its component registers as feedback signals FB2 to FBn.
    Type: Application
    Filed: January 24, 2012
    Publication date: November 21, 2013
    Inventor: Yasushi Amamiya
  • Patent number: 8588290
    Abstract: An apparatus including a bang-bang clock and data recovery module and a decision feedback equalizer. The decision feedback equalizer is coupled with the bang-bang clock and data recovery module. The apparatus is configured to reduce an effect on a settling point of the bang-bang clock and data recovery module due to coupling between the bang-bang clock and data recovery module and the decision feedback equalizer.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: November 19, 2013
    Assignee: LSI Corporation
    Inventor: Lizhi Zhong
  • Publication number: 20130301697
    Abstract: A blind equalizer apparatus includes a decision-directed (DD) least mean squares (LMS) blind equalizer. A blind equalizer apparatus includes: a DD LMS blind equalizer, wherein: the blind equalizer uses a finite impulse response filter with tap weights that are adaptively updated using a filter tap update algorithm, wherein blind equalization of one of an in-phase (I) channel and a quadrature (Q) channel is carried out by maximizing the Euclidean distance of binary modulated waveforms, wherein the blind equalizer averages a block to compute an independent phase estimate for a block, wherein the blind equalizer computes an error variable for a block from the phase estimate for the block, wherein the blind equalizer uses the phase estimate and alternating I/Q one dimensional/binary slicing to make a hard decision, and wherein the blind equalizer uses the hard decision to derive an error variable that is used to update the filter tap weights.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Inventors: Daniel N. Liu, Michael P. Fitz
  • Patent number: 8582636
    Abstract: An apparatus and method for implementing an equalizer which combines the benefits of a decision feedback equalizer (DFE) with a maximum-a-posterori (MAP) equalizer (or a maximum likelihood sequence estimator, MLSE) to provide an equalization device with significantly lower complexity than a full-state MAP device, but which still provides improved performance over a conventional DFE. The equalizer architecture includes two DFE-like structures, followed by a MAP equalizer. The first DFE forms tentative symbol decisions. The second DFE is used thereafter to truncate the channel response to a desired memory of L1 symbols, which is less than the total delay spread of L symbols of the channel. The MAP equalizer operates over a channel with memory of L1 symbols (where L1<=L), and therefore the overall complexity of the equalizer is significantly reduced.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Broadcom Corporation
    Inventors: Stephen Allpress, Quinn Li
  • Patent number: 8582635
    Abstract: In described embodiments, a Floating Tap, Feed Forward Equalizer (FT-FFE) achieves performance comparable to a full size, long FFE when equalizing wire line channels in, for example, SerDes receivers. A FT-FFE might be employed as a standalone datapath equalizer, or might be employed in conjunction with other equalization techniques.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: November 12, 2013
    Assignee: LSI Corporation
    Inventors: Tomasz Prokop, Chaitanya Palusa
  • Patent number: 8582637
    Abstract: A system may comprise circuitry that includes a sequence estimation circuit and a non-linearity modeling circuit. The circuitry may be operable to receive a single-carrier signal that was generated by passage of symbols through a partial response filter and through a non-linear circuit. The circuitry may be operable to generate estimated values of the symbols using the sequence estimation circuit and using the non-linearity modeling circuit. An output of the non-linearity modeling circuit may be equal to a corresponding input of the non-linearity modeling circuit modified according to a non-linear model that approximates the non-linearity of the non-linear circuit through which the received signal passed.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: November 12, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Publication number: 20130294494
    Abstract: A system and method to more efficiently compute updated Frequency Domain (FD) Minimum Mean Squared Error (MMSE) equalization weights in a multi-stage Parallel Interference Cancellation (PIC) receiver after initial interference cancellation. The updated equalization weights (which are to be used during re-equalization) can be obtained using the old equalization weights already computed for initial interference cancellation. There is no need to invert an nR by nR matrix (where nR is the number of receive antennas) at each stage of the PIC receiver during each iteration of equalization and decoding operations. Rather, the matrix to be inverted to obtain updated equalization weights may be of the dimension n×n (where “n” equals the total number of transmission layers in a transmission scheme used in the wireless network).
