With Housing Patents (Class 385/92)
  • Patent number: 10381799
    Abstract: An optical module includes a semiconductor laser with an active layer disproportionately positioned closer to the first surface. The semiconductor laser includes a reflector for reflecting the light outgoing from the active layer in a direction along the first surface toward another direction. The active layer and the reflector are monolithically integrated in the semiconductor laser. The optical module includes a carrier formed from a light transmissive material and having a third surface and a fourth surface opposite to each other. The semiconductor laser is mounted on the carrier so as for the light to enter the third surface. The carrier has a lens integrally on the fourth surface. The optical module includes a substrate having an optical waveguide and an optical coupler for guiding the light to the optical waveguide. The optical waveguide and the optical coupler are integrated in the substrate.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: August 13, 2019
    Assignee: Oclaro Japan, Inc.
    Inventors: Takanori Suzuki, Shigehisa Tanaka
  • Patent number: 10374387
    Abstract: An emitter package can include: a body having a bottom member, side members extending from the bottom member, and a top surface, wherein the body defines a cavity formed into the top surface and located between the bottom member and side members; the cavity having top side walls extending from the top surface to optic shelves, middle side walls extending from the optic shelves to contact shelves, and bottom side walls extending from the contact shelves to a base surface; electrical conductive pads on the base surface in the cavity; emitter chips on the electrical conductive pads, each emitter chip having one or more light emitters; shelf contact pads on the contact shelves; and electrical connector wires connected to and extending between the emitter chips and the shelf contact pads.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: August 6, 2019
    Assignee: FINISAR CORPORATION
    Inventors: Brent Stapleton, Pritha Khurana, Nathan Lye
  • Patent number: 10361533
    Abstract: An optical module that provides a feedthrough to carry an electrical signal output from and/or provided to a semiconductor optical device is disclosed. The feedthrough has a signal pad that carries the electrical signal thereon and at least two ground pads sandwiching the signal pad therebetween. The feedthrough further provides a cavity provided under the signal pad and spaces each between the signal pad and the ground pads.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: July 23, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Shunsuke Sato
  • Patent number: 10355783
    Abstract: An optical-to-optical (O2O) signal path, O2O and hybrid transceivers including the same, a network system or device including one or more of the transceivers, and methods of making and using the same are disclosed. The O2O signal path generally includes first and second ports and an optical amplifier configured to receive an optical signal from a host or a network through the first port and provide an amplified optical signal for the other of the host and the network through the second port. In some examples, the O2O signal path further includes one or more optical isolators and/or clock and data recovery functions. The optical signals in the O2O signal path are processed entirely in the optical domain. The transceiver includes the O2O signal path and may include an optoelectronic signal path, a pass-through connector, or a second O2O signal path.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: July 16, 2019
    Assignee: Source Photonics (Chengdu) Co., Ltd.
    Inventor: Mark Heimbuch
  • Patent number: 10355371
    Abstract: Examples are disclosed that relate to flexible electrical interconnects in electronic devices. One example provides a device including a flexible substrate, a conductive trace disposed on the flexible substrate, an electronic component mounted to the flexible substrate, a liquid metal interconnect bridging between a pad on the component and the trace on the flexible substrate, and an encapsulant covering the interconnect.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: July 16, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: James David Holbery, Siyuan Ma, Flavio Protasio Ribeiro, Michael David Dickey, Collin Alexander Ladd, Andrew Lewis Fassler
  • Patent number: 10320482
    Abstract: The invention provides a connector module and optical signal processing device connected thereto. The optical signal processing device and the connector module are connected together via at least one fiber cable, they are allowed to transmit at least one optical signal therebetween. The connector module comprises a circuit board, a high frequency connector, and at least one photoelectric transducer. The high frequency connector and the photoelectric transducer are configured on the circuit board in a way of COB. Accordingly, the high frequency connector and the photoelectric transducer are implemented on the circuit board in the way of COB, which can effectively reduce the volume and the manufacture cost of the connector module. Besides, the connector module is capable of transmitting signals in the way of optical communication so as to improve the data transfer rate and transmission distance of the connector module.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: June 11, 2019
    Assignee: Optomedia Technology Inc.
