Magnesium Containing Patents (Class 420/532)
  • Publication number: 20140096879
    Abstract: Disclosed herein is an aluminum alloy composition and a method of heat treating the aluminum alloy, to improve process control and strength of the aluminum alloy for a rear safety plate mounted on a truck, etc., complying with safety regulations wherein the aluminum alloy composition includes Silicon (Si) about 0.8 to 1.3% by weight, Iron (Fe) up to about 0.5% by weight, Copper (Cu) about 0.15 to 0.4% by weight, Manganese (Mn) up to about 0.15% by weight, Magnesium (Mg) about 0.8 to 1.2% by weight, Chromium (Cr) up to about 0.25% by weight, Zinc (Zn) up to about 0.2% by weight, Titanium (Ti) up to about 0.1% by weight and the remaining percent by weight of Aluminum (Al) of the entire composition.
    Type: Application
    Filed: December 18, 2012
    Publication date: April 10, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventor: Nak-Young Kim
  • Publication number: 20140099230
    Abstract: An aluminum alloy that is not sensitive to quenching, for the production of high-strength forged pieces that are low in inherent tension, and high-strength extruded and rolled products, consisting of: 7.0-10.5 wt. % zinc, 1.0-2.5 wt. % magnesium, 0.1-1.15 wt. % copper, 0.06-0.25 wt. % zirconium, 0.02- 0.15 wt. % titanium, at most 0.5 wt. % manganese, at most 0.6 wt. % silver, at most 0.10 wt. % silicon, at most 0.10 wt. % iron, at most 0.04 wt. % chrome, and at least one element selected from the group consisting of: hafnium, scandium, strontium and/or vanadium with a summary content of at most 1.0 wt. %. The alloy can also contain contaminants at proportions of at most 0.05 wt. % per element and a total proportion of at most 0.15 wt. %, wherein the remaining component includes aluminum.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 10, 2014
    Applicant: OTTO FUCHS KG
    Inventors: Gernot FISCHER, Gregor TERLINDE, Matthias HILPERT
  • Publication number: 20140086789
    Abstract: An aluminum alloy for a vehicle has the composition including, by weight %, 0.5% or less of Fe, 0.2% or less of Mn, Si, and Cu with the balance being Al and unavoidable impurities, wherein dendrite arm spacing is 45 ?m or less, and a size of an intermetallic compound is 150 ?m or less.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Masaki Agata, Kyo Takahashi, Toshimitsu Suzuki
  • Patent number: 8673209
    Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The invention alloy is useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction. The invention alloy may be aged by 2 or 3 step practices while exceeding the SCC requirements for applications for which the invention alloy is primarily intended.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: March 18, 2014
    Assignee: Alcoa Inc.
    Inventors: Gary H. Bray, Dhurba J. Chakrabarti, Diana Denzer, Jen Lin, John Newman, Greg Venema, Cagatay Yanar
  • Publication number: 20140056755
    Abstract: An aluminum casting alloy contains Si: 3.0 wt.-% to 3.8 wt.-% Mg: 0.3 wt.-% to 0.6 wt.-% Cr: 0.25 wt.-% to 0.35 wt.-% Fe: <0.18 wt.-% Mn: <0.06 wt.-% Ti: <0.16 wt.-% Cu: <0.006 wt.-% Sr: 0.010 wt.-% to 0.030 wt.-% Zr: <0.006 wt.-% Zn: <0.006 wt.-% Contaminants: <0.1 wt.-%, and is supplemented to 100 wt.-%, in each instance, with Al.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Applicant: KSM Castings Group GmbH
    Inventors: Klaus GREVEN, Manikandan LOGANATHAN, Oliver GRIMM, Lutz WOLKENSTEIN, Heinrich HANEKOP, Stephan BUKOWSKI
  • Publication number: 20140044588
    Abstract: An aluminum alloy sheet exhibits excellent surface quality after anodizing without showing a band-like streak pattern. The aluminum alloy sheet is a 5000 series aluminum alloy sheet that includes 1.0 to 6.0 mass % of Mg, wherein the concentration of Mg in a solid-solution state that is present in an outermost surface area of the aluminum alloy sheet varies in the widthwise direction of the aluminum alloy sheet in the form of a band having a width of 0.05 mm or more, and the difference in the concentration of Mg between adjacent bands is 0.20 mass % or less.
    Type: Application
    Filed: June 28, 2013
    Publication date: February 13, 2014
    Inventors: Mineo ASANO, Yusuke YAMAMOTO
  • Publication number: 20140034713
    Abstract: A fin stock material from an 3xxx-series aluminium alloy and including at least 0.5% to 2.0% Mn, and furthermore a purposive addition of one or more wetting elements selected from the group of: Bi 0.03% to 0.5%, Pb 0.03% to 0.5%, Sb 0.03% to 0.5%, Li 0.03% to 0.5%, Se 0.03% to 0.5%, Y 0.03% to 0.05%, Th 0.03% to 0.05%, and the sum of these elements being 0.5% or less, with the remainder including aluminium and tolerable impurities. Also provided is a method for manufacturing a heat exchanger assembly incorporating such a fin stock material.