    Type: Application
    Filed: May 4, 2012
    Publication date: November 7, 2013
    Inventor: Yi-Pin Eric Wang
  • Patent number: 8576939
    Abstract: A slicer can receive a communication signal having a level or amplitude that is between two discrete levels of a multilevel digital communication scheme. The slicer can compare the communication signal to a plurality of references such that multiple comparisons proceed essentially in parallel. A summation node can add the results of the comparisons to provide an output signal set to one of the discrete levels. The slicer can process the communication signal and provide the output signal on a symbol-by-symbol basis. A decision feedback equalizer (“DFE”) can comprise the slicer. A feedback circuit of the DFE can delay and scale the output signal and apply the delayed and scaled signal to the communication signal to reduce intersymbol interference (“ISI”).
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: November 5, 2013
    Assignee: Quellan, Inc.
    Inventors: Andrew Joo Kim, Cattalen Pelard, Edward Gebara
  • Patent number: 8576903
    Abstract: A PAM-N decision feedback equalizer (DFE) comprises a coefficient computation unit; a feedback unit that mitigates, using computed feedback coefficients, effects of interference from data symbols; an error-and-decision unit for at least computing a least error value respective to one of a plurality of decision levels, wherein the least error value indicates a difference of a pseudo equalized input PAM-N data symbol from an optimal position of the one of the plurality of decision levels, wherein the one of the plurality of decision levels corresponds to a modulation level used to modulate data in the input PAM-N data symbol; and a calibration unit for adaptively setting the plurality of decision levels based, in part, on the least error value, thereby enabling for compensating for gain changes resulted by a cable on which the input PAM-N data symbol is received and further compensating for embedded offsets of the error-and-decision unit.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 5, 2013
    Assignee: TranSwitch Corporation
    Inventors: Dan Raphaeli, Yaron Slezak
  • Patent number: 8576933
    Abstract: Embodiments of an apparatus and method for selective SC equalization are provided. Multipath propagation in a communication channel often changes, and the severity of multipath propagation is often below worst case conditions supported by a SC communication device. When multipath propagation is less severe and below worst conditions, the use of FDE in a SC receiver to mitigate ISI can be overkill and can result in excess power being consumed. The excess power consumption can be attributed to the general inability of the structure used to perform FDE to scale in terms of performance with channel conditions. Embodiments of the apparatus and method for performing selective equalization in a SC receiver allow either FDE or TDE to be performed based on the current multipath propagation conditions of a communication channel. In general, TDE is used in place of FDE to conserve power when channel conditions permit.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: November 5, 2013
    Assignee: Broadcom Corporation
    Inventor: Alireza Tarighat Mehrabani
  • Publication number: 20130287088
    Abstract: A communication system having a receiver with a linear path and a nonlinear path. As the receiver receives a data signal, it adaptively equalizes the received signal, and amplitude-limits the equalized signal in the nonlinear path using a saturable amplifier limiter or the like. A slicer extracts data from the limited equalized received signal. In the linear path, a clock recovery circuit generates a clock signal from the equalized received signal. A delay circuit in the linear path at least partially compensates for propagation delay in the limiter. Having the clock recovery occur in other than the nonlinear path, a low jitter clock is generated. The limiter enhances the vertical opening of the data eye by increasing the rise and fall times of the limited signal, providing more noise margin for the slicer to operate with and a greater timing margin in which to sample the sliced data.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventors: Mohammad Mobin, Pervez Aziz, Ye Liu
  • Publication number: 20130287089