    Inventors: Hui-Tsuo Chou, Ching-Wei Chiu, Pei-Hsiang Hsu
  • Patent number: 10321607
    Abstract: When an optical module is inserted into a compartment of a receptacle cage in a state where a heatsink is detached from the receptacle cage, a tip end portion of a protection wall portion of the optical module comes into contact with end portions of guide pieces of a guide plate even if the optical module is inserted with the protection wall portion being lifted up, and the tip end portion of the protection wall portion is thereby pushed down and guided to a clearance below the guide pieces.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: June 11, 2019
    Assignee: YAMAICHI ELECTRONICS CO., LTD.
    Inventors: Toshiyasu Ito, Shigeru Sato, Yosuke Takai
  • Patent number: 10313024
    Abstract: The present disclosure is generally directed to a transmitter optical subassembly (TOSA) having a hermetically-sealed housing with a feedthrough device that electrically isolates RF and power traces. In more detail, a TOSA consistent with the present disclosure includes a substrate with driving circuitry disposed thereon. A first end of the substrate may electrically couple to transmit connecting circuitry and a second end may couple to a hermetically-sealed housing. The hermetically-sealed housing can include one or more laser packages for emitting associated channel wavelengths in addition to monitor photodiodes (PDs), and temperature control devices such as TECs. The hermetic-sealed housing includes a first end with a feedthrough device that provides traces to electrically couple to the circuitry of the substrate. The hermetic-sealed housing further includes an optical coupling port, e.g., a LC connector, for coupling to an external fiber, for example.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: June 4, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Kevin Liu, YongXuan Liang
  • Patent number: 10295762
    Abstract: Optical ports providing passive alignment connectivity are disclosed. In one embodiment, an optical port includes a substrate having a surface, a photonic silicon chip, a connector body, and a plurality of spacer elements. The photonic silicon chip includes an electrical coupling surface, an upper surface and an optical coupling surface. The optical coupling surface is positioned between the electrical coupling surface and the upper surface. The photonic silicon chip further includes at least one waveguide terminating at the optical coupling surface, and a chip engagement feature disposed on the upper surface. The connector body includes a first alignment feature, a second alignment feature, a mounting surface, and a connector engagement feature at the mounting surface. The connector engagement feature mates with the chip engagement feature. The plurality of spacer elements is disposed between the electrical coupling surface of the photonic silicon chip and the surface of the substrate.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: May 21, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Wojciech Piotr Giziewicz, James Phillip Luther, Andreas Matiss, Jerald Lee Overcash
  • Patent number: 10270531
    Abstract: An optical transceiver includes: a TOSA that converts an electrical signal into an optical signal; an ROSA that converts an optical signal into an electrical signal; a receptacle that houses an external optical connector for transmitting or receiving an optical signal through the external optical connector; an internal fiber that optically connects one of the ROSA and the TOSA to the receptacle; a circuit board that includes a circuit that is electrically connected to the TOSA and the ROSA via an FPC; a holding member that is attached to the circuit board and holds the ROSA and the TOSA; and a housing that houses the TOSA, the ROSA, the receptacle, the internal fiber, the circuit board, and the holding member. The holding member includes a plurality of guides that guide the internal fiber.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: April 23, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kuniyuki Ishii, Hiromi Kurashima
  • Patent number: 10261349
    Abstract: An optical module includes a substrate and terminals. The substrate has: a first planar part having first through holes into which the terminals are inserted respectively; a second planar part that opposes the first planar part as a result of the substrate being folded and has second through holes into which the terminals are inserted respectively; at least one first land part that is formed on the first planar part around at least one of the first through holes and that is connected to at least one of the terminals inserted through the first through hole; and at least one second land part that is formed on the second planar part around at least one of the second through holes into which another one of the terminals not being connected to the first land part is inserted and that is connected to the terminal inserted through the second through hole.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: April 16, 2019
    Assignee: FUJITSU OPTICAL COMPONENTS LIMITED
    Inventor: Masaki Sugiyama
  • Patent number: 10254492
    Abstract: An optical module includes a housing, a printed circuit board, an optical assembly, an optical interface joined with the optical assembly, the printed circuit board, the optical assembly, and the optical interface being disposed in the housing, an adapter to be mated with an external optical connector and disposed on an end of the housing, and first and second connecting part disposed on the adapter and the housing, respectively. The adapter and the housing are secured together through the first and second connecting parts. The optical interface and the adapter are configured to correspond to each other.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: April 9, 2019
    Assignee: InnoLight Technology (Suzhou) Ltd.
