Flaw Analysis Patents (Class 378/58)
  • Patent number: 10215716
    Abstract: An x-ray inspection system includes a cabinet including an x-ray source, a sample support supporting a sample to be inspected, and an x-ray detector. The system further includes an air mover configured to force air into the cabinet through an air inlet in the cabinet above the sample support. The air mover and cabinet are configured to force air through the cabinet from the air inlet past the sample support to an air outlet in the cabinet below the sample support. The cabinet may be constructed to provide an x-ray shield. The x-ray inspection system can be used in a clean room environment to inspect items such as semiconductor wafers.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: February 26, 2019
    Assignee: Nordson Corporation
    Inventors: John Tingay, William T. Walker, Kate Donaldson-Stewart
  • Patent number: 10209204
    Abstract: An X-ray inspection system includes an X-ray source and a detector. A rotary table is arranged between the X-ray source and the detector. The rotary table is configured to secure a test object on the rotary table. The rotary table is arranged on a positioning table. The positioning table is configured to move parallel to an xy-plane between the X-ray source and the detector. The xy-plane is perpendicular to a surface of the detector extending parallel to the xz-plane and the rotary table is configured to rotate about a z-axis.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: February 19, 2019
    Assignee: YXLON INTERNATIONAL GMBH
    Inventors: Andreas Mecke, Jan Spalding, Axel Klein
  • Patent number: 10132762
    Abstract: An adapter apparatus includes a generally cylindrical adapter body 14 including a channel 16 extending axially therethrough, the adapter body having an interior surface, bounding the channel, and an exterior surface 18, a generally circular external cross section and an interior cross section which is adapted to engage at least one object 10, the external surface being formed from a material which is capable of supporting a scanning or testing apparatus at a constant distance from the origin of the circle forming the external cross section.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: November 20, 2018
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Oliver John Beckett, Brian Wilson
  • Patent number: 10031092
    Abstract: The system for determining and imaging wax deposition and corrosion in pipelines relate to systems for determining wax deposition and corrosion by one or both of two techniques. In both techniques, a source of neutron radiation is directed at the pipeline. In one technique, a neutron detector surrounded by an absorption shield defining a collimation window counts neutrons reflected back to the detector by back diffusion or backscatter radiation. In the other technique, a gamma ray detector measures gamma rays emitted when the emitted neutrons are absorbed in the pipeline. A neutron moderator-reflector is placed around three sides of the pipeline to increase the likelihood of neutron capture. A gamma detector surrounded by a gamma absorption shield defining a collimation window counts neutron capture gamma rays. An energy window can be taken for selection of Fe and H gamma rays for high precision imaging.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: July 24, 2018
    Assignee: KING ABDULAZIZ UNIVERSITY
    Inventor: Samir Abdul-Majid Alzaidi
  • Patent number: 9965840
    Abstract: The invention relates to a device and a method for determining the weight of product (2), in particular a pharmaceutical product, which is located in a container (3). The device comprises at least one x-ray source (28), which produces a radiation path (18), for passing radiation through the container (3), and a sensor (14), which detects the radiation of the container (3) through which radiation is passed in the form of an image (12), wherein an evaluating apparatus (14), is provided, which divides the image (12) of the container (3) through which radiation is passed into at least one evaluation region (21) in which there is no product (2).
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: May 8, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Iulian Maga, Martin Vogt, Jens Schlipf
  • Patent number: 9857319
    Abstract: The method of an embodiment includes the steps of: obtaining a first rocking curve with respect to a wafer obtained using an X-ray diffraction device; setting an X-ray incident angle range having a higher intensity than a reference level in the first rocking curve, calculating an inter-plane spacing for the set X-ray incident angle, calculating a strain value of the wafer using the calculated inter-plane spacing, and calculating sampled strain values on the basis of the calculated strain value; modeling a thickness according to the degree of damage of the wafer on the basis of the intensities of X-ray diffraction beams corresponding to the sampled strain values; obtaining a second rocking curve on the basis of the set X-ray incident angle range, the calculated inter-plane spacing, the sampled strain values and the modeled thickness; matching the second rocking curve to the first rocking curve by changing at least one of the X-ray incident angle range, the inter-plane spacing, the sampled strain values and the
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: January 2, 2018
    Assignee: LG SILTRON INCORPORATED
    Inventor: Kyu Hyung Lee
  • Patent number: 9857163
    Abstract: A method of measuring an object having associated geometric data and material data receives the geometric data and material data relating to the object, and controls an x-ray device to scan the object. The x-ray device operates in accordance with a plurality of operating parameters. The method then varies at least one of the operating parameters during the scan as a function of one or both the geometric data and the material data.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: January 2, 2018
    Assignee: Hexagon Metrology, Inc.
