Mask Inspection (e.g., Semiconductor Photomask) Patents (Class 382/144)
  • Patent number: 8965100
    Abstract: A first simulated inspection is conducted to provide a first waveform data set associated with the at least one irregularity parameter. The first simulated inspection is conducted using a first evaluation setting. A first image is produced based on the first waveform set, and it is determined whether a quality of the first image satisfies a predetermined threshold.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: February 24, 2015
    Assignee: The Boeing Company
    Inventors: John Z. Lin, Hong Tat, Richard H. Bossi
  • Patent number: 8965102
    Abstract: The present disclosure provides a method including providing a first image and a second image. The first image is of a substrate having a defect and the second image is of a reference substrate. A difference between the first image and the second image is determined. A simulation model is used to generate a simulation curve corresponding to the difference and the substrate dispositioned based on the simulation curve. In another embodiment, the scan of a substrate is used to generate a statistical process control chart.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yan-Wei Tien, Chi-Hung Liao, Ming-Yi Lee
  • Patent number: 8956789
    Abstract: Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes patterning a first photoresist layer overlying a mask blank that is mounted on a first chuck to form a first patterned photoresist layer. The mask blank is selectively etched using the first patterned photoresist layer to form a first patterned mask. The first patterned mask is mounted on a second chuck and a non-flatness compensation is determined. The first patterned mask is mounted on the first chuck and a second photoresist layer is patterned overlying the first patterned mask to form a second patterned photoresist layer. The second patterned photoresist layer includes a device pattern that has been adjusted using the non-flatness compensation. The first patterned mask is selectively etched using the second patterned photoresist layer to form a second patterned mask.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 17, 2015
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventor: Sudharshanan Raghunathan
  • Patent number: 8942463
    Abstract: A method for determining an image of a mask pattern in a resist coated on a substrate, the method including determining an aerial image of the mask pattern at substrate level; and convolving the aerial image with at least two orthogonal convolution kernels to determine a resist image that is representative of the mask pattern in the resist.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 27, 2015
    Assignee: ASML Netherlands B.V.
    Inventors: Yu Cao, Luoqi Chen, Antoine Jean Bruguier, Wenjin Shao
  • Patent number: 8928485
    Abstract: The present invention relates to the acquisition of tilted series images of a minute sample in a short time. The present invention relates to: measuring in advance the relation between an amount of focus shift and a degree of coincidence at the time of acquiring tilted series images; calculating backwards a focus shift from the degree of coincidence on the basis of this relation; correcting the focus shift by controlling a stage, an objective lens, and the like; and thus acquiring the tilted series images. In addition, the present invention relates to: acquiring a reference image in advance at the time of photographing the tilted series images; obtaining the correlation between an acquired image and the reference image; and performing, if the degree of coincidence is equal to or smaller than a set value, processing such as the transmission of a warning message and the stop of an image acquisition sequence.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: January 6, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hideki Kikuchi, Isao Nagaoki, Katsuyuki Minakawa
  • Patent number: 8921733
    Abstract: Removing material from the surface of a first circuit comprises generating a first laser pulse using a pulse generator; targeting a spot on the first circuit using a focusing component; delivering the first laser pulse to the spot on the first circuit, the first circuit including a digital component; ablating material from the spot using the first laser pulse without changing a state of the digital component; testing performance of the first circuit, the testing being performed without reinitializing the circuit between the steps of ablating material and testing performance. Targeting the spot on the first circuit comprises generating a second laser pulse using a pulse generator; delivering a second laser pulse to a sacrificial piece of material; detecting the position of the ablation caused by the second laser pulse with a vision system that forms an image; and using this image to guide the first laser to the spot.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 30, 2014
    Assignee: Raydiance, Inc.
    Inventors: David Gaudiosi, Laurent Vaissie
  • Patent number: 8923600
    Abstract: Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: December 30, 2014
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Khurram Zafar, Sagar Kekare, Ellis Chang, Allen Park, Peter Rose
  • Publication number: 20140369593
    Abstract: A detection method for a spot image based thin line detection is disclosed. The method includes a step for constructing a band limited spot image from a transmitted and reflected optical image of the mask. The spot image is calibrated to reduce noise introduced by the one or more inspection systems. Based on the band limited spot image, a non-printable feature map is generated for the non-printable features and a printable feature map is generated for the printable features. One or more test images of the mask are analyzed to detect defects on such mask.