    Type: Application
    Filed: March 13, 2012
    Publication date: February 6, 2014
    Applicant: ALERIS ROLLED PRODUCTS GERMANY GMBH
    Inventors: Adrianus Jacobus Wittebrood, Steven Kirkham, Achim Burger, Klaus Vieregge
  • Patent number: 8608876
    Abstract: An AA7000-series alloy including 3 to 10% Zn, 1 to 3% Mg, at most 2.5% Cu, Fe<0.25%, and Si<0.12%. Also, a method of manufacturing aluminum wrought products in relatively thick gauges, i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: December 17, 2013
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt
  • Publication number: 20130319585
    Abstract: An aluminum alloy includes, in weight percent, 0.70-0.85 Si, 0.14-0.25 Fe, 0.25-0.35 Cu, 0.05 max Mn, 0.75-0.90 Mg, 0.12-0.18 Cr, 0.05 max Zn, and 0.04 max Ti, the balance being aluminum and unavoidable impurities. The alloy may be suitable for extruding, and may be formed into an extruded alloy product.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Inventors: Nick C. Parson, Raynald Guay, Alexandre Maltais
  • Publication number: 20130302643
    Abstract: The invention relates to an aluminium alloy, and aluminium alloy product consisting at least in part of an aluminium alloy, an ingot formed from an aluminium alloy, and also a method for producing an aluminium alloy. An improved soldering process is achieved by an AlSi aluminium alloy that has the following proportions of alloy components in percentage by weight: 4.5%? Si ??12%, P ?10 ppm, B ?10 ppm, 30 ppm? Ti ?240 ppm,? Fe ??0.8%, Cu ??0.3%, Mn ?0.10%, Mg ??2.0%, Zn ?0.20%, Cr ?0.05%, the remainder being Al and unavoidable impurities, individually at most 0.05% by weight and in total at most 0.15% by weight, wherein the aluminium alloy is free from Si primary particles with a size of more than 10 ?m.
    Type: Application
    Filed: July 18, 2013
    Publication date: November 14, 2013
    Applicant: Hydro Aluminium Rolled Products GmbH
    Inventors: Gerd-Ulrich Grün, Hartmut Janssen, Katrin Kuhnke, Werner Droste
  • Publication number: 20130302206
    Abstract: New 2xxx aluminum lithium alloys are disclosed. The aluminum alloys include 3.5-4.4 wt. % Cu, 0.45-0.75 wt. % Mg, 0.45-0.75 wt. % Zn, 0.65-1.15 wt. % Li, 0.1-1.0 wt. % Ag, 0.05-0.50 wt. % of at least one grain structure control element, up to 1.0 wt. % Mn, up to 0.15 wt. % Ti, up to 0.12 wt. % Si, up to 0.15 wt. % Fe, up to 0.10 wt. % of any other element, with the total of these other elements not exceeding 0.35 wt. %, the balance being aluminum.
    Type: Application
    Filed: March 13, 2013
    Publication date: November 14, 2013
    Inventors: Julien Boselli, Jen Lin, Roberto J. Rioja, Feyen Gerriet, Khurram Shahzad Chaudhry
  • Patent number: 8574382
    Abstract: A cold-hardening aluminum casting alloy with good thermal stability for the production of thermally and mechanically stressed cast components, wherein the alloy includes from 11.0 to 12.0 wt % silicon from 0.7 to 2.0 wt % magnesium from 0.1 to 1 wt % manganese less than or equal to 1 wt % iron less than or equal to 2 wt % copper less than or equal to 2 wt % nickel less than or equal to 1 wt % chromium less than or equal to 1 wt % cobalt less than or equal to 2 wt % zinc less than or equal to 0.25 wt % titanium 40 ppm boron optionally from 80 to 300 ppm strontium and aluminium as the remainder with further elements and impurities due to production individually at most 0.05 wt %, in total at most 0.2 wt %. The alloy is suitable in particular for the production of cylinder crank cases by the die-casting method.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: November 5, 2013
    Assignee: Aluminium Rheinfelden GmbH
    Inventors: Dan Dragulin, Rudiger Franke
  • Publication number: 20130280122
    Abstract: An aluminum alloy sheet that exhibits excellent surface quality after anodizing, includes a peritectic element that undergoes a peritectic reaction with at least aluminum, and requires an anodic oxide coating is characterized in that the concentration of the peritectic element in a solid-solution state that is present in the outermost surface area of the aluminum alloy sheet varies in the widthwise direction of the aluminum alloy sheet in the form of a band having a width of 0.05 mm or less, and the difference in the concentration of the peritectic element between adjacent bands is 0.008 mass % or less.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 24, 2013
    Inventors: Mineo ASANO, Yusuke YAMAMOTO
  • Patent number: 8557062