    Inventors: Zhanwei Wang, Kewu Wang
  • Patent number: 10241284
    Abstract: An optical fiber including a circuit board, a converter, an optical fiber, an external connecting part, and a pressable part. The circuit board includes first and second faces opposite to each other. The first face has first and second regions being different regions. The second face has third and fourth regions on the opposite side to the first and second regions, respectively. The converter is an opto-electronic or electro-optic converter on the first region of the circuit board. The optical fiber includes a leading end portion optically connected to the converter. A circuit on the first region of the circuit board is electrically connected to the converter. The external connecting part is disposed on the fourth region of the circuit board. The pressable part is fixed to the circuit board and positioned on the second region of the circuit board without contacting the converter, the optical fiber, or the circuit.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: March 26, 2019
    Assignee: Hosiden Corporation
    Inventors: Kosuke Sasada, Takayuki Nagata
  • Patent number: 10234640
    Abstract: An optical connector includes a first connector and a second connector configured to be mated to the first connector. The first connector includes a plate having an opening, a substrate stacked on the plate, and an adapter having an opening and connected to the plate. The second connector includes a housing and a ferrule configured to connect to an optical fiber. The ferrule is provided in the housing to project from the housing to have an end of the ferrule exposed outside the housing. The ferrule is inserted in the openings when the first connector and the second connector are mated together.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: March 19, 2019
    Assignee: FUJITSU COMPONENT LIMITED
    Inventors: Satoshi Moriyama, Osamu Daikuhara
  • Patent number: 10228523
    Abstract: An optical module includes a first optical block and a second optical block. The first optical block includes a base part, two extending parts which extend in a first direction, locking parts, and a first reference surface. The second optical block includes a holding part, two arm parts, spring pieces which extend in the first direction, locked parts which are formed on the spring pieces, and a second reference surface. In a state that the first optical block and the second optical block are assembled with each other, the locking parts are hooked on the locked parts, the second reference surface is pressed against the first reference surface by a spring force of the spring pieces so as to realize positioning in the assembling direction, and an optical path between the base part and the holding part is parallel to the first direction.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 12, 2019
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventor: Osamu Hashiguchi
  • Patent number: 10230470
    Abstract: In accordance with an embodiment, a multi-layered flexible printed circuit (FPC) is disclosed that includes two or more insulating layers to route conductive traces carrying radio frequency (RF) signals, e.g., data signals, and conductive traces carrying direct current (DC) signals, e.g., power signals and low-frequency control signals, while sufficiently isolating the RF signals from electrical interference by the DC transmission lines. This advantageously eliminates having two or more separate FPCs to electrically couple each optical subassembly, e.g., receiver optical subassemblies (ROSAs) and transmitter optical subassemblies (TOSAs), to associated circuitry in a transceiver housing, which saves space and reduces manufacturing complexity, for example.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: March 12, 2019
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Yi Wang, Kevin Liu
  • Patent number: 10219412
    Abstract: A connector assembly and heat sink configured to be received by a radio unit are provided. An example connector assembly includes a printed wiring board (PWB) at least partially disposed within the radio unit when in an operational configuration, and the PWB defines an extension at least partially disposed exterior to the radio unit when in the operational configuration. The connector assembly includes one or more optoelectronic components configured to convert between optical signals and electrical signals supported by the PWB, and at least a portion of the one or more optoelectronic components are disposed on the extension of the PWB. The connector assembly also includes a heat sink housing attached to the PWB that encloses the extension of the PWB and optoelectronic components disposed on the extension in order to dissipate heat from the optoelectronic components to an exterior environment of the connector assembly.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: February 26, 2019
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Todd Betz, Michael Bartlett, Andrew Morrison, Earl Ponceti
  • Patent number: 10191229
    Abstract: An optical transceiver that optionally exchanges between the bail and the pull-tab for disengaging the optical transceiver with the cage is disclosed. The optical transceiver provides a slider to be assembled with both of the bail and the pull-tab. The slider provides an opening common to the bail and the pull-tab, and a composite opening that includes a portion for the bail and another portion for the pull-tab. The bail, by rotating around the common opening, may induce forward and rearward motions for the slider, while, the pull-tab, by pulling and pushing, may directly cause the forward and rearward motions for the slider through the composite opening.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: January 29, 2019
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Takashi Matsui
  • Patent number: 10188872
    Abstract: An apparatus is provided for irradiating at least a portion of a patient's brain with electromagnetic radiation to treat stroke, Parkinson's Disease, Alzheimer's Disease, or depression. The apparatus includes a source of the electromagnetic radiation. The apparatus further includes an output optical element including a rigid and substantially thermally conductive material and a surface configured to be in thermal communication with the patient's body. The apparatus further includes a cooler thermally coupled to the output optical element to remove heat from the output optical element. The apparatus further includes a heat sink thermally coupled to the cooler, wherein the heat sink is positioned so that the electromagnetic radiation from the source propagates through the heat sink and through the output optical element.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: January 29, 2019
    Assignee: Pthera LLC
    Inventors: Luis De Taboada, Jackson Streeter
  • Patent number: 10171170
    Abstract: The present disclosure provides a multi-channel parallel optical transceiver module. The disclosed optical transceiver module/device may include a shell body and a circuit board located in the shell body, and an optical emitter base soldered to a first end of the circuit board. A notch located on the base, for engaging the first end of the circuit board, and the optical emitter base engaged with the first end of the circuit board may be soldered to two sides of the circuit board. The optical emitters may be disposed in parallel on the base, and separated from each other by a block. A lens and a laser may be disposed at a first side of each of the optical emitters that is adjacent to the circuit board, and an optical monitor may be disposed on a second end of the circuit board adjacent to the laser.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: January 1, 2019
    Assignee: Global Technology Inc.