    Abstract: A 1/n-rate decision feedback equalizer (DFE) and method include a plurality of branches. Each branch includes a summer circuit configured to add a feedback signal to a received input, and a latch configured to receive an output of the summer circuit in accordance with a clock signal. A feedback circuit includes a multiplexer configured to receive as input, an output of each branch, the multiplexer having a clocked select input and configured to multiplex the output of each branch to assemble a full rate bit sequence, and a filter configured to provide cancellation of intersymbol interference (ISI) from the received input to be provided to the summer circuit of each branch.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 31, 2013
    Inventors: JOHN F. BULZACCHELLI, BYUNGSUB KIM
  • Patent number: 8571095
    Abstract: An equalization filter is provided for solving the problem in which there is a limited range in which compensated for distortion of a transmission signal can be made. Measuring instrument 104 measures a distortion quantity which characterizes distortion of the transmission signal. Comparator 105a generates a differential signal which indicates the difference between the transmission signal and a compensation signal. Delay device 105b delays the differential signal based on the distortion quantity measured by measurement instrument 104 and generates the compensation signal.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 29, 2013
    Assignee: NEC Corporation
    Inventor: Shigeki Wada
  • Patent number: 8571138
    Abstract: A technique is used to realize a generalized decision feedback equalizer (GDFE) Precoder for multi-user multiple-input multiple-output (MU-MIMO) systems, which significantly reduces the computational cost while resulting in no capacity loss. The technique is suitable for improving the performance of various MU-MIMO wireless systems including future 4G cellular networks. In one embodiment, a method for configuring a GDFE precoder in a base station of a MU-MIMO wireless system having k user terminals, each user terminal having associated therewith a feedforward filter. The method comprises computing a filter matrix C using one of a plurality of alternative formulas of the invention; and, based on the computation of the filter matrix C, computing a transmit filter matrix B for a transmit filter used to process a symbol vector obtained after a decision feedback equalizing stage of the GDFE precoder, a feedforward filter matrix F, and an interference pre-cancellation matrix G.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: October 29, 2013
    Assignee: Hitachi, Ltd.
    Inventor: Sudhanshu Gaur
  • Publication number: 20130279559
    Abstract: In one aspect, the present invention improves Turbo equalization and/or soft interference cancellation processing in communication receivers by providing an efficient and accurate technique to compute the second moment of a received symbol, e.g., an interfering symbol, as a function of the expected bit values of only those bits in the symbol that are magnitude-controlling bits according to a defined modulation constellation. Advantageously, the expected bit values in at least one embodiment are computed using a LUT that maps bit LLRs to corresponding hyperbolic tangent function values. Further, the expected symbol value is computed as a linear function of terms comprising the expected bit values and the soft symbol variance is efficiently computed from the second moment and the expected symbol value squared. This simplified processing reduces receiver complexity, particularly in the context of modulation constellations having non-constant magnitudes, and thus saves power and/or improves design economics.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Inventors: Michael Samuel Bebawy, Fredrik Huss, Yi-Pin Eric Wang
  • Publication number: 20130279560
    Abstract: An apparatus is disclosed to compensate for non-linear effects resulting from the transmitter, the receiver, and/or the communication channel in a communication system. A receiver of the communication system contains an image cancellation module that compensates for images generated during the modulation and/or demodulation process. The image cancellation module includes a fine carrier correction loop to correct for frequency offsets between the transmitter and receiver. The image cancellation module includes a coarse acquisition mode and a decision directed mode. The decision directed mode allows for a larger signal-to-noise ratio for the receiver when compared against the coarse acquisition mode.