    Inventors: Jonathan J. O'Hare, Stephen Darrouzet
  • Patent number: 9683949
    Abstract: A method for quantitatively assessing a quality of a weld joint includes positioning an electromagnetic radiation source adjacent the weld joint. The electromagnetic radiation source may be aligned to direct a beam of electromagnetic radiation onto the weld joint. A detector for capturing the electromagnetic radiation emitted from the electromagnetic radiation source may be positioned adjacent the weld joint along a side opposite the electromagnetic radiation source, such that the weld joint is positioned between the electromagnetic radiation source and the detector. A radiographic image of the weld joint may be obtained by directing the beam of electromagnetic radiation toward the weld joint and onto the detector. A weld joint quality rating may be determined for the weld joint based at least in part on the radiographic image.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: June 20, 2017
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Gary Lee, Jason David Hind, William Brad Cheeseman
  • Patent number: 9484178
    Abstract: The target includes a target layer configured to be irradiated with an electron to generate an X-ray and a support substrate configured to support the target layer. The support substrate includes a polycrystalline diamond and includes multiple structure planes having different area densities of plane orientations from one another. The target layer is supported by the support substrate at a structure plane with a smaller area density of the {101} plane than the area density of the {100} plane and the area density of the {111} plane.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: November 1, 2016
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shuji Yamada, Tadayuki Yoshitake, Yoichi Ikarashi, Takao Ogura, Takeo Tsukamoto
  • Patent number: 9470740
    Abstract: Quality control testing for a batch of electronic modules. A series of tests are performed on manufactured electronic modules, including tests sensitive to the failure rate of previously tested modules. Specifically, a first test comprised of two phases is performed on the module batch. Further screening is then performed responsive to detection of a wire sweep failure in a subset of failed modules from the first test phase. The further screening is on modules that passed the first test phase and excludes modules that failed the first test phase.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 18, 2016
    Assignee: International Business Machines Corporation
    Inventors: Stephen Peter Ayotte, Michael Russell Uy Gonzales, Mark Tiam Weng Lam
  • Patent number: 9360438
    Abstract: The present invention relates to a method for radiographically inspecting a component by means of X-rays, where at least one component surface to be radiographed is provided with a surface structure, with at least the surface provided with the surface structure being smoothed by means of a smoothing material to level out the surface structure, with at least one organic compound and at least one metal powder being used as smoothing material, with the X-ray absorption behavior of the smoothing material essentially equaling the X-ray absorption behavior of the material of the component, as well as to a smoothing material for carrying out the method in accordance with Claim.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: June 7, 2016
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventors: Karl Schreiber, Josef Geitner
  • Patent number: 9341546
    Abstract: An apparatus for materials testing of test objects using X-rays, the apparatus comprising an X-ray device, comprising: an X-ray source for irradiating a test object held in a test position; an X-ray linear diode array detector comprising at least two detection sections and configured to acquire a complete radial cross-section of the test object; and an electronic control device configured to control the X-ray device, wherein during X-ray testing the test object and the X-ray device are rotatable relative to each other only around an essentially vertical axis of rotation.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: May 17, 2016
    Assignee: GE SENSING & INSPECTION TECHNOLOGIES GMBH
    Inventors: Ingo Stuke, Til Florian Guenzler, Michael Wuestenbecker, Jan Kraemer, Holger Lux, Nicolas Bretzke
  • Patent number: 9330493
    Abstract: There is described a method for generating a 3D representation of an object, the method comprising retrieving a 3D structure representative of the object and comprising a plurality of voxels each having a respective position therein, each one of the voxels being shaped to mimic a shape of at least a portion of a potential internal feature for the respective position; receiving a densitometry measurement comprising densitometry data of the object; assigning a density value to each one of the voxels using the received densitometry data, thereby generating a 3D model of the object; and outputting the 3D model.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 3, 2016
