Integrated Optical Circuit Patents (Class 385/14)
  • Patent number: 9991371
    Abstract: A semiconductor device includes a substrate, a two-dimensional (2D) material layer formed on the substrate and having a first region and a second region adjacent to the first region, and a source electrode and a drain electrode provided to be respectively in contact with the first region and the second region of the 2D material layer, the second region of the 2D material layer including an oxygen adsorption material layer in which oxygen is adsorbed on a surface of the second region.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: June 5, 2018
    Assignees: SAMSUNG ELECTRONICS CO., LTD., RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Un Jeong Kim, Hyo Chul Kim, Young Geun Roh, Yeon Sang Park, Jae Gwan Chung, Si Young Lee, Young Hee Lee
  • Patent number: 9989715
    Abstract: A photonic interface for an electronic circuit is disclosed. The photonic interface includes a photonic integrated circuit having a modulator and a photodetector, and an optical fiber or fibers for optical communication with another optical circuit. A modulator driver chip may be mounted directly on the photonic integrated circuit. The optical fibers may be placed in v-grooves of a fiber support, which may include at least one lithographically defined alignment feature for optical alignment to the silicon photonic circuit.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: June 5, 2018
    Assignee: Elenion Technologies, LLC
    Inventors: Michael J. Hochberg, Ari Jason Novack, Peter D. Magill
  • Patent number: 9991963
    Abstract: A multi-channel tunable laser includes: a frequency selective optical multiplexer comprising: a plurality of channel terminals for receiving/transmitting light; a plurality of channel waveguide blocks, each channel waveguide block comprising at least one reflectively terminated channel waveguide; and an optical coupling element optically coupling the plurality of channel terminals with the plurality of channel waveguide blocks, each of the channel waveguides of the plurality of channel waveguide blocks having a different length; a plurality of channel paths, each channel path coupled to a respective channel terminal of the plurality of channel terminals and comprising a gain element, a phase element and a reflective element; and a plurality of optical tuners, each one configured to tune the channel waveguides of a respective channel waveguide block of the plurality of channel waveguide blocks.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: June 5, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Ramsey Selim, Karl Boylan, Ian Lealman, Richard Wyatt, David Rogers
  • Patent number: 9983372
    Abstract: An optical apparatus includes: a semiconductor optical device integrating an optical coupler, an optical element, and an electrical circuit; and a printed circuit board including a main body and a metal piece. The body has first and second openings. The first opening, the metal piece and the second opening are arranged in a direction of a first axis. The first and second openings extend from the front and back faces of the body along the direction to the first and second faces of the metal piece, respectively. The metal piece is supported by the body. The semiconductor optical device is mounted on the first face of the metal piece in the first opening. The body has a supporting face connecting the first side of the first opening with the second side of the second opening and supporting the second face of the metal piece in the first opening.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: May 29, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kaoru Oomori, Takashi Kojima
  • Patent number: 9978990
    Abstract: Disclosed herein are OLED devices comprising waveguides including at least one waveguide layer comprising at least one inorganic nanoparticle and at least one binder and having an RMS surface roughness of less than about 20 nm. Lighting and display devices comprising such OLED devices are further disclosed herein as well as methods for making the waveguides.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 22, 2018
    Assignee: Corning Incorporated
    Inventors: Archit Lal, Pamela Arlene Maurey, Daniel Aloysius Nolan, Wageesha Senaratne
  • Patent number: 9977185
    Abstract: An optoelectronic device includes an integrated circuit including electronic devices formed on a front side of a semiconductor substrate. A barrier layer is formed on a back side of the semiconductor substrate. A photonics layer is formed on the barrier layer. The photonics layer includes a core for transmission of light and a cladding layer encapsulating the core and including a different index of refraction than the core. The core is configured to couple light generated from a component of the optoelectronic device.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: May 22, 2018
    Assignee: International Business Machines Corporation
    Inventors: Russell A. Budd, Effendi Leobandung, Ning Li, Jean-Olivier Plouchart, Devendra K. Sadana
  • Patent number: 9964714
    Abstract: An optical connector includes a board including an element that performs conversion between an electric signal and light, a first ferrule and a second ferrule that are butted against each other, an optical waveguide that optically connects the first ferrule with the element, and a guide that guides the optical waveguide disposed between the first ferrule and the element.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: May 8, 2018
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Ayumu Akabane, Satoshi Moriyama, Mitsuki Kanda, Shinichiro Akieda
  • Patent number: 9964834
    Abstract: In a high power optical system, a thermal waveguide including an optical material having an index of refraction sensitive to changes in temperature, the rectangular optical material having a first dimension and a second dimension in a horizontal plane and a third dimension in a vertical plane, the third dimension being approximately ten times smaller than the first and second dimension, at least one heat sink thermally coupled to the optical material to establish a one-dimensional thermal gradient across the third dimension of the optical material, the thermal gradient having a parabolic profile across the rectangular optical material, and wherein the optical material is configured to act as a waveguide when a laser beam having a power of greater than one watt is incident upon the optical material.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: May 8, 2018
    Assignee: Physical Sciences, Inc.