    Type: Application
    Filed: March 26, 2013
    Publication date: October 24, 2013
    Inventor: Broadcom Corporation
  • Patent number: 8565297
    Abstract: An embodiment of the invention is a technique to equalize received samples. An equalizer equalizes a multidimensional signal transmitted over a communication channel and having a dimensionality of four or higher. The equalizer is adaptively trained based on an optimality criterion.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: October 22, 2013
    Assignee: Fundación Tarpuy
    Inventors: Hugo Santiago Carrer, Diego Ernesto Crivelli, Mario Rafael Hueda
  • Patent number: 8559498
    Abstract: One or more embodiments describe a decision feedback equalizer utilizing symbol error rate biased adaptation function for highly spectrally efficient communications. A method may be performed in a decision feedback equalizer (DFE). The method may include determining values of tap coefficients used by the DFE based. The tap coefficients may be determined based on an error signal that is based on an estimated inter-symbol-correlated (ISC) signal. The tap coefficients may be determined based on a set of error vector(s), where each error vector in the set represents a difference between estimated symbols generated in the receiver and expected symbols. Determining the values of the tap coefficients may include using a symbol error rate function that estimates the actual symbol error rate in the receiver, wherein the symbol error rate function receives as input the set of error vector(s).
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 15, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8559496
    Abstract: A receiver may receive a signal that was generated by passage of symbols through a non-linear circuit. An equalizer of the receiver may equalize the received signal based on a first non-linearity compensated, inter-symbol correlated (ISC) feedback signal to generate an equalized signal. The receiver may correct a phase error of the equalized signal to generate a phase-corrected equalized signal. The phase correction may be based on a second, non-linearity compensated, inter-symbol correlated (ISC) feedback signal.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: October 15, 2013
    Assignee: MagnaCom Ltd.
    Inventor: Amir Eliaz
  • Patent number: 8559497
    Abstract: An apparatus including an adder, a delay line, and a first detector. The adder may be configured to generate an input signal in response to a received signal and a feedback signal. The feedback signal may include a contribution from each of a plurality of delayed versions of the input signal. The contribution from each of the plurality of delayed versions of the input signal may be determined by a respective weight value. The delay line may be configured to generate the plurality of delayed versions of the input signal. The first detector may be configured to recover a data sample from the input signal in response to a clock signal.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: October 15, 2013
    Assignee: LSI Corporation
    Inventor: Lizhi Zhong
  • Patent number: 8559495
    Abstract: This invention relates to methods and apparatus for equalizer adaptation for compensating for channel distortion on received data signals. The method comprises, for each bit, forming an adjusted bit signal comprising a weighted contribution from at least one other bit period. The polarity of the adjusted bit signal is determined and the bit is categorized as a hard, i.e. high confidence, bit is the bit is above an upper threshold or below a lower threshold or otherwise is categorized as a soft bit. The weightings are adjusted based on the category of the bit wherein a first adjustment is made it the bit is categorized as a soft bit but a second, different adjustment is made if the bit is categorized as a hard bit. For a soft bit the weightings may be increased for bits which have the same polarity as the bit in question and decreased for bits of opposite polarity.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: October 15, 2013
    Assignee: Phyworks Limited
    Inventors: Chris Born, Miguel Marquina, Ben Willcocks, Andrew Sharratt, Allard Van Der Horst
  • Patent number: 8553754
    Abstract: A decision feedback equalization (DFE) receiver and method are provided. The DFE receiver is configured to sample data bits from a data bus. The DFE receiver includes a data sampler configured to sample a current data bit from the data bus using one of a first, second and third voltage reference. The DFE receiver also includes multiplexing logic configured to select one of the first, second and third voltage references based on a prior data bus level. The wherein the first voltage reference is selected if the prior data bus level was a logic zero. The second voltage reference is selected if the prior data bus level was a logic one. The third voltage reference is selected if the prior data bus level was tri-state.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: October 8, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ramon Mangaser, Shefali Walia, Edoardo Prete, Jonathan P. Dowling, Gerald R. Talbot, Sharad N. Vittal