    Assignee: FPINNOVATIONS
    Inventor: Gary Stephen Schajer
  • Patent number: 9322789
    Abstract: A method is provided for feeding-in X-ray fluoroscopy images of an object in the context of a digital laminography technique, in which the X-ray fluoroscopy images are not fed in at 360°, but a feed-in of first X-ray fluoroscopy images takes place at 180° and, after tilting the object, a feed-in of second X-ray fluoroscopy images follows in the same angular range of 180°. The second X-ray fluoroscopy images, after suitable reflection onto the complementary points, are set to the first X-ray fluoroscopy images and, from the resultant complete data set, a calculation is carried out in the context of the digital laminography technique. A multiaxis manipulator system is used for feeding-in X-ray fluoroscopy images in the context of carrying out a digital laminography technique on an object, which is secured on a fixing device of the manipulator system.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: April 26, 2016
    Assignee: YXLON INTERNATIONAL GMBH
    Inventor: Martin Muenker
  • Patent number: 9042516
    Abstract: A system comprises a structure having particles embedded at a level within the structure, and X-ray imaging apparatus for capturing images of the particles at the level.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: May 26, 2015
    Assignee: The Boeing Company
    Inventors: James A. Grossnickle, Robert B. Greegor
  • Publication number: 20150131779
    Abstract: With an image processing device (20), the presence/absence of a product defect is judged based on detected-image data obtained by a radiographic device that detects radiation that has passed through a product, which is an inspection subject. With the image processing device (20), a position of a product feature in the detected-image data is identified based on a shape of the product feature indicated by feature data stored in a DB storage portion (36) in advance, defect candidates are extracted with reference to the identified product feature in the detected-image data, and the presence/absence of a product defect is judged based on characteristic quantities of product defects indicated by the defect characteristic DB stored in the DB storage portion (36) in advance and characteristic quantities of the defect candidates.
    Type: Application
    Filed: June 7, 2013
    Publication date: May 14, 2015
    Inventors: Kiichi Sugimoto, Yosuke Fujitomi, Tsuyoshi Tomita, Atsushi Kiya, Akemi Takano, Hidenori Takeda
  • Patent number: 9031188
    Abstract: A system for the inspection of the internal structure of a target includes at least one x-ray source that emits collimated x-rays to irradiate the target. At least one detector is positioned to detect backscatter x-rays from the target. The detector may include a collimation slot that limits the field of view of the detector. The target may be a railway component and the system may inspect the internal structure of the component as it is moved along the railway by a vehicle. The system may detect a change in the density of a target based on a comparison of the detected backscatter x-rays. The use of a plurality of segmented backscatter x-ray detectors having a collimation slot may pixelate the internal image in the direction of the collimation slot.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: May 12, 2015
    Assignee: Georgetown Rail Equipment Company
    Inventors: Jeb Belcher, Charles Wayne Aaron
  • Publication number: 20150110244
    Abstract: An X-ray inspection apparatus including: a transmission type X-ray source including an electron emission source configured to emit an electron beam, and a transmission type target; a collimator provided with a plurality of slits formed therein, each slit configured to form a fan beam X-ray by allowing the X-ray radiation emitted from the transmission type X-ray source to pass therethrough; a plurality of detectors arranged at positions where the fan beam X-rays passed through the plurality of slits respectively are irradiated, each of the plurality of detectors configured to detect intensity of the fan beam X-ray passed through a corresponding slit; and a conveying portion configured to convey a sample along a conveying path crossing an irradiation path from each of the collimators to corresponding detector so that the sample is irradiated in sequence with the fan beam X-rays passed through the plurality of slits.
    Type: Application
    Filed: October 16, 2014
    Publication date: April 23, 2015
    Inventors: Kazuya Tsujino, Kazuyuki Ueda
  • Publication number: 20150103974
    Abstract: An X-ray source is disposed and a detector is disposed adjacent to the X-ray source. A test specimen holder is disposed between the X-ray source and the detector. A filter is disposed between the X-ray source and the test specimen holder. The filter has a plate-shaped semiconductor, a granular semiconductor, or a combination thereof.