    Inventor: Peter F. Moulton
  • Patent number: 9958608
    Abstract: A method of fabricating an optical device includes forming on a semiconductor substrate a first optical cavity, a second optical cavity, a first light guide and a second light guide. The first light guide has an input, and is optically coupled to the first optical cavity by a first coupling strength. In addition, the first light guide is optically coupled to the second optical cavity by a second coupling strength. The second light guide has an output, and is coupled to the second optical cavity by a third coupling strength. The first coupling strength is greater than the second coupling strength, and the third coupling strength is greater than the second coupling strength.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: May 1, 2018
    Assignee: Purdue Research Foundation
    Inventors: Minghao Qi, Li Fan, Jian Wang, Leo Tom Varghese
  • Patent number: 9955604
    Abstract: A mounting structure for an electronic component and a method for mounting the electronic component are provided with a sufficient reinforcing effect for the relatively tall electronic component raised from a substrate. The mounting structure and the mounting method can easily respond to a change of the shape of the electronic component. In a mounting structure 1, a substrate 2 and an electronic component 4 raised on the substrate 2 are joined with bonding metal 3 and a reinforcing resin body 5 is bonded to the substrate 2 and the electronic component 4. The reinforcing resin body 5 includes a plurality of reinforcing resin layers 5a. The reinforcing resin layers 5a constituting the reinforcing resin body 5 are stacked in the height direction of the raised electronic component 4 along a side 4a of the electronic component 4 so as to be raised from the substrate 2.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: April 24, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Seiji Tokii, Manabu Tasaki
  • Patent number: 9947856
    Abstract: A technique relates to a qubit readout system. A cavity-qubit system has a qubit and a readout resonator and outputs a readout signal. A lossless superconducting circulator is configured to receive the microwave readout signal from the cavity-qubit system and transmit the microwave readout signal according to a rotation. A quantum limited directional amplifier amplifies the readout signal. A directional coupler is connected to and biases the amplifier to set a working point. A microwave bandpass filter transmits in a microwave frequency band by passing the readout signal while blocking electromagnetic radiation outside of the microwave frequency band. A low-loss infrared filter has a distributed Bragg reflector integrated into a transmission line. The low-loss filter is configured to block infrared electromagnetic radiation while passing the microwave readout signal. The low-loss infrared filter is connected to the microwave bandpass filter to receive input of the microwave readout signal.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Baleegh Abdo
  • Patent number: 9946042
    Abstract: An optical waveguide device comprising: one or more photonic chips, the one or more photonic chips including: a first portion of a photonic chip comprising an array of first components, each of the first components having an optical input and an electrical output; and a second portion of a photonic chip comprising an array of second components, each of the second components configured to receive an electrical input; the optical waveguide device further comprising: an integrated circuit; the integrated circuit forming an electrical bridge between the electrical outputs of the first components and respective electrical inputs of the second components; wherein the integrated circuit is directly mounted onto the one or more photonic chips; and/or wherein the integrated circuit is located between the first portion of a photonic chip and the second portion of a photonic chip.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: April 17, 2018
    Assignee: Rockley Photonics Limited
    Inventors: Andrew Rickman, Guomin Yu, Aaron Zilkie, Haydn F. Jones
  • Patent number: 9946026
    Abstract: An imaging system comprises a matched pathlength combining waveguide array including input optical couplers for receiving light, combining waveguides for combining the light received from different input optical couplers and relaying the light to output optical couplers. A lens system is also provided for imaging the light from the output optical couplers. Compared to imaging systems, this imaging system can be much more compact. A standard imaging system requires a focal length at least equal to the aperture (width) of the lens. Because the aperture size of a lens determines the performance of a system (resolution and collected light) there is a limit to how compact a traditional high performance imaging system can be. In contrast, the present system removes that limitation because the minimum practical focal length is now determined by the size of the aperture of the outputs, which can be significantly smaller (by factors of more than 10×, typically).