    Type: Application
    Filed: September 2, 2014
    Publication date: December 18, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Zhengyu Wang, Rui-fang Shi, Lih-Huah Yiin, Bing Li
  • Publication number: 20140369592
    Abstract: A method for establishing distortion properties of an optical system in a microlithographic measurement system is provided. The optical system has at least one pupil plane, in which the distortion properties of the optical system are established on the basis of measuring at least one distortion pattern, which the optical system generates when imaging a predetermined structure in an image field. The distortion properties of the optical system are established on the basis of a plurality of measurements of distortion patterns, in which these measurements differ from one another in respect of the intensity distribution present in each case in the pupil plane.
    Type: Application
    Filed: June 17, 2014
    Publication date: December 18, 2014
    Inventor: Mario Laengle
  • Patent number: 8908957
    Abstract: A method for building a rule of thumb of defect classification is illustrated. Multiple defect classification images with killer defects of examples and all material information of processes associated with the defect, the pattern, and the background are input into the fab tool. The fab tool obtains image characteristics, process characteristics, and image relativity characteristics of the defects, the pattern, and the background in each of the input images, wherein the input images comprises the defect classification images with killer defects of examples. The rule of thumb of the defect classification is built based on the process characteristics, the image characteristics, and the image relativity characteristics of the defects, the pattern, and the background in each of the input images.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: December 9, 2014
    Assignee: Elitetech Technology Co.,Ltd.
    Inventor: Iyun Leu
  • Patent number: 8903156
    Abstract: A method of updating calibration data of a first position detection system adapted to determine the position of an object, is presented. The first position detection system includes a target and a plurality of sensors one of which is mounted on an object and the calibration data including coefficients relating an apparent measured position to an actual position and which can be used to convert an apparent measured position to an actual position thereby to correct for physical imperfections in the first position detection system and enable determination of the actual position from the apparent measured position.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: December 2, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Franciscus Van De Mast, Engelbertus Antonius Fransiscus Van Der Pasch
  • Patent number: 8903158
    Abstract: An inspection system determines, for each detected pattern defect, a defect inspection pattern area of predetermined dimensions containing the coordinates of the defect, then determines the clusters or cells whose reference points are located within the defect inspection pattern area. The system extracts the data of these clusters or cells from design pattern data read from a first magnetic disk unit. The system then generates an output file containing the extracted data. The output file is then converted into the same format as the input design pattern data or into OASIS format, before it is output to a second magnetic disk unit. The extracted pattern data specifying the clusters or cells within each defect inspection pattern area can be output from the mask inspection system to external systems.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: December 2, 2014
    Assignee: NuFlare Technology, Inc.
    Inventors: Hideo Tsuchiya, Takafumi Inoue
  • Publication number: 20140348414
    Abstract: An inspection sensitivity evaluation method includes generating a reference design image where plural figure patterns are arranged, based on reference design data, generating plural position shift design images whose positional deviation amounts are mutually different such that positions of the plural figure patterns in the reference design image are uniformly shifted, acquiring an optical image of a photo mask fabricated based on the reference design data where there is no positional deviation from the plural figure patterns, calculating a first positional deviation amount between the reference design image and the optical image, calculating plural second positional deviation amounts each of which is a respective positional deviation amount between a corresponding position shift design image of the plural position shift design images and the optical image, and acquiring a detectable positional deviation amount by using the first and the plural second positional deviation amounts.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 27, 2014
    Applicant: NuFlare Technology, Inc.
    Inventors: Hideaki HASHIMOTO, Nobutaka KIKUIRI
  • Patent number: 8893067
    Abstract: In one aspect, the present invention is directed to a technique of, and system for simulating, verifying, inspecting, characterizing, determining and/or evaluating the lithographic designs, techniques and/or systems, and/or individual functions performed thereby or components used therein. In one embodiment, the present invention is a system and method that accelerates lithography simulation, inspection, characterization and/or evaluation of the optical characteristics and/or properties, as well as the effects and/or interactions of lithographic systems and processing techniques.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: November 18, 2014
    Assignee: ASML Netherlands B.V.