    Type: Application
    Filed: August 8, 2014
    Publication date: April 16, 2015
    Inventors: SANG-YOUNG KIM, KYUNG-SOO RHO, HO-JEONG MOON, HYUCK SHIN, SUN-NYEONG JUNG
  • Patent number: 9008266
    Abstract: In a testing device (10) for determining the quality of leather (9) in the production of leather, wherein the testing device (10) is formed for examining a quality category of the leather (9) and for delivering a quality value characterizing the leather (9) in regard to its quality category, the testing device (10) comprises screening means (16) for examining the homogeneity of the leather (9) auf, which may screen at least portions (22, 23, 24, 27, 29) of the leather (9) and which are formed for delivering screening data (D) to analysis means (19), and wherein there are formed analysis means (19) for comparing the screening data (D) with feature data typical for hide injuries or inhomogeneities, respectively, of the leather (9) and for classifying determined hide injuries of examined portions (22, 23, 24, 27, 29) of the leather (9) and wherein there are formed display means (20) for display the categorized hide injuries or quality value, respectively, of the leather (9), preferably per portion (22, 23, 24, 2
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: April 14, 2015
    Assignee: Wollsdorp Leder Schmidt & Co. Ges.m.b.H
    Inventors: Georg Kraus-Guentner, Elisabeth Kraus-Guentner
  • Publication number: 20150011024
    Abstract: An analysis device includes an X-ray generation part configured to generate four monochromatic X-rays with different energies to irradiate a sample, an electrically conductive sample stage configured to place the sample thereon and formed of an electrically conductive material, an electrode configured to detect an electric current carried by irradiating the sample with the four monochromatic X-rays with different energies, and an electric power source configured to apply a voltage between the electrically conductive sample stage and the electrode, wherein the four monochromatic X-rays with different energies are X-rays included within a range from an absorption edge of a compound semiconductor included in the sample to a higher energy side of 300 eV.
    Type: Application
    Filed: June 2, 2014
    Publication date: January 8, 2015
    Applicant: FUJITSU LIMITED
    Inventor: KENJI NOMURA
  • Patent number: 8923478
    Abstract: An apparatus is provided for x-ray inspection of a pipeline girth weld. This comprises a directional x-ray source 5 which is insertable into a pipeline section and is rotatable within the pipeline. Means are provided to align the directional x-ray source with an external x-ray detector such that both may be rotated through 360 degrees substantially coaxially with the pipeline section. Means for sampling the data detected by the x-ray detector are provided so that it may be further analyzed.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: December 30, 2014
    Assignee: ShawCor Ltd.
    Inventors: Stephen Knight, Stephen G. Drake
  • Patent number: 8891730
    Abstract: The invention is directed to an apparatus for continuous and non-destructive monitoring of the connection of a conveyor belt. During movement of the conveyor belt, a radiation source emits rays in the direction of the belt surface. The rays are of such high energy that they penetrate the conveyor belt and the connection thereof within a material-free region. A sensor detects the rays which have passed through. A process computer evaluates the result of the radiographic examination by comparing the actual connection values to set connection values and connection limit values. The radiation source and the sensor are accommodated in a housing. The housing has two openings between the radiation source and the sensor through which the moving conveyor belt passes without contact. The housing is integrated into the lower run of a conveyor system.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 18, 2014
    Assignee: Phoenix Conveyor Belt Systems GmbH
    Inventor: Bernd Kuesel
  • Patent number: 8891729
    Abstract: An X-ray analyzer includes a transmission X-ray inspecting portion having a first X-ray source and a transmission X-ray detector for detecting a transmission X-ray that passed through a sample from the first X-ray source, and a fluorescent X-ray inspecting portion having a second X-ray source and a fluorescent X-ray detector for detecting a fluorescent X-ray output from the sample when the sample is irradiated with an X-ray from the second X-ray source. A movement mechanism moves a sample stage that supports the sample. A foreign matter position calculating unit calculates a position of foreign matter in the sample, and a movement mechanism control unit controls the movement mechanism so that the position of the foreign matter calculated by the foreign matter position calculating unit coincides with an optical axis of the second X-ray source.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: November 18, 2014
    Assignee: SII NanoTechnology Inc.