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: April 17, 2018
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Steven Spector, Benjamin Lane
  • Patent number: 9948059
    Abstract: A semiconductor laser light source includes a semiconductor substrate formed of a first conductivity type semiconductor material, a lower cladding layer formed of the first conductivity type semiconductor material on the semiconductor substrate, a waveguide layer on the lower cladding layer, and an upper cladding layer formed of a second conductivity type semiconductor material on the waveguide layer. The waveguide layer includes a core area and rib areas thinner than the core area on either side of the core area. The core area has a quantum dot active layer, and the rib areas have no quantum dot layer. The waveguide layer forms a laser part having the core area with a constant width and a spot size converter having the core area with a taper width from a side adjacent to the laser part toward an end of the spot size converter.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 17, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Tokuharu Kimura, Tsuyoshi Yamamoto, Kazumasa Takabayashi, Ayahito Uetake
  • Patent number: 9941659
    Abstract: A TO can-type optical module for ultrahigh-speed communication including a laser diode chip for at least 5 Gbps. A substrate for transmitting a signal to a laser diode chip is formed by coupling an upper substrate (210) on which line patterns for transmission are formed, to a lower substrate (220) of which an upper surface has conductivity with the upper substrate (210) such that the optical module for ultrahigh-speed communication has single ended impedance of 25 ohms or differential ended impedance of 50 ohms. The substrate has a height of about 0.4 mm to which a laser diode chip, for ultrahigh-speed communication, is attached to enable an optical coupling between the laser diode chip, the lens, and the like, and may implement a hight-speed transmission line using a width of 0.6 mm or less thereby providing a substrate which is effectively embedded ina TO can-type package with a narrow mounting area.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: April 10, 2018
    Assignee: PHOVELCO.LTD.
    Inventor: Jeong-Soo Kim
  • Patent number: 9942983
    Abstract: A suspension board with circuit includes a metal supporting board, a conductor layer, a first insulating layer disposed between the metal supporting board and the conductor layer and having a first thickness, a second insulating layer having a second thickness in a portion disposed on the first insulating layer, and a pedestal disposed on the metal supporting board. The pedestal includes a first layer prepared from the same material as that of the first insulating layer and a second layer prepared from the same material as that of the second insulating layer. The thickness of the pedestal is different from any one of the first thickness, the second thickness, and the total sum of the first thickness and the second thickness.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: April 10, 2018
    Assignee: NITTO DENKO CORPORATION
    Inventor: Yoshito Fujimura
  • Patent number: 9939580
    Abstract: Embodiments include an optical apparatus and associated method of assembling. The optical apparatus comprises a substrate defining a first surface and a channel formed relative thereto, the substrate including one or more waveguides extending to a sidewall partly defining the channel, a plurality of first electrical contacts formed on the first surface. The optical apparatus further comprises a carrier member defining a second surface and at least a third surface, the second surface coupled with the first surface of the substrate. The optical apparatus further at least one optical component coupled with the second surface and at least partly disposed within the channel, wherein the at least one optical component is optically coupled with the one or more waveguides and electrically connected with the first electrical contacts via a plurality of second electrical contacts at the third surface of the carrier member.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: April 10, 2018
    Assignee: Cisco Technology, Inc.
    Inventors: Stefan Martin Pfnuer, Matthew Joseph Traverso, Vipulkumar Patel
  • Patent number: 9933585
    Abstract: A compact and highly efficient coupling structure for coupling between DFB-LD and Si PIC edge coupler with suppressed return loss may include a DFB-LD, a Si PIC comprising at least one input edge coupler and at least one output edge coupler, a silica cover lid disposed on the Si PIC and aligned edge to edge with the Si PIC, a single-mode fiber aligned to the at least one output edge coupler of the Si PIC, a lens disposed between the DFB-LD and the at least one input edge coupler of the Si PIC, and an isolator bonded to a facet of the at least one input edge coupler with a first volume of an index matching fluid. The lens may be configured to minimize a mismatch between an output spot size of the DFB-LD and a spot size of the at least one input edge coupler of the Si PIC.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 3, 2018
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Ning Zhang, Tuo Shi, Yongbo Shao, Tzung-I Su, Dong Pan
  • Patent number: 9933579
    Abstract: An optical module includes an optical waveguide; a lens sheet including a lens; a substrate on one surface of which at least one of a light emitting element and a light receiving element is mounted; a first adhesion film that adheres the optical waveguide and the lens sheet; a second adhesion film that adheres the lens sheet and the substrate; and an adhesive agent introducing area, provided at at least one of the first adhesion film and the second adhesion film, to which an adhesive agent is supplied.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: April 3, 2018
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Ayumu Akabane, Takeshi Komiyama
  • Patent number: 9935423
    Abstract: A semiconductor laser device includes: a semiconductor laser including a plurality of emission regions into which currents are injected to emit laser beams and first and second major surfaces opposite to each other; and a plurality of first wires bonded to the first major surface of the semiconductor laser, wherein the first major surface of the semiconductor laser has a first stripe region corresponding to one of the plurality of emission regions, and a second stripe region corresponding to another of the plurality of emission regions, and the number of the first wires bonded to the first stripe region is larger than the number of the first wires bonded to the second stripe region.