    Inventors: Jian-Hong Luo, Chao-Hung Tsai, Che-Shou Yeh, Lai-Wei Lu
  • Patent number: 10114177
    Abstract: Translating lens holder assemblies employing bore relief zones, as well as optical connectors employing such lens holder assemblies, are disclosed. In one embodiment, a lens holder assembly includes a lens holder body having a mating face, a first forward slide portion and a first rear slide portion disposed on a first side of the lens holder body, and a second forward slide portion and a second rear slide portion disposed on a second side of the lens holder body. The first forward slide portion is separated from the first rear slide portion by a first bore relief zone, and the second forward slide portion is separated from the second rear slide portion by a second bore relief zone. In one embodiment, the lens holder assembly further includes at least one groove alignment feature disposed in the lens holder body that is configured to support at least one GRIN lens.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: October 30, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Michael de Jong, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 10107978
    Abstract: An optical module includes: an optical assembly, including a light receiving assembly and/or a light transmitting assembly; a printed circuit board, on which the optical assembly is mounted; an adapter, used for docking with external connectors, wherein the adapter is configured to fit the optical assembly and to be fixed to the printed circuit board, and the adapter includes a metal part and a plastic part; and a conductive shell, used for accommodating the printed circuit board, the optical assembly, and the adapter, the conductive shell being electrically connected to the metal part of the adapter.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: October 23, 2018
    Assignee: InnoLight Technology (Suzhou) Ltd.
    Inventors: Xian Zhou, Kewu Wang
  • Patent number: 10104793
    Abstract: A connector assembly includes a cage member having a plurality of walls defining first and second module cavities configured to receive corresponding pluggable modules therein. The module cavities are separated by a separator wall. The connector assembly includes a separator spring plate along the separator wall. The separator spring plate has a base section coplanar with the separator wall along a separator wall plane. The separator spring plate has first separator spring beams extending out of the separator wall plane to a first side of the separator wall plane into the first module cavity to couple to the pluggable module received therein and second separator spring beams extending out of the separator wall plane to a second side of the separator wall plane into the second module cavity to electrically couple to the pluggable module received therein.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: October 16, 2018
    Assignee: TE CONNECTIVITY CORPORATION
    Inventors: Eric David Briant, Charles Jameson Valentine, James Charles Shiffler
  • Patent number: 10066980
    Abstract: A guided wave radar fluid level measurement system can measure the level of product in a tank. A pulse of RF energy sent along a waveguide in the tank can be reflected where the waveguide enters the product. A time of flight measurement can indicate the product level. The product inside the tank can flow and that flow can push the waveguide and thereby torque and possibly bend the waveguide. A streamlined wave guide is torqued less when the streamlining is aligned with the direction of flow. A rotating connector can provide for the waveguide to rotate and a weathervane effect can align the streamlined waveguide with the flow.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 4, 2018
    Assignee: Honeywell International Inc.