    Inventors: Yoshiki Matoba, Rintaro Nakatani, Tsuneo Sato
  • Publication number: 20140328459
    Abstract: The X-ray inspection device includes: an X-ray source with a focal spot size greater than the diameter of a defect for irradiating a sample with X-rays; an X-ray TDI detector arranged near the sample and having long pixels in a direction parallel to the scanning direction of the sample for detecting the X-rays emitted by the X-ray source and passing through the sample as an X-ray transmission image; and a defect-detecting unit for detecting defects based on the X-ray transmission image detected by the X-ray TDI detector.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 6, 2014
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Yuta Urano, Toshifumi Honda, Yasuko Aoki
  • Publication number: 20140259588
    Abstract: A template for radiography and methods of using and making a template are described. The template can include a contoured sheet having first portions and second portions. The first portions are radiodense and the second portions are radiolucent to provide markings on a radiograph. At least one surface of the contoured sheet can correspond to at least one surface of a target part to provide alignment of the contoured sheet to the target part.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: James Raphord Barrett, Jason Armstrong, Doug Nikolas, Andrew Isaac Deceuster, Lawrence Lang
  • Patent number: 8831172
    Abstract: With filmless radiographic inspection of components by means of digital X-ray technology, an uneven surface geometry of the component is smoothened by defining a digital virtual smoothening layer for better, preferably automated, recognition of defects, where the digital radiation signals generated by an X-ray detector are overlaid with digitized surface measurement signals, so that a change in absorption and intensity of radiation due to the surface topography of the component, i.e. due to an uneven surface, is compensated for and only a density caused by internal material defects is represented in the X-ray image.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: September 9, 2014
    Assignee: Rolls-Royce Deutschland Ltd & Co KG
    Inventors: Karl Schreiber, Josef Geitner
  • Publication number: 20140205063
    Abstract: An inspection method of a rolling element includes the steps of: projecting an X-ray from a light source to a rolling element, detecting the X-ray passing through the rolling element by a detector, calculating data of the detected X-ray to form an image, and detecting a defect in the rolling element based on the image. At the step of projecting an X-ray, the light source rotates relatively around the rolling element while the X-ray is projected to an entire region of the rolling element facing the light source. At the step of forming an image, data of the X-ray for one circuit around the rolling element is calculated to generate the image.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 24, 2014
    Applicant: NTN CORPORATION
    Inventors: Yutaka Tanaka, Katsutoshi Muramatsu, Hiroaki Suzuki, Daichi Ito, Masayuki Nozaki
  • Publication number: 20140153693
    Abstract: An inspection method for a welded joint formed between a pair of base metals 10, 20 with a groove part 12, 22 and an abutment face 14, 24 being formed on a joint surface Wc between the pair of base metals 10, 20, includes steps of: forming a recessed groove 32 opening to a surface of the base metal 10, 20 in advance at one end of the abutment face; irradiating the joint surface Wc from an X-ray generator 34 placed on a groove part formation side (an exterior space O side) toward the joint surface Wc after at least one pass P1 of build-up welding is performed on the groove parts 12, 22; and determining presence or absence of incomplete penetration in the welded joint part W based on an image formed on a photosensitive film 42 by radiation penetrating the joint surface Wc.
    Type: Application
    Filed: March 15, 2013
    Publication date: June 5, 2014
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Shin NISHIMOTO, Makoto TANAKA, Kenji KAWASAKI, Hiroyuki ENDO, Kentaro UCHIYAMA, Yoshinobu KOORI
  • Publication number: 20140126695
    Abstract: In one aspect the invention provides a system for non-destructive testing of overhead electrical power-line equipment. The system comprises a digital x-ray system and a support unit adapted to be suspended from said overhead electrical power-line equipment. The digital x-ray system comprises an x-ray source, an x-ray digital imager, an imager control unit and a wireless communication unit. The digital x-ray system is mounted on the support unit. Apparatus aspects for the support unit and method aspects are also provided.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Inventor: Calvin STOCK
  • Patent number: 8712009
    Abstract: A method of determining integrity of a can seam including disposing the can seam between an X-ray source and an X-ray detector, exposing an overlap region of the can seam to radiation from the source, and determining an indication of integrity of the overlap region from a measure of variation in radiation intensity readings taken by the detector over a series of circumferential intervals of the can seam.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: April 29, 2014
    Inventor: Johannes Albertus Zandhuis
  • Patent number: 8705693
    Abstract: The invention provides an automatic system and method using x-ray inspection to image arrays of electrical interconnections on electronic devices. The electron beam of a rotating anode X-ray tube is deflected relative to the anode to cause emission of x-rays from different regions of the anode at different times. The x-ray tube is located at an inspection station for the electronic devices and disposed to irradiate a first part of the array of interconnections with x-rays emitted from a first region of the anode and to irradiate a further part of the array of interconnections with x-rays emitted from another region of the anode. X-rays emerging from the array of interconnections are detected and used to image part at least of the array in order to automatically register interconnection integrity failures and/or detect a performance trend in the formation of the connections.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: April 22, 2014
    Assignee: X-Tek Systems Limited
    Inventor: Roger Hadland
  • Publication number: 20140067185