    Inventors: Jun Ye, Yen-Wen Lu, Yu Cao, Luoqi Chen, Xun Chen
  • Patent number: 8891852
    Abstract: Disclosed are systems and methods for configuring a vision detector, wherein a training image is obtained from a production line operating in continuous motion so as to provide conditions substantially identical to those that will apply during actual manufacturing and inspection of objects. A training image can be obtained without any need for a trigger signal, whether or not the vision detector might use such a signal for inspecting the objects. Further disclosed are systems and methods for testing a vision detector by selecting, storing, and displaying a limited number of images from a production run, where those images correspond to objects likely to represent incorrect decisions.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: November 18, 2014
    Assignee: Cognex Technology and Investment Corporation
    Inventors: Andrew Eames, Brian V. Mirtich, William M Silver
  • Patent number: 8885917
    Abstract: A mask pattern and a correcting method thereof are provided. The correcting method includes the following steps. An original pattern having a first original contour and a second original contour is provided. The first original contour has a first original corner. The second original contour has a second original corner, which is near the first original corner. The first and second original corners are cut to form a cut pattern. An optical proximity correction (OPC) process is applied to the cut pattern to form the mask pattern.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: November 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Te-Hsien Hsieh, Ming-Jui Chen, Cheng-Te Wang, Jing-Yi Lee
  • Patent number: 8873830
    Abstract: According to one embodiment, a method includes acquiring information about a two-dimensional distribution of secondary electron intensity for a measurement target pattern, extracting, by a first method, an edge position of an edge for correction value acquisition, extracting, by a second method, an edge position of the edge for correction value acquisition, acquiring a difference between the edge positions extracted by the first and second methods, as a correction value, extracting, by the second method, an edge position of a desired edge based on the information about the two-dimensional distribution, and correcting the edge position of the desired edge based on the correction value.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Yamanaka
  • Publication number: 20140307943
    Abstract: Optical inspection methods and apparatus for high-resolution photomasks using only a test image. A filter is applied to an image signal received from radiation that is transmitted by or reflected from a photomask having a test image. The filter may be implemented using programmed control to adjust and control filter conditions, illumination conditions, and magnification conditions.
    Type: Application
    Filed: April 11, 2014
    Publication date: October 16, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Fred Stanke, Ilya Toytman, David Alles, Gregg Anthony Inderhees, Stanley E. Stokowski, Mehdi Vaez-Iravani
  • Patent number: 8861832
    Abstract: An inspection region of a mask is virtually divided by stripes, and a pattern on a position error correcting unit is also virtually divided by stripes. Then, a stage is moved such that all the stripes of both the mask and the position error correcting unit are continuously scanned, so that optical images of these stripes are acquired. Fluctuation values of position coordinates of the patterns formed on the position error correcting unit are acquired from the optical images of the position error correcting unit. Based upon the fluctuation values, fluctuation values of the position coordinates of the respective patterns in the inspection region of the mask are obtained so that the position coordinates are corrected. Thereafter, a map is generated from the fluctuation values of the position coordinates of the respective patterns in the inspection region of the mask.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: October 14, 2014
    Assignee: NuFlare Technology, Inc.