    Inventors: Stuart James Heath, Michael Kon Yew Hughes
  • Patent number: 10050409
    Abstract: A microfabricated optical apparatus that includes a light source driven by a waveform, wherein the waveform is delivered to the light source by at least one through silicon via. The microfabricated optical apparatus may also include a light-sensitive receiver which generates an electrical signal in response to an optical signal. The electrical signal may be communicated to external devices by at least one additional through silicon via, and the signals routed to the encapsulated devices by metal traces. The vias may couple a ground plane to a metal trace layer at intervals, effectively quashing the ability of the bondline to interfere with the absorbed or radiated signal frequency.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: August 14, 2018
    Assignee: Innovative Micro Technology
    Inventor: Christopher S. Gudeman
  • Patent number: 10018793
    Abstract: A connector is mateable with and removable from a mating connector, which has an optical connector, along a mating direction. The connector is provided with a receptacle to be attached to a case and an adapter to be mounted on a circuit board located in the case. The adapter has an inner module to be connected to the optical connector and a cage which accommodates the inner module at least in part. One of the receptacle and the cage is provided with a contact portion which is in contact with a remaining one of the receptacle and the cage. The receptacle and the cage are electrically connected to each other through the contact portion without direct fixation between the receptacle and the cage.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: July 10, 2018
    Assignee: JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Naoki Katagiyama, Masaki Ishiguro, Takayuki Tanaka
  • Patent number: 10012811
    Abstract: A pluggable optical module, including: a pluggable module unit including an optical connector disposed at a front end portion thereof and an electrical connector disposed at a rear bottom portion thereof, wherein the optical connector is configured to be optically coupled to an optical fiber, and wherein the electrical connector is configured to be electrically coupled to an electrical connector disposed on an electrical board. Optionally, the pluggable module unit includes a pluggable module adapter secured to a pluggable module body. The electrical connector is then disposed at a rear bottom portion of the pluggable module adapter.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: July 3, 2018
    Inventors: Daniel Rivaud, Kevin Estabrooks, Gregory Vanderydt
  • Patent number: 10007071
    Abstract: Optical bodies having a total internal reflection surface and a short optical path length along with electronic devices using the optical bodies are disclosed. The optical body comprises at least one optical channel and comprises a total internal reflection (TIR) surface and a lens located on a bottom of the optical body. By way of example, the short optical path length may have the lens of the optical body at a distance of 500 microns or less from a front end of the optical module. In another embodiments, the optical body may include a window adjacent to the front end. Methods for making an optical connector are also disclosed.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: June 26, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Micah Colen Isenhour, James Phillip Luther
  • Patent number: 9995891
    Abstract: An optical module includes a case including an optical filter, a receptacle coupled to the case, an optical receiver, and an optical transmitter. The receptacle includes a recess formed along an outer circumferential surface thereof. The recess may be formed by a first side wall and a second side wall which face each other and a bottom surface coupling the first side wall to the second side wall. Further, at least one of the first side wall and the second side wall may include an insulating material.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 12, 2018
    Assignee: OE SOLUTIONS CO., LTD.
    Inventors: Se Hee Han, Eun Kyo Jung, Na Young Goh, Tae Kyun Kim
  • Patent number: 9992560
    Abstract: A light detection module includes: a TO base and a TO cap; wherein the TO base is fixedly provided thereon with a first optical sensor, a support frame and a support base; the support frame is fixedly provided thereon with a beam splitter, and the beam splitter and the first optical sensor are at an angle of 45 degrees; an upper surface of the support base is fixedly provided thereon with an optical resonator and a second optical sensor, the optical resonator is located between the beam splitter and the second optical sensor, and the optical resonator, the second optical sensor and the beam splitter are on a straight line parallel to a surface of the TO base; and the TO cap is provided thereon with an opening, and the opening, the first optical sensor and the beam splitter are on a straight line perpendicular to the surface of the TO base.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: June 5, 2018
    Assignees: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES, LTD., HISENSE USA COP., HISENSE INTERNATIONAL CO., LTD.
    Inventor: Huani Zhang
  • Patent number: 9983370
    Abstract: Aspects of the embodiments are directed to an optics module including a top-side inner wall and a bottom-side inner wall. The optics module may include a receiving element for receiving a small form factor pluggable (SFP) device; a heat sink including a first portion, the first portion including a top side and a bottom side, the bottom side of the heat sink in contact with the receiving element; and a first springing element residing between the first portion of the heat sink and the top-side inner wall of the optics module, the first springing element configured to bias the top side of the first portion of the heat sink onto the receiving element. In some embodiments, the optics module also includes a thermal interface material residing between the bottom-side inner wall of the optics module and the second portion of the heat sink, the thermal interface material configured to establish a thermal conduction path between the bottom-side inner wall of the optics module and the heat sink.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: May 29, 2018
    Assignee: Cisco Technology, Inc.