    Abstract: Methods and systems for inspecting a component within an assembled turbomachine are disclosed. At least one miniature robotic device having a non-destructive testing structure attached thereto is configured to travel around a surface of the component. The non-destructive testing structure gathers data related to the surface, and sends the data to a computing device connected to the at least one miniature robotic device. In one embodiment, the non-destructive testing structure comprises an image capture device and an infrared (IR) heat source.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Nilesh Tralshawala, Bryon Edward Knight, Harry Israel Ringermacher
  • Patent number: 8654920
    Abstract: The present invention relates to a device and a method for detecting a pin hole in a part of a fuel cell stack part to accurately detect the presence of pin holes of stack parts thereby ensuring quality of a fuel cell stack. That is, the present invention provides a system for detecting a pin hole in parts of a fuel cell stack that allows for quality assurance of the fuel cell stack and prevents defective parts from being used, by examining each fuel stack part, which largely influence the quality of the fuel cell stack, using an X-ray device and a vision system, in order to determine the presence of a pin hole in the parts, and a method thereof.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: February 18, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sang Yeoul Ahn, Keun Je Lee, Byung Ki Ahn, Sung Keun Lee, Tae Won Lim
  • Patent number: 8650001
    Abstract: A method for identifying a piece of wood amongst a plurality or for determining its rotation includes the operating steps of: acquiring at least one piece of real X-ray information about the piece of wood; calculating, based on a tomographic reconstruction, a piece of virtual X-ray information in the same way as in the acquisition of the real X-ray information; comparing the real and virtual X-ray information to verify whether they match; and repeating the calculation and comparison steps up to obtaining the matching, and/or, for identification method only, selecting a different tomographic reconstruction and reiterating the calculation and comparison steps and, if necessary, the repetition and/or selection steps.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: February 11, 2014
    Assignee: Microtec S.R.L.
    Inventors: Frederico Giudiceandrea, Enrico Vicario
  • Patent number: 8610803
    Abstract: An image processing apparatus includes an image acquisition unit configured to acquire an image captured according to a predetermined image capturing method, an anomalous pixel acquisition unit configured to acquire an anomalous pixel occurring according to an image capturing method different from the predetermined image capturing method, and a display control unit configured to cause the acquired anomalous pixel to be displayed together with the captured image.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: December 17, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroyuki Omi, Yohei Minatoya
  • Patent number: 8571175
    Abstract: A system for determining ionization susceptibility including a sample, an x-ray generator configured to generate a pulsed x-ray beam, and focusing optics disposed between the sample and the x-ray generator, the focusing optics being configured to focus the pulsed x-ray beam into a spot on the sample.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: October 29, 2013
    Assignee: The Boeing Company
    Inventors: Mark Joseph Clemen, Jr., Clarence Lavere Gordon, III, Jerry Lee Wert
  • Patent number: 8571823
    Abstract: A system and a method for controlling the quality of an industrial process, of the type that comprises the steps of: providing one or more reference signals for the industrial process; acquiring one or more real signals that are indicative of the quality of said industrial process; and comparing said one or more reference signals with said one or more real signals in order to identify defects in said industrial process.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: October 29, 2013
    Assignee: CRF Societa Consortile per Azioni
    Inventors: Giuseppe D'Angelo, Giorgio Pasquettaz, Andrea Terreno
  • Patent number: 8483355
    Abstract: A radiation inspection apparatus includes a conveying unit configured to convey a sheet-like sample, a radiation source configured to emit radiation to the sheet-like sample, a line sensor configured to measure a physical property of the sheet-like sample, the liner sensor disposed to be opposed to the radiation source across the sheet-like sample, and a gas ejecting unit configured to eject gas to the sheet-like sample to reduce vertical conveyance swinging produced by a tension of the sheet-like sample, the gas ejecting unit placed in close proximity to at least one side face of the line sensor.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: July 9, 2013
    Assignee: Yokogawa Electric Corporation
    Inventors: Yasushi Ichizawa, Hirohiko Obinata
  • Patent number: 8457276
    Abstract: A detection method detects cracks with small thickness and solder voids with small volume in a solder ball. The method immerses a washed solder ball into a high absorption material solution for a first predetermined time period. The immersed solder ball is then dried in a vacuum chamber at a fixed temperature for a second predetermined time period. Materials of the high absorption material solution of the solder ball are removed by a low absorption material solution. An X-ray machine then detects the cracks and the solder voids in the solder ball.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: June 4, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Wei-Chiang Lee
  • Publication number: 20130136816
    Abstract: An apparatus non-destructively inspects a conveyor belt in a production facility. The conveyor belt defines a belt surface and has cover plates made of a rubber mixture. The production facility includes a vulcanizing press for vulcanizing the conveyor belt during production thereof. The apparatus includes a housing forward or rearward of the press. The housing has openings through which the conveyor belt passes. A radiation source mounted in the housing transmits rays toward the belt surface and the radiation source is configured to transmit the rays with energy sufficient to cause the rays to pass through the conveyor belt. A sensor mounted in the housing detects the rays passed through the conveyor belt to facilitate a radiographic check by providing actual values of the conveyor belt. A processor evaluates the radiographic check by comparing the actual values of the conveyor belt to set values of the conveyor belt.