    Type: Grant
    Filed: November 7, 2016
    Date of Patent: April 3, 2018
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kyosuke Kuramoto
  • Patent number: 9929290
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to electrical and optical via connections on a same chip and methods of manufacture. The structure includes an optical through substrate via (TSV) comprising an optical material filling the TSV. The structure further includes an electrical TSV which includes a liner of the optical material and a conductive material filling remaining portions of the electrical TSV.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: March 27, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Juntao Li, Kangguo Cheng, Chengwen Pei, Geng Wang, Joseph Ervin
  • Patent number: 9910232
    Abstract: Methods and systems for a chip-on-wafer-on-substrate assembly are disclosed and may include in an integrated optical communication system comprising an electronics die and a substrate. The electronics die is bonded to a first surface of a photonic interposer and the substrate is coupled to a second surface of the photonic interposer opposite to the first surface. An optical fiber and a light source assembly are coupled to the second surface of the interposer in one or more cavities formed in the substrate. The integrated optical communication system is operable to receive a continuous wave (CW) optical signal in the photonic interposer from the light source assembly; and communicate a modulated optical signal to the optical fiber from said photonic interposer. A mold compound may be on the first surface of the interposer and in contact with the electronics die. The received CW optical signal may be coupled to an optical waveguide in the photonic interposer using a grating coupler.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: March 6, 2018
    Assignee: Luxtera, Inc.
    Inventors: Attila Mekis, Peter De Dobbelaere, Gianlorenzo Masini, Yannick De Koninck, Thierry Pinguet
  • Patent number: 9910223
    Abstract: A wafer structure includes a diffractive lens disposed on a backside of a wafer and coupled to a front side waveguide, the diffractive lens being configured to receive light and focus the light to the front side waveguide.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: March 6, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yoba Amoah, Brennan J. Brown, John J. Ellis-Monaghan, Ashleigh R. Kreider
  • Patent number: 9903815
    Abstract: According to an aspect of an exemplary embodiment, an authentication apparatus for authenticating an object includes an input coupler configured to receive incident light and generate surface plasmons from the incident light; and an output coupler configured to output a speckle pattern based on the surface plasmons.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: February 27, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jaesoong Lee, Jineun Kim, Younggeun Roh, Yeonsang Park, Changwon Lee
  • Patent number: 9903539
    Abstract: The invention relates to a circuit board element (1) comprising a substrate (2), on which at least one dielectric layer (7) is arranged, and at least one LED (light-emitting diode) (10), wherein at least one channel-shaped waveguide cavity (11) leading away from the LED (10) is provided in the dielectric layer (7), which waveguide cavity leads to at least one integrated light-sensitive component (12), preferably a photo-diode or photocell, arranged for examining the light emission, wherein the LED (10) is preferably also arranged in a cavity (9) that is connected to the waveguide cavity (11). The invention further relates to a method for producing such a circuit board element (1).