    Inventor: William George Mahoney
  • Patent number: 9980379
    Abstract: The second wiring pattern includes extended regions from the main body side to the projecting portions as seen in a direction in which the pair of leads extend, and wiring regions continuously spreading from the extended regions in a direction away from the main body. Supposing that a length of the wiring region from an end of the projecting portion as a reference point to a farthest position in a direction away from the main body is a first width and a width of the extended region in a direction parallel to a side opposed to the main body side through the end of the projecting portion is a second width, the first width is smaller than the second width. The second insulating substrate is sandwiched between the second wiring pattern and a base, and thereby, a capacitance is formed.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: May 22, 2018
    Assignee: OCLARO JAPAN, INC.
    Inventors: Daisuke Noguchi, Hiroshi Yamamoto
  • Patent number: 9972944
    Abstract: A pluggable module includes a pluggable body extending between a front end and a mating end receivable in a module cavity of a receptacle assembly to mate with a communication connector. The pluggable body has a top, a bottom, a first side wall and a second side wall between the top and the bottom and has an upper shell defining the top and a lower shell defining the bottom coupled together at a seam. A seam cover is coupled to the pluggable body at the first side wall covering the seam between the upper shell and the lower shell on the first side wall. The seam cover is conductive and provides EMI shielding at the seam for a communication circuit board held in the pluggable body.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 15, 2018
    Assignee: TE CONNECTIVITY CORPORATION
    Inventors: Richard James Long, Steven David Dunwoody
  • Patent number: 9971112
    Abstract: An optoelectrical connector system can include an optical coupler that is configured to be positioned over a photonic device on the PCB. The optoelectrical connector system can further include a connector housing that is configured to be attached to the optical coupler after the optical coupler is positioned over the photonic device, so that the coupler can be aligned and fixed without the housing attached thereto.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: May 15, 2018
    Assignee: FCI Asia Pte. Ltd.
    Inventors: Jeroen De Bruijn, Alexander Eichler-Neumann
  • Patent number: 9958497
    Abstract: A testing pluggable module includes a pluggable body extending between a front end and a mating end defining a mating interface with a communication connector of a receptacle assembly. The mating end is receivable in a module cavity of the receptacle assembly to mate with the communication connector. The pluggable body has an exterior forward of the mating end. The testing pluggable module includes an internal circuit board held in the pluggable body having a testing circuit operating at least one testing function. The testing pluggable module includes a user interface on the exterior of the pluggable body. The user interface has an input configured to operably control the at least one testing function of the testing circuit.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: May 1, 2018
    Assignee: TE CONNECTIVITY CORPORATION
    Inventors: Alex Michael Sharf, Alan Weir Bucher
  • Patent number: 9946033
    Abstract: A fiber optic connector includes a ferrule configured to receive and support one or more optical fibers and at least one component coupled to a surface of the ferrule by an adhesive. The at least one component overlays a footprint area defined on the surface to which the adhesive is applied, and the surface has a plurality of recessed formations within the footprint area to accommodate the adhesive.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: April 17, 2018
    Assignee: Corning Optical Communications LLC
    Inventor: Kevin Eugene Elliott
  • Patent number: 9897759
    Abstract: An apparatus for combining optical radiation, wherein the apparatus comprises a bundle of input optical fibers formed of glass, a taper, and an output optical fiber, wherein the taper is fused to the output optical fiber; and the apparatus comprises at least one cladding mode stripper to strip out higher order modes that would otherwise degrade a polymer coating on at least one of the input optical fibers and the output optical fiber.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: February 20, 2018
    Assignee: SPI Lasers UK Limited
    Inventor: Iain Botheroyd
  • Patent number: 9851512
    Abstract: An optical fiber connector includes a main body unit having a guiding groove, and two position limiting portions that respectively protrude from two walls respectively defining two sides of the guiding groove toward each other, a sleeve unit, and a coupling unit including two coupling members each having two first protruding block portions that respectively protrude away from each other. The sleeve unit is configured to be movable rearwardly on the main body unit to press the first protruding block portions toward each other, so as to allow the first protruding block portions to pass past the position limiting portions, thereby allowing for movement of each of the coupling members between a non-working position and a working position.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: December 26, 2017
    Assignees: GLORIOLE ELECTROPTIC TECHNOLOGY CORP., SHEN ZHEN WONDERWIN TECHNOLOGY CO., LTD.