    Type: Application
    Filed: January 28, 2013
    Publication date: May 30, 2013
    Applicant: PHOENIX CONVEYOR BELT SYSTEMS GMBH
    Inventor: PHOENIX CONVEYOR BELT SYSTEMS GMBH
  • Publication number: 20130129042
    Abstract: The invention is directed to an apparatus for continuous and non-destructive monitoring of the connection of a conveyor belt. During movement of the conveyor belt, a radiation source emits rays in the direction of the belt surface. The rays are of such high energy that they penetrate the conveyor belt and the connection thereof within a material-free region. A sensor detects the rays which have passed through. A process computer evaluates the result of the radiographic examination by comparing the actual connection values to set connection values and connection limit values. The radiation source and the sensor are accommodated in a housing. The housing has two openings between the radiation source and the sensor through which the moving conveyor belt passes without contact. The housing is integrated into the lower run of a conveyor system.
    Type: Application
    Filed: January 10, 2013
    Publication date: May 23, 2013
    Applicant: Phoenix Conveyor Belt Systems GmbH
    Inventor: Phoenix Conveyor Belt Systems GmbH
  • Patent number: 8422630
    Abstract: In order to prevent misdetection and erroneous detection by clearly determining only a contrast caused by a foreign matter, there are provided an X-ray inspection method and an X-ray inspection device including: an X-ray tube (11) for irradiating a measurement sample with a characteristic X-ray having energy lower than an X-ray absorption edge of one element contained in the measurement sample and having energy higher than an X-ray absorption edge of a detection element; an X-ray detector (13) for receiving a transmission X-ray obtained when the X-ray passes through the sample; and an operation portion (15) for obtaining a contrast image from a transmission image of the transmission X-ray.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: April 16, 2013
    Assignee: SII NanoTechnology Inc.
    Inventor: Yoshiki Matoba
  • Patent number: 8411818
    Abstract: A first x-ray image of the circuit board that is equipped with components only on a first side with a first x-ray device (2) that produces transmission images and a second x-ray image of a circuit board that is equipped with components on both sides with a second x-ray device (4) that produces transmission images are recorded in an x-ray testing method for checking circuit boards that are equipped with components on two sides, in particular for checking soldered joints. A test x-ray image is then evaluated in a computer unit in which the second side that is equipped with components is displayed in enhanced form by forming a function from the pixel values of the first x-ray image and the corresponding pixel values of the second x-ray image.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: April 2, 2013
    Assignee: Matrix Technologies GmbH
    Inventors: Eckhard Leonhard Sperschneider, Jan Rimbach, Martin Sokolowski, Timothy John McGann
  • Publication number: 20130077743
    Abstract: A system for the non-destructive inspection of a conveyor belt which includes a cover on the carrying side, a cover on the backing side, each cover being made of elastomeric material, and embedded tension members. While the conveyor belt is moving, a radiation source emits rays to the belt surface which are of such high energy that the rays pass through the belt within a region free of material disposed on the belt. A sensor detects the rays passing through the belt. A processor is operatively connected to the sensor and evaluates the result of the radiographic check. The radiation source and the sensor are accommodated in a housing, wherein, between the radiation source and the sensor, there are two housing openings through which the moving belt runs without contact.