  • Patent number: 8553755
    Abstract: An interference suppression processing unit includes at least one receive path, wherein each of the at least one receive path is configured to transmit one of at least one received data sequence received from at least one antenna port, a signal generation unit configured to generate at least one signal data sequence from the at least one received data sequence, at least one signal path, wherein each of the at least one signal path is configured to transmit one of the at least one signal data sequence, at least one prefilter unit, wherein each of the at least one prefilter unit is coupled to one of the at least one signal path and a combiner including at least one input terminal, wherein each of the at least one input terminal is connected to an output terminal of one of the at least one prefilter unit, wherein the signal generation unit is configured to generate K1 first signal data sequences, wherein each first signal data sequence is identical to one of the at least one received data sequence, respectively,
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: October 8, 2013
    Assignee: Intel Mobile Communications GmbH
    Inventor: Xiaofeng Wu
  • Publication number: 20130259113
    Abstract: Various embodiments described herein are directed to methods and systems for blind mode adaptive equalizer system to recover complex valued data symbols from the signal transmitted over time-varying dispersive wireless channels. For example, various embodiments may utilize an architecture comprised of a channel gain normalizer, a blind mode equalizer with hierarchical structure (BMAEHS) comprised of a level 1 adaptive system and a level 2 adaptive system, and an initial data recovery subsystem. The BMAEHS may additionally be comprised of an orthogonalizer for providing a faster convergence speed. In various architectures of the invention, the BMAEHS may be replaced by a cascade of multiple equalizer stages for providing computational and other advantages. Various embodiments may employ either linear or decision feedback configurations. In the communication receiver architectures, differential encoders and decoders are presented to resolve possible ambiguities.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Inventor: Rajendra Kumar
  • Patent number: 8542142
    Abstract: A digital equalizer with a reduced number of multipliers for correction of the frequency responses of an interleaved ADC is disclosed. An exemplary interleaved analog to digital converter with digital equalization includes a composite ADC including M time interleaved sub-ADC, a demultiplexer, samples repositioning unit, a first PreFIRs transformer, a second PreFIRs transformer, K double buffer FIR filters, a PostFIRs transformer, a samples sequence restoration unit, and a multiplexer, coupled in series and providing an equalized, frequency response-corrected output.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: September 24, 2013
    Assignee: Guzik Technical Enterprises
    Inventors: Anatoli B. Stein, Semen P. Volfbeyn, Valeriy Serebryanskiy
  • Publication number: 20130243071
    Abstract: Described embodiments provide a non-uniformly quantized analog-to-digital converter (ADC) for generating a value for each sample of a received signal. The ADC includes arrays of decision comparators, each comparator provided the received signal. Each comparator has a threshold voltage set according to a corresponding bit history of a predictive decision feedback equalizer (DFE), and each bit history is associated with a tap of the DFE. Each comparator provides a bit value based on the corresponding bit history. The predictive DFE includes a set of interleave groups, each interleave group having j interleaves. Each interleave determines a bit value of a corresponding sample in a window of samples. Each tap corresponds to a feedback path between adjacent interleave groups. Multiplexing logic of each interleave predictively selects a bit value of an associated tap based on a value of a corresponding select line in a previous interleave, thereby alleviating a unit interval timing constraint.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Inventor: Erik V. Chmelar
  • Publication number: 20130243072
    Abstract: According to an example embodiment, a communications receiver may include a variable gain amplifier (VGA) configured to amplify received signals, a VGA controller configured to control the VGA, a plurality of analog to digital converter (ADC) circuits coupled to an output of the VGA, wherein the plurality of ADC circuits are operational when the communications receiver is configured to process signals of a first communications protocol, and wherein only a subset of the ADC circuits are operational when the communications receiver is configured to process signals of a second communications protocol.