    Inventors: Ming-Hua Chang, Yen-Chang Lee
  • Patent number: 9851515
    Abstract: A receptacle for transceiver optical sub-assembly is configured for optical elements such as a light-emitting unit, a light guide unit, a light-receiving unit and a filter to connect thereto. The receptacle includes a lower receptacle body having a through bore, to which the light-emitting unit is connected; and an upper receptacle body having an axial receiving bore, to which the light guide unit is connected. The upper and the lower receptacle body are movable relative to each other in the x-y plane. The lower receptacle body can be moved relative to the upper receptacle body until an optical signal emitted from the light-emitting unit is optically coupled and collimated with an optical fiber in the light guide unit, and then the upper and lower receptacle bodies are fixedly connected together.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: December 26, 2017
    Assignee: Optoway Technology Inc.
    Inventor: Eddy Chien
  • Patent number: 9835239
    Abstract: A housing that includes a polymer, a reinforcing material, and a thermally conductive filler. A first housing component is defined by the polymer such that the reinforcing material and a thermally conductive filler are embedded within the polymer. The thermally conductive filler is configured such that heat can be passively conducted through the first housing component. The housing can be configured to be an aircraft gearbox housing.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: December 5, 2017
    Assignee: General Electric Company
    Inventors: Warren Rosal Ronk, Gregory Carl Gemeinhardt
  • Patent number: 9831613
    Abstract: A shielding cage of a connector is disclosed. The shielding cage includes an opening defined by four walls and configured to receive a plug of a mating connector, and a plurality of shielding spring sheets held on the four walls, each shielding spring sheet having an inner spring sheet portion located inside the opening and an outer spring sheet portion located outside the opening.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: November 28, 2017
    Assignee: Tyco Electronics (Shanghai) Co. Ltd.
    Inventors: Wenyu Liu, Hongqiang Han, Youwei Pan
  • Patent number: 9806739
    Abstract: An optical data coding method includes at least steps of selecting a modulation scheme comprising an X-polarization constellation format having first and second amplitude rings with circular grids corresponding to predetermined phase angles and a Y-polarization constellation format having the first and second amplitude rings with the circular grids corresponding to the predetermined phase angles, arranging a first part of the symbol on a first circular grid of the first amplitude ring on the X-polarization constellation format, and arranging a second part of the symbol on a second circular grid of the second amplitude ring on the Y-polarization constellation format.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: October 31, 2017
    Assignees: Mitsubishi Electric Research Laboratories, Inc., Mitsubishi Electric Corporation
    Inventors: Keisuke Kojima, Tsuyoshi Yoshida, Toshiaki Koike-Akino, David Millar, Kieran Parsons
  • Patent number: 9793667
    Abstract: An adapter for a communication transceiver is provided. The adapter includes a main body having a first end and opposed second end. The first end of the main body has an OSFP (octal small form factor pluggable) edge connector arranged for electrical and physical connection to an OSFP host connector in an OSFP host port. The main body has a QSFP (quad small form factor pluggable) host connector arranged to receive a QSFP edge connector of a QSFP transceiver through the second end of the main body so that the adapter adapts the QSFP transceiver to an OSFP host. A method of using a communication adapter is also provided.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: October 17, 2017
    Assignee: Arista Networks, Inc.
    Inventors: Youngbae Park, Jiayi Wu, Warren Meggitt, Richard Hibbs, Robert Wilcox
  • Patent number: 9788417
    Abstract: An example embodiment includes optoelectronic module. The optoelectronic module may include a lens assembly, a module board, heat-generating components, and a thermally conductive plate. The lens assembly may be secured to the module board. The module board may include a printed circuit board (PCB). The heat-generating components may be mounted to the PCB. The thermally conductive plate may be secured to a surface of the module board. The thermally conductive plate may define an opening that receives at least a portion of the lens assembly. The thermally conductive plate may be configured to absorb at least a portion of thermal energy generated during operation of the heat-generating components and to transfer the thermal energy away from the heat-generating components.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: October 10, 2017
    Assignee: FINISAR CORPORATION
    Inventors: Cindy H. Hsieh, Frank J. Flens, Ziv Lipkin
  • Patent number: 9778077
    Abstract: It is made possible to amplify signal light of an optical fiber sensor and to perform measurement in a long distance. At least one of a plurality of core wires in a multicore optical fiber is used as a signal-light propagating core wire 133 and the other is used as a reference-light propagating core wire 134. Also, homodyne detection of signal light and reference light reflected by an FBG sensor unit 132 arranged in each measurement point is performed. Thus, signal light is amplified. In order to make a difference between optical path lengths of the signal light and the reference light equal to or smaller than a coherence length, an optical path-length adjustment unit including a piezoelectric element or the like is arranged in an optical path of the reference light.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: October 3, 2017
    Assignee: Hitachi, Ltd.