    Type: Application
    Filed: October 19, 2012
    Publication date: March 28, 2013
    Applicant: Phoenix Conveyor Belt Systems GmbH
    Inventor: Phoenix Conveyor Belt Systems GmbH
  • Patent number: 8396187
    Abstract: The different advantageous embodiments provide an apparatus and a method for inspecting a surface of a work piece. In one advantageous embodiment, an apparatus comprising a number of tracks, a support structure, connection system, and controller is disclosed. The number of tracks are configured for placement along a path. The support structure is configured to move on the number of tracks. The X-ray system is moveably connected to the support structure. The X-ray system is configured to send a plurality of X-rays toward a work piece and is configured to move along an axis through the support structure. The connection system is configured to removably connect the number of tracks to the work piece using a vacuum applied to a surface of the work piece. The controller is configured to activate and deactivate the X-ray system based on an amount of vacuum applied to the surface of the work piece.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: March 12, 2013
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Patent number: 8391581
    Abstract: An X-ray inspecting apparatus capable of high-speed inspection of a prescribed inspection area of an object of inspection is provided. The X-ray inspecting apparatus includes: a scanning X-ray source for outputting X-ray; an X-ray detector driving unit on which a plurality of X-ray detectors are mounted, and capable of driving the plurality of X-ray detectors independently; and an image acquisition control mechanism controlling acquisition of image data by X-ray detector driving unit and X-ray detectors. A scanning X-ray source emits X-ray while moving the X-ray focal point of the X-ray source to each of X-ray emission originating positions set for each X-ray detector such that the X-ray passes through a prescribed inspection area of an object of inspection and enters each X-ray detector. Image pick-up by some of the X-ray detectors and movement of other X-ray detectors to an image pick-up position are executed in parallel and alternately.
    Type: Grant
    Filed: December 25, 2008
    Date of Patent: March 5, 2013
    Assignee: Omron Corporation
    Inventors: Masayuki Masuda, Noriyuki Kato, Shinji Sugita, Tsuyoshi Matsunami, Yasushi Sasaki
  • Patent number: 8375833
    Abstract: A system for cutting blocks of food product into bars of substantially equal weight. The system includes a cutter conveyor configured to receive incoming blocks of food product and move the blocks along an in-line processing path in a plane for cutting; a programmable logic controller coupled to the cutter conveyor; and, multiple stations associated with the cutter conveyor. One such station is a camera vision system configured to create an image of the slab portion, and further including a camera controller coupled to the vision system and the PLC, and configured to determine an optimized cut solution of the slab portion from the image and data related to the food product, and is configured to provide the cut solution to the PLC. The PLC is configured to control the cutting of the food product, based on the optimized cut solution, into bars of substantially equal weight.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 19, 2013
    Assignee: Marchant Schmidt, Inc.
    Inventor: Richard J. Schmidt
  • Patent number: 8369482
    Abstract: The present invention relates to an apparatus and method for inspecting the electrodes of a battery, which inspects the arrangement state of anodes and cathodes in the battery in a non-destructive manner (using X-rays). The apparatus radiates X-ray beams onto a battery in which a plurality of plate-shaped anodes and a plurality of plate-shaped cathodes are alternately stacked and inspects an arrangement state of the anodes and the cathodes. The apparatus includes a first X-ray source part for radiating a first X-ray beam onto the battery. A first detector detects the first X-ray beam having transmitted through the battery. A control unit receives an image of the battery output from the first detector, calculates a step difference between each anode and each cathode, and then inspects an arrangement state of the anode and the cathode.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: February 5, 2013
    Assignee: SK Innovation Co., Ltd.
    Inventors: Hee Chan Park, Jin Gyu Kim, Ik Sung Yoon, Sang Bum Kim
  • Publication number: 20130022167
    Abstract: A reel-like format for transporting devices under test (DUT) into low power x-ray inspection system allows for high speed transportation and inspection that is several orders of magnitude faster than conventional systems. The system can be configured with a conveyor belt for handling of non-reel suitable DUTs. A stabilizing control mechanism precisely and accurately brings the tape (with components) into the x-raying window, that allows spatial displacement of a portion of the to-be-viewed tape.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 24, 2013
    Applicant: CREATIVE ELECTRON, INC.
    Inventors: Guilherme Cardoso, Marcos Turqueti, Griffin Lemaster, Shawn Linden, Justin White