    Inventors: Takafumi Inoue, Eiji Matsumoto, Nobutaka Kikuiri, Ikunao Isomura
  • Patent number: 8855400
    Abstract: A detection method for a spot image based thin line detection is disclosed. The method includes a step for generating a band limited spot image from a transmitted and reflected optical image of the mask. The spot image is calibrated to minimize a plurality of optical aberrations from the spot image. The spot image is restored back to a mask image to allow at least one of: a more reliable segmentation between thin line and non-thin line areas on the mask image or a more accurate line width measurement for facilitating segmentation. Thin line features and non-thin lines features are distinguished on the restored mask image. Areas containing thin line features are grown while preventing the thin line growth from encroaching the non-thin line features.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: October 7, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: Zhengyu Wang, Rui-fang Shi, Lih-Huah Yiin, Bing Li
  • Patent number: 8853087
    Abstract: A target space ratio of a monitor pattern on a substrate for inspection is determined to be different from a ratio of 1:1. A range of space ratios in a library is determined to include the target space ratio and not include a space ratio of 1:1. The monitor pattern is formed on a film to be processed by performing predetermined processes on the substrate for inspection. Sizes of the monitor pattern are measured. The sizes of the monitor pattern are converted into sizes of a pattern of the film to be processed having a space ratio of 1:1, and processing conditions of the predetermined processes are compensated for based on the sizes of the converted pattern of the film to be processed. After that, the predetermined processes are performed on a wafer under the compensated conditions to form a pattern having a space ratio of 1:1 on the film to be processed.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 7, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Keisuke Tanaka, Machi Moriya
  • Publication number: 20140294283
    Abstract: An inspection method and apparatus comprising, acquiring a plurality of optical images of a sample in which a plurality of dies having repetitive pattern are provided, comparing the optical images to each other by a die-to-die method and detecting a defect, obtaining at least one of a dimension difference and a dimension ratio between the repetitive pattern of the optical image to be inspected and the repetitive pattern of the optical image to be reference in the die-to-die method, extracting a die of the optical image having the dimension difference or dimension ratio closest to that at a defect position of a die of the optical image in which the defect is detected, compared, and stored, and determining that the defect does not exist in the optical image when the defect is not detected from the optical image in which the defect is originally detected.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: NuFlare Technology, Inc.
    Inventors: Masaya TAKEDA, Ikunao Isomura
  • Patent number: 8849008
    Abstract: A technique for determining a set of calibration parameters for use in a model of a photo-lithographic process is described. In this calibration technique, images of a test pattern that was produced using the photo-lithographic process are used to determine corresponding sets of calibration parameters. These images are associated with at least three different focal planes in an optical system, such as a photo-lithographic system that implements the photo-lithographic process. Moreover, an interpolation function is determined using the sets of calibration parameters. This interpolation function can be used to determine calibration parameters at an arbitrary focal plane in the photo-lithographic system for use in simulations of the photolithographic process, where the set of calibration parameters are used in a set of transmission cross coefficients in the model of the photo-lithographic process.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 30, 2014
    Assignee: Synopsys, Inc.
    Inventors: Xin Zhou, Yaogang Lian, Robert E. Gleason
  • Publication number: 20140270468
    Abstract: An inspection system, and a computer program product that stores instructions for: obtaining an aerial image of an area of the mask; wherein the aerial image represents an expected image to be formed on a photoresist of an object during a lithography process that involves illuminating the area of the mask, by a lithography tool; wherein the photoresist has a printability threshold; wherein the lithography process exhibits a process window that introduces allowable changes at pixels of the expected image that do not exceed an intensity threshold; and searching for at least one weak point at the area of the mask, each weak point is a local extremum point of the aerial image that is spaced apart from the printability threshold by a distance that does not exceed the intensity threshold or is a crossing point of the printability threshold and being of a slope that is below a predefined threshold.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: APPLIED MATERIALS ISRAEL, LTD.
    Inventor: APPLIED MATERIALS ISRAEL, LTD.
  • Patent number: 8837810
    Abstract: A method of determining overlay error in semiconductor device fabrication includes receiving an image of an overlay mark formed on a substrate. The received image is separated into a first image and a second image, where the first image includes representations of features formed on a first layer of the substrate and the second image includes representations of the features formed on a second layer of the substrate. A quality indicator is determined for the first image and a quality indicator is determined for the second image. In an embodiment, the quality indicators include asymmetry indexes.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Liang Chen, Te-Chih Huang, Chen-Ming Wang, Chih-Ming Ke, Tsai-Sheng Gau
  • Publication number: 20140254914
    Abstract: A method for testing an organic pattern including: forming an organic pattern on a test substrate through a mask; acquiring a test image by photographing a predetermined test area of the test substrate; and checking whether an edge of the organic pattern displayed to the test image goes over an edge of a virtual test figure.