    Inventors: Yoshitaka Morimoto, Takahiro Kurokawa, Koichi Watanabe
  • Patent number: 9759875
    Abstract: A bi-directional optical module that provides an Rx unit and a Tx unit, where optical axes are perpendicular to each other, is disclosed. The optical module provides a housing that installs a WDM filter therein and assembles the coupling unit in a surface through the front alignment unit, the Tx unit in another surface opposite to the former surface, and the Rx unit in still another surface connecting the former two surfaces through the rear alignment unit. The axes of the Tx unit and the coupling unit are in parallel to each other, but the axis of the Rx unit is in perpendicular to the former two axes. The Rx unit installs a photodiode (PD) with an optically sensitive surface leveled with the surface of the rear alignment unit to which the Rx unit is attached.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: September 12, 2017
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Takeshi Okada
  • Patent number: 9759881
    Abstract: An exemplary optical connector assembly may include a substrate of an optical printed circuit board (OPCB) with at least one optical device thereon, the substrate including one or more recesses, an optical connector with one or more alignment members for coupling an end of an optical waveguide to the optical device, and one or more inserts, each having an orifice for receiving one of the one or more alignment members and each arranged to be received in one of the one or more recesses. When assembled, the one or more inserts may be received in the one or more recesses and the one or more alignment members may be received in the orifices of the one or more inserts thereby coupling the optical waveguide to the substrate to form the exemplary optical connector assembly.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: September 12, 2017
    Assignee: XYRATEX TECHNOLOGY LIMITED
    Inventor: Paul Stevens
  • Patent number: 9753235
    Abstract: Gradient index (GRIN) lens holders employing groove alignment feature(s) and total internal reflection (TIR) surface, and related components, connectors, and methods are disclosed. In one embodiment, the GRIN lens holder contains one or more internal groove alignment features configured to secure one or more GRIN lenses in the GRIN lens holder. The groove alignment features are also configured to accurately align the end faces of the GRIN lenses. The GRIN lens holders disclosed herein can be provided as part of an optical fiber ferrule and/or a fiber optic component or connector for making optical connections. A fiber optic connector containing the GRIN lens holders disclosed herein may be optically connected to one or more optical fibers in another fiber optic connector or to an optical device, such as a laser-emitting diode (LED), laser diode, or opto-electronic device for light transfer.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: September 5, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Michael de Jong, Micah Colen Isenhour, Dennis Michael Knecht, James Phillip Luther
  • Patent number: 9746626
    Abstract: Methods and systems for optical power monitoring of a light source assembly coupled to a silicon photonically-enabled integrated circuit (chip) are disclosed and may include, in a system comprising an optical source assembly coupled to the chip: emitting a primary beam from a front facet of a laser in the optical source assembly and a secondary beam from a back facet of the laser, directing the primary beam to an optical coupler in the chip, directing the secondary beam to a surface-illuminated photodiode in the chip, and monitoring an output power of the laser utilizing an output signal from the photodiode. The primary beam may comprise an optical source for a photonics transceiver in the chip. The focused primary beam and the secondary beam may be directed to the chip using reflectors in a lid of the optical source assembly.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: August 29, 2017
    Assignee: Luxtera, Inc.
    Inventors: Michael Mack, Subal Sahni, Steffen Gloeckner
  • Patent number: 9733438
    Abstract: An optical connector includes a lens block mounted in a MPO housing and optically coupled between an optical light guide and an external coupling light guide. A first lens formed on a first surface of the lens block to totally reflect and collimate light emitting from the optical light guide to a second surface. The second surface is coated with a partial transmission coating on a transmitter side and a total reflective coating on a receiver side. A second lens formed on a third or fourth surface on the lens block for focusing light from the second surface onto the external coupling light guide.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: August 15, 2017
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Xiaoming Yu, Vincent Wai Hung, Margarito P. Banal, Jr., Yuk Nga Chen