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: February 27, 2018
    Assignee: AT & S AUSTRIA TECHNOLOGIE & SYSTEMTECHNIK AKTIENGESELLSCHAFT
    Inventors: Alexander Kasper, Gregor Langer
  • Patent number: 9904016
    Abstract: The invention relates to a wafer prober including an optical waveguide, the optical waveguide having a first optical coupling end segment with a first optical coupling surface being devoid of cladding. The first optical coupling end segment being configured to provide an adiabatic optical coupling to a second optical coupling end segment of a second optical waveguide of a photonic integrated circuit on a semiconductor wafer when the optical waveguide is aligned with respect to the semiconductor wafer according to a set of alignment requirements. The second optical coupling end segment having a second optical coupling surface that is devoid of cladding. The second optical coupling surface is parallel to a wafer surface of the semiconductor wafer. An alignment system configured to align the optical waveguide with respect to the semiconductor wafer according to the set of alignment requirements.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: February 27, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger F. Dangel, Daniel S. Jubin, Antonio La Porta, Jonas R. Weiss
  • Patent number: 9897754
    Abstract: A waveguide structure is provided. A silicon substrate layer, a silicon waveguide layer, a first silicon dioxide layer, a silicide waveguide layer, and a second silicon dioxide layer are stacked in sequence, the silicon waveguide layer is a conical waveguide layer, the silicon waveguide layer and the silicide waveguide layer are coupled by using an evanescent wave, the silicide waveguide layer includes multiple first waveguide blocks and multiple second waveguide blocks, a material of the first waveguide blocks is the same as a material of the silicide waveguide layer, and a refractive index of a material of the second waveguide blocks is lower than a refractive index of the material of the first waveguide blocks. By using the waveguide structure, a waveguide flare size can be increased, so as to match a mode size of a fiber core of an optical fiber.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: February 20, 2018
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Libing Zhou, Weishi Li
  • Patent number: 9899355
    Abstract: Provided is a 3DIC structure including first and second IC chips and connectors. The first IC chip includes a first metallization structure, a first optical active component, and a first photonic interconnection layer. The second IC chip includes a second metallization structure, a second optical active component, and a second photonic interconnection layer. The first and second IC chips are bonded via the first and second photonic interconnection layers. The first optical active component is between the first photonic interconnection layer and the first metallization structure. The first optical active component and the first metallization structure are bonded to each other. The second optical active component is between the second photonic interconnection layer and the second metallization structure. The second optical active component and the second metallization structure are bonded to each other.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: February 20, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ching-Pin Yuan, Chen-Hua Yu, Ming-Fa Chen, Sung-Feng Yeh
  • Patent number: 9900974
    Abstract: In one example embodiment, an optoelectronic assembly includes a multilayer ceramic substrate that includes multiple ceramic layers and a via disposed through at least one of the ceramic layers. The via may be formed from a conductive material that is configured to communicate a signal through the via. The multilayer ceramic substrate may be configured to dissipate heat emitted by an electronic component coupled to the multilayer ceramic substrate.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: February 20, 2018
    Assignee: FINISAR CORPORATION
    Inventors: Wenhua Ling, Yan Yang Zhao, Yongsheng Liu, Yuheng Lee
  • Patent number: 9897769
    Abstract: A vision-based passive alignment approach to optically couple input/output of optical fibers in optical alignment to optoelectronic components that are supported on a substrate. An optical bench supporting an optical fiber is physically and optically coupled to an optoelectronic device mounted on a submount via an optically transparent alignment block. The transparent alignment block having a first set of optical fiducials for aligning optical fiducials defined on the optical bench with the alignment block, and a second set of optical fiducials for aligning the alignment block with optical fiducials defined on the submount.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: February 20, 2018
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Gregory L. Klotz, Michael K. Barnoski, Robert Ryan Vallance
  • Patent number: 9891382
    Abstract: An optomechanical device with mechanical elements and optical filters for actuating and/or detecting movement of the elements, including a support, and on the support: an array of mechanical elements anchored to the support and configured to move with respect thereto, and an actuating and/or detection device actuating the elements and/or detecting movement of the elements or frequency variations of the movement. The actuating and/or detection device includes an array of optical filters. Each filter resonates at a particular wavelength and is coupled to one of the elements. The actuating and/or detecting device is positioned in vicinity of all or some of the elements, between the elements and the support. The optical filters are fixed with respect to the support and the mechanical elements and the optical filters are superimposed.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: February 13, 2018
    Assignees: Commissariat à l'énergie atomique et aux énergies alternatives, California Institute of Technology