    Type: Application
    Filed: September 19, 2013
    Publication date: September 11, 2014
    Inventors: Eui-Gyu KIM, Dae-Sik JANG
  • Publication number: 20140254915
    Abstract: A method for analyzing a photomask comprises the determination of a Bossung plot.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 11, 2014
    Inventors: Anthony Garetto, Thomas Scheruebl, Gilles Tabbone, Vahagn Sargsyan, Doug Uzzel, Jon Morgan
  • Publication number: 20140254913
    Abstract: A technique for inspecting, qualifying and repairing photo-masks for use at extreme ultra-violet (EUV) wavelengths is described. In this technique, multiple images of a substrate and/or a blank that includes multiple layers deposited on the substrate are measured and compared to identify first potential defects. Using information associated with the first potential defects, such as locations of the first potential defects, another image of the EUV photo-mask that includes a mask pattern defined in an absorption layer, which is deposited on top of the multiple layers, is measured. Based on the other image and the first potential defects, second potential defects in the EUV photo-mask are identified. Next, a qualification condition of the EUV photo-mask is determined based on the first potential defects and the second potential defects.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: Dino Technology Acquisition LLC
    Inventor: Linyong PANG
  • Patent number: 8831333
    Abstract: A pattern analysis method includes the steps of: grouping a plurality of polygons in a circuit layout into a plurality of polygon groups; locating a potential defect area of each polygon group according to an aerial image of the circuit layout; determining a representing point of the potential defect area of each polygon group; determining representing points of the plurality of polygons in each polygon group; and comparing a distribution pattern of the representing points of the plurality of polygons relative to the representing point of the potential defect area in one of the polygon groups with a distribution pattern of the representing points of the plurality of polygons relative to the representing point of the potential defect area in another of the polygon groups. The steps aforesaid are executed by a processor in a computer system.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: September 9, 2014
    Assignee: Nanya Technology Corporation
    Inventor: Kuo Kuei Fu
  • Publication number: 20140247975
    Abstract: An illumination source is optimized by changing the intensity and shape of the illumination source to form an image in the image plane that maximizes the minimum ILS at user selected fragmentation points while forcing the intensity at the fragmentation points to be within a small intensity range. An optimum mask may be determined by changing the magnitude and phase of the diffraction orders to form an image in the image plane that maximizes the minimum ILS at user selected fragmentation points while forcing the intensity at the fragmentation points to be within a small intensity range. Primitive rectangles having a size set to a minimum feature size of a mask maker are assigned to the located minimum and maximum transmission areas ad centered at a desired location. The edges of the primitive rectangle are varied to match optimal diffraction orders O(m,n). The optimal CPL mask OCPL(x,y) is then formed.
    Type: Application
    Filed: May 19, 2014
    Publication date: September 4, 2014
    Applicant: ASML Netherlands B.V.
    Inventor: Robert SOCHA
  • Patent number: 8818072
    Abstract: The present disclosure provides a method of inspecting a photolithographic mask wherein a design database is received, and a feature of the design database is adjusted by a bias factor to produce a biased database. Image rendering is performed on the biased database to produce a biased image. A mask is also created using the design database, and the mask is imaged to produce a mask image. The biased image is compared to the mask image, and a new value for the bias factor may be determined based on the comparison.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Biow-Hiem Ong, Rick Lai, Chih-Chiang Tu, Chia-Shih Lin, Jong-Yuh Chang
  • Patent number: 8811714
    Abstract: The present invention provides a determination method of determining a light intensity distribution to be formed on a pupil plane of an illumination optical system in an exposure apparatus, the method including a step of setting a cutline used to evaluate an image of a pattern of a mask, which is formed on an image plane of a projection optical system, and a target position of the image, and a step of determining an intensity of an element light source such that the position of a midpoint between edges of the image of the pattern of the mask on the cutline from a calculated image comes close to the target position, thereby determining the light intensity distribution.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: August 19, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yuichi Gyoda, Hiroyuki Ishii, Koji Mikami, Youzou Fukagawa
  • Patent number: 8811713
    Abstract: A plurality of photomasks used to manufacture the same semiconductor device, each of the photomasks having a plurality of mutually replaceable unit regions set therein, are inspected to detect a defect. It is determined whether or not the detected defect has a redundancy defect positioned in a unit region replaceable with another unit region to remedy the photomask. Then, when inspecting the second or subsequent photomask, a unit region including the coordinate of a redundancy defect detected in another photomask inspected previously is set to be a non-inspection region, and the non-inspection region is not inspected.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: August 19, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Ryoji Yoshikawa