    Type: Application
    Filed: April 26, 2013
    Publication date: September 19, 2013
    Applicant: Broadcom Corporation
    Inventors: Vivek Telang, Hong Chen, Vasudevan Parthasarathy, Jun Cao, Afshin Momtaz, Ali Ghiasi, Chung-Jue Chen
  • Publication number: 20130243070
    Abstract: Described embodiments adapt one or more taps of a decision feedback equalizer of a receiver by setting a reference voltage for each of one or more data recovery comparators to a corresponding predetermined initial value. The data recovery comparators generate a bit value for each sample of a received signal. A tap adaptation module of the receiver selects a window of n received bit samples. The tap adaptation module iteratively, for each of the one or more data recovery comparators, tracks (i) a detected number of bits having a logic 0 value, and (ii) a detected number of bits having a logic 1 value. The tap adaptation module adjusts, based on a ratio of the detected number of bits having a logic 0 value to the detected number of bits having a logic 1 value, the reference voltage for the corresponding data recovery comparator by a predetermined step amount.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Inventors: Choshu Ito, Erik V. Chmelar
  • Patent number: 8537885
    Abstract: In described embodiments, a variety of down-sampling techniques are employed to generate a more constrained set of floating-tap positions when compared to floating-tap Decision Feedback Equalization (DFE) architectures that allow unconstrained 1T resolution or separated floating-tap positions. Down-sampling is employed to constrain the floating-tap positions rather than positions occurring with 1T resolution or spacing. Two broad down-sampling techniques, phase pruning and phase amalgamation, are applied to a variety of exemplary DFE implementations. Although the tap positions are more constrained, the architectures select floating-tap positions containing dominant reflection inter-symbol interference (ISI) terms.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: September 17, 2013
    Assignee: LSI Corporation
    Inventors: Pervez Aziz, Hiroshi Kimura, Amaresh Malipatil
  • Patent number: 8538346
    Abstract: An object of the present invention is to sufficiently exhibit carrier reproduction performance in a radio device having a transmitter and a receiver and performing radio communication. A phase noise correction circuit provided in the transmitter in the radio device includes: a phase error information acquisition unit that acquires phase error information detected by a receiver of the radio device; and a phase noise correction unit that performs correction of phase noise generated by a local oscillator shared between the receiver and transmitter for a baseband signal upon radio transmission by using the phase error information acquired by the phase error information acquisition unit.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 17, 2013
    Assignee: NEC Corporation
    Inventor: Jungo Arai
  • Patent number: 8537886
    Abstract: Systems and methods are disclosed for employing an equalization technique that improves equalizer input sensitivity and which reduces power consumption. In particular, an equalization architecture is described that includes a continuous-time linear equalizer and a decision feedback equalizer, each with offset cancellation that enables the equalizer to be used at high data rates. In addition, the equalization structure has a power-saving mode for bypassing the decision feedback equalizer. These offset cancellation and power-saving features are enabled and controlled using programmable logic on a programmable device.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: September 17, 2013
    Assignee: Altera Corporation
    Inventors: Xiaoyan Su, Sriram Narayan, Sergey Shumarayev
  • Patent number: 8532240
    Abstract: In described embodiments, a transceiver includes an eye monitor, clock and data recovery, and adaptation modules. Data sampling clock phase and error clock phase determined from a data eye are decoupled in the transceiver during a sampling phase correction process. Decoupling these clock phases during the sampling phase correction process allows relative optimization of system equalization parameters without degradation of various adaptation algorithms. Such adaptation algorithms might be employed for received signal gain and equalization such as, for example, Decision Feedback Equalizer (DFE) adaptation. Deriving the data sampling clock and error clock phases from the same clock generation source and with independent clock control enables an iterative sampling phase correction process that allows for accelerated clock and data recovery (CDR) without disturbing the data eye shape.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 10, 2013
    Assignee: LSI Corporation
    Inventors: Paul Tracy, Mohammad Mobin, Ye Liu, Lane A. Smith
  • Patent number: 8532167
    Abstract: The present invention provides a signal processing device. The signal processing device includes a first feed forward equalizing unit, a first data slicing unit, a second feed forward equalizing unit, and a second data slicing unit. The first feed forward equalizing unit is utilized for performing a compensation operation according to a digital input signal so as to generate a first equalized signal. The first data slicing unit is coupled to the first feed forward equalizing unit, and utilized for generating a first output signal according to the first equalized signal. The second feed forward equalizing unit is coupled to the first data slicing unit, and utilized for generating a second equalized signal according to the first equalized signal. The second data slicing unit is coupled to the second feed forward equalizing unit, and utilized for generating a second output signal according to the second equalized signal.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: September 10, 2013
    Assignee: Realtek Semiconductor Corp.