    Inventors: Laurent Duraffourg, Sebastien Hentz, Mickael Lee Roukes
  • Patent number: 9891383
    Abstract: An apparatus comprising a substrate having a silicon waveguide thereon. The apparatus also comprises a semiconductor layer with a direct band gap. The semiconductor layer is located on a segment of the silicon waveguide and the semiconductor layer and the silicon waveguide are in a hybrid optical waveguide.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: February 13, 2018
    Assignee: Alcatel Lucent
    Inventor: Po Dong
  • Patent number: 9893815
    Abstract: An optical transmission module includes: a main substrate having a front surface and a back surface; an optical connector having a connector substrate; a first transparent substrate disposed between the connector substrate and the main substrate; a heat source element disposed between the connector substrate and the back surface of the main substrate, and electrically connected to the main substrate; one or a plurality of wirings electrically connecting the heat source element to the main substrate, and each configured to transfer heat generated from the heat source element and the first transparent substrate, to the main substrate; a first special region preventing the heat generated from the heat source element and the first transparent substrate, from being transferred to the connector substrate; and a second special region providing a function of transferring the heat generated from the heat source element and the first transparent substrate.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: February 13, 2018
    Assignee: Sony Corporation
    Inventor: Hiizu Ootorii
  • Patent number: 9893100
    Abstract: A semiconductor optical device that integrates photodiodes (PDs) and optical waveguides coupling with the PDs and a method of forming the semiconductor optical device are disclosed. The optical waveguides in a portion in the lower cladding layer thereof provides a modified layer that forms a conduction barrier of the lower cladding layer. The modified layer is formed by converting the conduction type thereof or implanting protons therein. The modified layer prevents the electrical coupling between PDs through the waveguides.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 13, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yoshihiro Yoneda, Ryuji Masuyama, Hideki Yagi, Naoko Konishi
  • Patent number: 9887783
    Abstract: An optical coupling system to couple a collimated beam with a waveguide made of semiconductor materials is disclosed. The waveguide is implemented in an optical modulator and/or an optical hybrid, and has a core with a restricted cross section because of the enhanced refractive index of the semiconductor materials. The collimated beam is focused on the core by the two-lens system including first and second lenses. The first lens, having a focal length shorter than a focal length of the second lens, is first aligned with the core, then, the second lens is aligned with the core as compensating deviations of the first lens induced during the fixation thereof.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: February 6, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Yamaji, Tomoya Saeki, Manabu Shiozaki, Yasushi Fujimura, Munetaka Kurokawa
  • Patent number: 9880352
    Abstract: A photonic integrated circuit (PIC) is grown by epitaxy on a substrate. The PIC includes at least one active element, at least one passive element, and a dielectric waveguide. The at least one active and passive elements are formed over the substrate and are in optical contact with each other. The dielectric waveguide is formed over the substrate, and is in optical contact with the at least one active and passive elements. The at least one active and passive elements each are formed using a III-V compound semiconductor material.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: January 30, 2018
    Assignee: BB Photonics Inc.
    Inventors: Miroslaw Florjanczyk, William Ring
  • Patent number: 9880366
    Abstract: A hermetic optical subassembly includes an optical bench having a mirror directing optical signals to/from an optical waveguide, a carrier supporting a photonic device, and an intermediate optical bench having a mirror directing optical signals between the photonic device and the optical bench. The optical bench and the intermediate optical bench optically aligns the photonic device to the waveguide along a desired optical path. In one embodiment, the photonic device is an edge emitting laser (EML). The mirror of the optical bench may be passively aligned with the mirror of the intermediate optical bench. The assembled components are hermetically sealed. The body of the optical benches are preferably formed by stamping a malleable metal material to form precise geometries and surface features. In a further aspect, the hermetic optical subassembly integrates a multiplexer/demultiplexer, for directing optical signals between a single optical fiber and a plurality of photonic devices.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 30, 2018
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Robert Ryan Vallance, Jeremy Burke, Rand Dannenberg
  • Patent number: 9874692
    Abstract: In a substrate-type optical waveguide element, in a case where effective refractive indexes of a TE polarized wave and a TM polarized wave in a first core are defined as NTE@WG1 and NTM@WG1, respectively, and effective refractive indexes of a TE polarized wave and a TM polarized wave in a second core are defined as NTE@WG2 and NTM@WG2, respectively, a magnitude relation of the effective refractive indexes NTM@WG1 and NTM@WG2 at a start position of a parallel-core section is opposite to that at an end position of the parallel-core section, and a relative refractive index difference defined by Formula (a) is 0.25 or higher.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: January 23, 2018
    Assignee: FUJIKURA LTD.