  • Publication number: 20140226143
    Abstract: The present disclosure provides a method that includes capturing a first image of a mask in a first exposure apparatus using a first exposure source and a first imaging sensor; capturing a second image of the mask in a second exposure apparatus using a second exposure source and a second imaging sensor; comparing the first image of the mask and the second image of the mask for a difference therebetween; and determining an action according to the difference.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fei-Gwo Tsai, Bo-Tsun Liu, Chieh-Huan Ku
  • Publication number: 20140205179
    Abstract: Disclosed are methods and apparatus for inspecting a photolithographic reticle. A stream of defect data is received from a reticle inspection system, wherein the defect data identifies a plurality of defects that were detected for a plurality of different portions of the reticle. Before reviewing the defect data to determine whether the reticle passes inspection and as the stream of defect data continues to be received, some of the defects are automatically grouped with other most recently one or more received defects so as form groups of substantially matching defects. Before reviewing the defect data to determine whether the reticle passes inspection and after all of the defect data for the reticle is received, one or more of the groups of defects that have a number above a predetermined threshold are automatically filtered from the defect data so as to form filtered defect data. The filtered defect data may then be provided to a review station for determining whether the reticle passes.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: KLA-Tencor Corporation
    Inventors: Bing Li, Weimin Ma, Joseph M. Blecher
  • Publication number: 20140198972
    Abstract: A method for determining an image of a mask pattern in a resist coated on a substrate, the method including determining an aerial image of the mask pattern at substrate level; and convolving the aerial image with at least two orthogonal convolution kernels to determine a resist image that is representative of the mask pattern in the resist.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 17, 2014
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Yu CAO, Luoqi CHEN, Antoine Jean BRUGUIER, Wenjin SHAO
  • Patent number: 8781211
    Abstract: In one embodiment, a semiconductor target for determining overlay error, if any, between two or more successive layers of a substrate or between two or more separately generated patterns on a single layer of a substrate is disclosed. The target comprises at least a plurality of first structures that are invariant for a plurality of first rotation angles with respect to a first center of symmetry (COS) of the first structures and a plurality of second structures that are invariant for a plurality of second rotation angles with respect to a second COS of the second structures. The first rotation angles differ from the second rotation angles, and first structures and second structures are formed on different layers of the substrate or separately generated patterns on a same layer of the substrate.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: July 15, 2014
    Assignee: KLA-Tencor Corporation
    Inventor: Mark Ghinovker
  • Patent number: 8781207
    Abstract: A computing device reads a reference image and a real-time of a printed circuit board (PCB), determines feature points and feature information of the feature points in the reference image; and creates two 1×N matrices based on the feature points. Furthermore, a mapping matrix is determined based on the two 1×N matrices. The device determines matching points in the real-time image based on coordinates of base points in the reference image and the mapping matrix, determines a matching region the real-time image based on the matching points, and determines an angle between the matching region and an X-axis of a coordinate system. If the angle does not equal zero, the device determines that the real-time is tilted, and corrects the real-time image to obtain a corrected image by taking a center of the real-time image as a turning pivot to rotate the real-time image until the angle equals zero.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: July 15, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventor: Wen-Wu Wu
  • Patent number: 8781212
    Abstract: Acquired mask data of a defect portion is sent to a simulated repair circuit 300 to be simulated. The simulation of the acquired mask data 204 is returned to the mask inspection results 205 and thereafter sent to a wafer transfer simulator 400 along with a reference image at the corresponding portion. A wafer transfer image estimated by the wafer transfer simulator 400 is sent to a comparing circuit 301. When it is determined that there is a defect in the comparing circuit 301, the coordinates and the wafer transfer image which is a basis for the defect determination are stored as transfer image inspection results 206. The mask inspection results 205 and the transfer image inspection result 206 are then sent to the review device 500.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: July 15, 2014
    Assignee: NuFlare Technology, Inc.