    Inventors: Liang-Wei Huang, Chih-Yung Shih, Shieh-Hsing Kuo
  • Patent number: 8532502
    Abstract: In present invention, a filter coefficient adjustment apparatus is used in a polarization demultiplexer which demultiplexes the input signals by using filters to obtain demultiplexed output signals, said filter coefficient adjustment apparatus being used for adjusting the coefficients of the filters, wherein said filter coefficient adjustment apparatus comprises: an logarithm partial derivative calculation unit for calculating the logarithm partial derivative value of a target probability density function of the demultiplexed output signals when its self-variable value is the present demultiplexed output signal value; a gradient calculation unit for calculating the gradient of a target optimizing function for optimizing the distribution of the multiplexed output signals based on the logarithm partial derivative value calculated by the logarithm partial derivative calculation unit; and a filter coefficient updating unit for updating the coefficients of the filters based on the gradient calculated by the gradie
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 10, 2013
    Assignee: Fujitsu Limited
    Inventors: Huijian Zhang, Zhenning Tao, Takahito Tanimura
  • Publication number: 20130230092
    Abstract: In described embodiments, a Floating Tap, Feed Forward Equalizer (FT-FFE) achieves performance comparable to a full size, long FFE when equalizing wire line channels in, for example, SerDes receivers. A FT-FFE might be employed as a standalone datapath equalizer, or might be employed in conjunction with other equalization techniques.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Inventors: Tomasz Prokop, Chaitanya Palusa
  • Publication number: 20130230091
    Abstract: In one embodiment, receiving an Ethernet signal over a channel, the Ethernet signal comprising a preamble frame, an idle frame, and a data frame, the preamble frame comprising one or more preamble codes; synchronizing to the Ethernet signal based on the preamble frame; replicating the one or more preamble codes; and training a decision feedback equalizer (DFE) based on the one or more replicated codes, the training enabling the DFE to use decision values at the DFE output to track channel variations.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 5, 2013
    Applicant: BROADCOM CORPORATION
    Inventors: Ahmad Chini, Mehmet Tazebay, Scott Powell
  • Publication number: 20130230093
    Abstract: Described embodiments receive a signal by a set of fixed taps and a set of floating taps of a receiver, each tap corresponding to a detected symbol. Each of the floating taps is stored in a corresponding shift register to account for process, operating voltage and temperature (PVT) variations of the receiver without calibration of delay elements. Multiplexing logic selects (i) corresponding floating taps for equalization by coupling selected floating taps to the outputs of the fixed taps, and (ii) different phases of each possible floating tap position. The multiplexing logic prunes and/or amalgamates the phases of each possible floating tap position and selects floating taps based on a magnitude of each phase. A combiner adjusts each output value of the fixed taps and the selected floating taps by a corresponding tap-weight, combines the adjusted values into an output signal and subtracts the output signal from the input signal.
    Type: Application
    Filed: July 3, 2012
    Publication date: September 5, 2013
    Inventors: Pervez M. Aziz, Hiroshi Kimura, Amaresh V. Malipatil, Hairong Gao
  • Patent number: 8520725
    Abstract: A data equalizing circuit includes an equalizer configured to control a gain of data according to a value of a control code and output a controller gain; and a detection unit configured to divide n cycles of the data into N periods, count data transition frequencies for n/N periods while changing the value of the control code, calculate dispersion values of data transition frequencies for 1/N periods of the data from the data transition frequencies for the n/N periods, and finally output the value of the control code corresponding to a largest dispersion value, wherein n is equal to or greater than 2 and is set such that boundaries of the respective n/N periods of the data have different positions in the 1 UI data.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: August 27, 2013
    Assignee: SK Hynix Inc.
    Inventors: Chun Seok Jeong, Jae Jin Lee, Chang Sik Yoo, Jang Woo Lee, Seok Joon Kang