    Inventor: Akira Oka
  • Patent number: 9871347
    Abstract: A semiconductor light source includes a substrate, an optical waveguide having a reflection structure provided on the substrate with an oxide film in between and a semiconductor light emitting element provided on the optical waveguide. The optical waveguide includes a constant width core layer portion located in a center portion, tapered core layer portions that are provided on either side of the constant width core layer and of which the core width gradually increases and a constant width core layer portion for an optical wire waveguide. The semiconductor light emitting element is placed so as to cover at least a portion of the tapered core layer portions on both sides.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: January 16, 2018
    Assignees: FUJITSU LIMITED, NEC CORPORATION, THE UNIVERSITY OF TOKYO
    Inventors: Nobuaki Hatori, Masashige Ishizaka, Takanori Shimizu, Yasuhiko Arakawa, Satoshi Iwamoto, Katsuaki Tanabe
  • Patent number: 9865568
    Abstract: Disclosed herein are integrated circuit (IC) structures having recessed conductive contacts for package on package (PoP). For example, an IC structure may include: an IC package having a first resist surface; a recess disposed in the first resist surface, wherein a bottom of the recess includes a second resist surface; a first plurality of conductive contacts located at the first resist surface; and a second plurality of conductive contacts located at the second resist surface. Other embodiments may be disclosed and/or claimed.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: January 9, 2018
    Assignee: Intel Corporation
    Inventors: Kyu-Oh Lee, Islam A. Salama, Ram S. Viswanath, Robert L. Sankman, Babak Sabi, Sri Chaitra Jyotsna Chavali
  • Patent number: 9851502
    Abstract: An opto-electric hybrid board includes opto-electric module portions respectively defined on opposite end portions of an elongated insulation layer, and an interconnection portion defined on a portion of the insulation layer between the opto-electric module portions and including an optical waveguide. A metal reinforcement layer extends over the opto-electric module portions into the interconnection portion. A portion of the metal reinforcement layer present in the interconnection portion has a smaller width than portions of the metal reinforcement layer present in the opto-electric module portions, and has a discontinuity extending widthwise across the metal reinforcement layer. This arrangement makes it possible to protect the optical waveguide from the bending and the twisting of the interconnection portion, while ensuring the flexibility of the interconnection portion including the optical waveguide.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: December 26, 2017
    Assignee: NITTO DENKO CORPORATION
    Inventors: Naoki Shibata, Yuichi Tsujita
  • Patent number: 9853418
    Abstract: A tunable laser, including: a gain section configured to provide an optical gain for lasing; a multi-channel splitter section configured to split an input signal into multiple outputs; and a multi-channel reflection section, the multi-channel reflection section including multiple arms of unequal lengths and configured to provide an optical feedback and a mode selection function for the laser to work. The gain section, the multi-channel splitter section, and the multi-channel reflection section are sequentially connected in that order. The facet of the gain section away from the multi-channel splitter section is an optical output facet of the laser. When arranging the multiple arms of the multi-channel reflection section in an order according to their lengths, length difference between adjacent arms are unequal. Facets of the multiple arms away from the multi-channel splitter section are coated with reflection films.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: December 26, 2017
    Assignees: HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Weihua Guo, Quanan Chen, Qiaoyin Lu
  • Patent number: 9851507
    Abstract: A compact polarization beam splitter is formed by cascading two stages of three restricted MMIs. Each MMI is configured to set ultra compact width and length for a rectangular waveguide body to limit no more than 4 modes therein working as a polarization beam splitter in a 50 nm wavelength window around 1300 nm. Each MMI is further configured to couple an input at a first end and a TE bar output and a TM cross output at a second end of the rectangular waveguide body. The locations of the input/output waveguide ports are designated to be a distance of ? of the width away from a middle line from the first end to the second end. Two second-stage MMIs have their inputs coupled to the TE bar output and the TM cross output of the first-stage MMI and provide a second-stage TE bar output and a second-stage TM cross output, respectively.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: December 26, 2017
    Assignee: INPHI CORPORATION
    Inventor: Jie Lin
  • Patent number: 9848111
    Abstract: An imager assembly having a molded package formed using a molded interconnect device (MID) technique having a rim portion protruding from a surface of the molded package is disclosed. A lens may be held by the rim portion protruding from the surface and an image sensor may be disposed on the surface. The molded package may further be mechanically and electrically coupled to an electromechanical device, such as a voice coil motor (VCM). The VCM may be configured to move the lens held by the molded package for the purposes of focusing an image on the image sensor. Additionally, an imager assembly with a sandwich molded package having a first high density interconnect (HDI) layer and a second HDI layer with surface mount devices (SMDs) and molding compound therebetween is disclosed. The imager assembly may further include an image sensor, lens assembly, and VCM disposed on the sandwich molded package.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: December 19, 2017
    Assignee: Amazon Technologies, Inc.
    Inventors: Tak Shing Pang, Samuel Waising Tam
  • Patent number: 9846279
    Abstract: An optical signal routing device may include a first lens, second lens and a wavelength division multiplexer (“WDM”) filter positioned between the first and second lenses. The WDM filter may reflect a signal of a first wavelength with a first attenuation and pass the first wavelength signal attenuated by at most a second attenuation to the second lens, the first attenuation exceeding the second attenuation by a first predetermined amount. The WDM filter may reflect a signal of a second wavelength different than the first wavelength with at most a third attenuation, the first attenuation exceeding the third attenuation by at least a second predetermined amount. The device may further include a reflector positioned to reflect the first wavelength signal reflected by the WDM filter toward the WDM filter with at least a fourth attenuation, the fourth attenuation exceeding the second attenuation by at least a third predetermined amount.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: December 19, 2017
    Assignee: Go!Foton Holdings, Inc.