    Inventors: Hideo Tsuchiya, Takayuki Abe
  • Patent number: 8774491
    Abstract: Provided is a substrate processing apparatus that includes: a peripheral exposing unit that performs a peripheral exposing process by irradiating light to a peripheral portion of a substrate while rotating the substrate held by a substrate holding unit using a rotation driving unit; a substrate inspecting unit that performs a substrate inspecting process based on a picked up image of the substrate while moving the substrate using a movement driving unit; and a control unit. The control unit controls the predetermined substrate processing to be stopped when the peripheral exposing process is included in the predetermined substrate processing and an error occurs in the peripheral exposing unit, and controls the substrate inspecting process to be skipped when no error occurs in both of the peripheral exposing unit and a transport unit, the substrate inspecting process is included in the predetermined substrate processing and an error occurs in the substrate inspecting unit.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: July 8, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Shinichi Seki, Hiroshi Tomita, Nobutaka Fukunaga, Toshifumi Sohara
  • Patent number: 8768514
    Abstract: An image taking system including: (a) a lighting device capable of changing a light emission time to various time length values; (b) an image taking device configured to take an image of a subject portion while light is being emitted by the lighting device; (c) a subject-portion moving device configured to move the subject portion relative to the image taking device, and capable of changing a movement velocity of the subject portion relative to the image taking device, to various velocity values; and (d) a control device configured, during movement of the subject portion by the subject-portion moving device, to cause the lighting device to emit the light for one of the time length values as the light emission time and to cause the image taking device to take the image, and is configured to control the movement velocity, such that an amount of the movement of the subject portion for the above-described one of the time length values is not larger than a predetermined movement amount.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: July 1, 2014
    Assignee: Fuji Machine Mfg. Co., Ltd.
    Inventor: Kazumi Hoshikawa
  • Patent number: 8753788
    Abstract: An apparatus includes a probe tip configured to contact the mask, a cantilever configured to mount the probe tip wherein the cantilever includes a mirror, an optical unit having a light source projecting a light beam on the mirror and a light detector receiving a reflected light beam from the mirror, and an electrical power supply configured to connect the probe tip. The apparatus further includes a computer system configured to connect the optical unit, the electrical power supply, and the stage. The electrical power supply provides an electrical current to the probe tip and heats the probe tip to a predetermined temperature. The heated probe tip repairs a defect by smoothing and reducing a dimension of the defect, and inducing structural deformations of multilayer that cancel out the distortion (of multilayer) caused by buried defects using the heated probe tip as a thermal source canning the defect.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: June 17, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hao Yu, Yun-Yue Lin
  • Patent number: 8748063
    Abstract: Methods and structures for extreme ultraviolet (EUV) lithography are disclosed. A method includes determining a phase error correction for a defect in an EUV mask, determining an amplitude error correction for the EUV mask based on both the defect in the EUV mask and the phase error correction, and modifying the EUV mask with the determined phase error correction and the determined amplitude error correction.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: Emily E. Gallagher, Gregory R. McIntyre, Alfred Wagner
  • Patent number: 8745546
    Abstract: A mask overlay method, and a mask and a semiconductor device using the same are disclosed. According to the disclosed mask overlay technique, test marks and front layer overlay marks corresponding to a plurality of overlay mark designs are generated in a first layer of a semiconductor device. The test patterns generating the test marks each include a first sub pattern and a second sub pattern. Note that the first sub pattern has the same design as a front layer overlay pattern (which generates the front layer overlay mark corresponding thereto). Based on the test marks, performances of the plurality of overlay mark designs are graded. The front layer overlay mark corresponding to the overlay mark design having the best performance is regarded as an overlay reference for a mask of a second layer of the semiconductor device.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: June 3, 2014
    Assignee: Nanya Technology Corporation
    Inventor: Chui-Fu Chiu
  • Patent number: 8737717
    Abstract: A method of identifying defects including producing, with an imaging system, an original image of a fabricated article having a feature thereon, the feature having an intended height and extracting a contour image from the original image, the contour image having an outline of those portions of the feature having a height approximate to the intended height. The method also includes producing a simulated image of the article based upon the contour and creating a defect image based on the differences between the simulated image and the original image, the defect image including any portions of the feature having a height less than the intended height.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Chun Lin, Ching-Fang Yu, Ting-Hao Hsu, Sheng-Chi Chin
  • Patent number: 8737676
    Abstract: Acquired mask data of a defect portion is sent to a simulated repair circuit 300 to be simulated. The simulation of the acquired mask data 204 is returned to the mask inspection results 205 and thereafter sent to a wafer transfer simulator 400 along with a reference image at the corresponding portion. A wafer transfer image estimated by the wafer transfer simulator 400 is sent to a comparing circuit 301. When it is determined that there is a defect in the comparing circuit 301, the coordinates and the wafer transfer image which is a basis for the defect determination are stored as transfer image inspection results 206. The mask inspection results 205 and the transfer image inspection result 206 are then sent to the review device 500.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 27, 2014
    Assignee: NuFlare Technology, Inc.