    Inventors: Haiguang Lu, Kenichiro Takeuchi, Rhaniel Peralta, Glenn Lachica, Marlene Gizelle M. Balinos, Anita L. Lumantes, Erika Mae A. Entico
  • Patent number: 9841565
    Abstract: A method for producing a ridge optical waveguide having low coupling losses between the ridge optical waveguide and an optical fiber includes forming on the surface of a dielectric substrate an optical waveguide having a first end and a second end opposite the first end; cutting out two parallel recesses spaced apart by a distance wr on the surface of the dielectric substrate to form a rigid optical waveguide with an increased width (wr) between the two recesses. The recesses are cut such that the depth of each recess changes continuously and gradually between a zero depth at the height of the first end of the optical waveguide and a maximum depth (Hm) at a pre-determined distance (Ip) from the first end.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: December 12, 2017
    Assignees: CENTRE NATIONAL POUR LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE FRANCHE-COMTE
    Inventors: Nadege Courjal, Arnaud Gerthoffer, Fabien Henrot, Jean-Yves Rauch, Clement Guyot, Blandine Edouard
  • Patent number: 9835804
    Abstract: A clip connects two ferrules together, without a housing, to form a fiber optic connection. The clip has proximal and distal ends which define, and the clip has arms extending along the longitudinal axis to hold a cable-side ferrule in connection with fixed ferrule connected to a photonic module or die. The arms form an opening through which the cable-side ferrule is passed for connecting to the fixed ferrule. The arms have resilient bends forming a spring that can be resiliently extended along the longitudinal axis. The arms have a contact area at their ends which grasp the end of the cable-sided ferrule. The arms resiliently retract to compress the cable-sided ferrule towards the fixed ferrule with a predetermined force. The clip is positioned with respect to the circuit board using a pick and place system. The clip is not taller than either ferrule portion, enabling a limited vertical clearance.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: December 5, 2017
    Assignee: Intenational Business Machines Corporation
    Inventors: Tymon Barwicz, Jerome Bougie, Darrell Childers, Paul Francis Fortier, Alexander Janta-Polczynski, Stephan L. Martel
  • Patent number: 9831957
    Abstract: A self-equalizing photo-detector (SEPD) includes, in part, a multitude of optical splitters and photo detectors, and at least one optical delay element. The first optical splitter splits an optical signal into second and third optical signals. The optical delay element delays the second optical signal to generate a fourth optical signal. The second optical splitter splits a signal representative of the fourth optical signal to generate fifth and sixth optical signals. The first photo detector receives the third optical signal via a first optical path, has an anode terminal coupled to an output terminal of the detector and a cathode terminal coupled to a first supply voltage. The second photo detector receives the sixth optical signal via a second optical path, has an anode terminal coupled to a second supply voltage and a cathode terminal coupled to the output terminal of the detector.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: November 28, 2017
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Behrooz Abiri, Seyed Ali Hajimiri, Firooz Aflatouni, Andy Zhou
  • Patent number: 9831634
    Abstract: An apparatus and method of forming a chip package with a waveguide for light coupling is disclosed. The method includes depositing an adhesive layer over a carrier. The method further includes depositing a laser diode (LD) die having a laser emitting area onto the adhesive layer and depositing a molding compound layer over the LD die and the adhesive layer. The method still further includes curing the molding compound layer and partially removing the molding compound layer to expose the laser emitting area. The method also includes depositing a ridge waveguide structure adjacent to the laser emitting area and depositing an upper cladding layer over the ridge waveguide structure.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hao Tseng, Ying-Hao Kuo, Kuo-Chung Yee
  • Patent number: 9832553
    Abstract: An optical interconnection system and method are provided. The system includes two or more basic components that are stacked and interconnected. The basic component includes an optical network layer and an electrical layer, where in each basic component, the optical network layer is electrically interconnected with the electrical layer, and the optical network layer of each basic component is optically interconnected with an optical network layer of an adjacent basic component, and through optical interconnection in three-dimensional space, a limitation on a quantity of stacked electrical layers is reduced, and efficiency of signal transmission is increased.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: November 28, 2017
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jiayong Zhang, Qinfen Hao, Yaoda Liu