    Inventors: Hideo Tsuchiya, Takayuki Abe
  • Patent number: 8731273
    Abstract: A method for measuring the relative local position error of one of the sections of an object that is exposed section by section, in particular of a lithography mask or of a wafer, is provided, each exposed section having a plurality of measurement marks, wherein a) a region of the object which is larger than the one section is imaged in magnified fashion and is detected as an image, b) position errors of the measurement marks contained in the detected image are determined on the basis of the detected image, c) corrected position errors are derived by position error components which are caused by the magnified imaging and detection being extracted from the determined position errors of the measurement marks, d) the relative local position error of the one section is derived on the basis of the corrected position errors of the measurement marks.
    Type: Grant
    Filed: November 28, 2009
    Date of Patent: May 20, 2014
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Michael Arnz, Dirk Beyer, Wolfgang Harnisch, Thomas Scheruebl
  • Patent number: 8730474
    Abstract: The invention relates to a method and an apparatus for measuring masks for photolithography. In this case, structures to be measured on the mask on a movable mask carrier are illuminated and imaged as an aerial image onto a detector, the illumination being set in a manner corresponding to the illumination in a photolithography scanner during a wafer exposure. A selection of positions at which the structures to be measured are situated on the mask is predetermined, and the positions on the mask in the selection are successively brought to the focus of an imaging optical system, where they are illuminated and in each case imaged as a magnified aerial image onto a detector, and the aerial images are subsequently stored. The structure properties of the structures are then analyzed by means of predetermined evaluation algorithms. The accuracy of the setting of the positions and of the determination of structure properties is increased in this case.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: May 20, 2014
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Thomas Scheruebl, Holger Seitz, Ulrich Matejka, Axel Zibold, Rigo Richter
  • Patent number: RE45204
    Abstract: In an imaging recipe creating apparatus that uses a scanning electron microscope to create an imaging recipe for SEM observation of a semiconductor pattern, in order that the imaging recipe for measuring the wiring width and other various dimension values of the pattern from an observation image and thus evaluating the shape of the pattern is automatically generated within a minimum time by the analysis using the CAD image obtained by conversion from CAD data, an CAD image creation unit that creates the CAD image by converting the CAD data into an image format includes an image-quantizing width determining section, a brightness information providing section, and a pattern shape deformation processing section; the imaging recipe being created using the CAD image created by the CAD image creation unit.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: October 21, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Miyamoto, Wataru Nagatomo, Ryoichi Matsuoka, Hidetoshi Morokuma, Takumichi Sutani
  • Patent number: RE45224
    Abstract: In an imaging recipe creating apparatus that uses a scanning electron microscope to create an imaging recipe for SEM observation of a semiconductor pattern, in order that the imaging recipe for measuring the wiring width and other various dimension values of the pattern from an observation image and thus evaluating the shape of the pattern is automatically generated within a minimum time by the analysis using the CAD image obtained by conversion from CAD data, an CAD image creation unit that creates the CAD image by converting the CAD data into an image format includes an image-quantizing width determining section, a brightness information providing section, and a pattern shape deformation processing section; the imaging recipe being created using the CAD image created by the CAD image creation unit.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: October 28, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Atsushi Miyamoto, Wataru Nagatomo, Ryoichi Matsuoka, Hidetoshi Morokuma, Takumichi Sutani