    Abstract: A copper-free wrought aluminum alloy product and method for producing the same are provided. In one example, the alloy has a composition of about 0.01 to about 1.5 weight percent silver; about 1.0 to about 3.0 weight percent magnesium; about 4.0 to about 10.0 weight percent zinc; about 0.05 to about 0.25 weight percent zirconium; a maximum of 0.15 weight percent iron; a maximum of 0.15 weight percent silicon; and a remainder including aluminum, incidental elements, and impurities. In one example, the alloy may be used to manufacture structural elements for aircraft.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: October 15, 2013
    Assignee: The Boeing Company
    Inventors: Burke L. Reichlinger, Brien J. McElroy, Iulian Gheorghe
  • Patent number: 8524014
    Abstract: Aluminum alloy products, such as plate, forgings and extrusions, suitable for use in making aerospace structural components like integral wing spars, ribs and webs, comprises about: 6 to 10 wt. % Zn; 1.2 to 1.9 wt. % Mg; 1.2 to 2.2 wt. % Cu, with Mg?(Cu+0.3); and 0.05 to 0.4 wt. % Zr, the balance Al, incidental elements and impurities. Preferably, the alloy contains about 6.9 to 8.5 wt. % Zn; 1.2 to 1.7 wt. % Mg; 1.3 to 2 wt. % Cu. This alloy provides improved combinations of strength and fracture toughness in thick gauges. When artificially aged per the 3-stage method of preferred embodiments, this alloy also achieves superior SCC performance, including under seacoast conditions.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 3, 2013
    Assignee: Alcoa Inc.
    Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell, Cynthia M. Krist, Robert W. Westerlund
  • Patent number: 8491733
    Abstract: An aluminum alloy of the AlZnMg type, which is suitable for producing low-stress, high-strength aluminum input materials, and to a method for producing such aluminum input materials.
    Type: Grant
    Filed: September 3, 2007
    Date of Patent: July 23, 2013
    Assignee: Aluminium Lend Gesellschaft m.b.H.
    Inventor: Günther Trenda
  • Publication number: 20130164170
    Abstract: An object of the present invention is to provide a 6000-series aluminum alloy material for a high-pressure gas container which has both of resistance to hydrogen embrittlement and mechanical properties. In the aluminum alloy material for a high-pressure gas container, the contents of Fe, Mn and Cu fall within narrower ranges than the standard composition of AA6066 alloy. The aluminum alloy material is produced to have a structure in which a predetermined amount of fine dispersed particles are dispersed therein and coarse crystallized materials are small, and therefore strength and resistance to hydrogen embrittlement are improved, which are required for a high-pressure gas container.
    Type: Application
    Filed: March 17, 2011
    Publication date: June 27, 2013
    Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.), MITSUBISHI ALUMINUM COMPANY, LTD., SHOWA DENKO K.K., NIPPON LIGHT METAL COMPANY, LTD., FURUKAWA-SKY ALUMINUM CORP.
    Inventors: Manabu Nakai, Shigenobu Yasunaga
  • Publication number: 20130156635
    Abstract: The present invention relate to an aluminum alloy for die-casting. More particularly, the present invention relate to an aluminum alloy being usable for die-casting and including 1.0% to 5.0% by weight of Mn, 0.5% to 1.5% by weight of Zn, 1.0% to 2.0% by weight of Zr, 0.5% to 1.5% by weight of Cu and 85% to 97% by weight of aluminum. Surface smut due from silicon smutting is not caused after a molding process so that a product can have a clear color. Furthermore, the aluminum alloy can increase an adhesion strength of a coating layer thereby increasing a durability of a die-casting product. Furthermore, because the aluminum alloy does not include a heavy metal harmful to human being, the aluminum alloy may be non-toxic and environment-friendly.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: GK CORPORATION, LTD.
    Inventors: Jung Taek Lee, Myeong Hyoen Nam, Kab Yong Park, Jong Hoon Jeong
  • Publication number: 20130146183
    Abstract: An aluminum alloy extruded material in relation with the present invention is with high strength by die quench air cooling and excellent in SCC resistance. The aluminum alloy extruded material is an Al—Zn—Mg-based aluminum alloy extruded material for structural member for automobiles such as a bumper reinforce, a door guard bar and the like which satisfies three expressions of 5.0?[Zn]7.0, [Zn]/5.38<[Mg]?[Zn]/5.38+0.7, and [Zn]+4.7[Mg]?14, where [Mg] represents mass % of Mg and [Zn] represents mass % of Zn, and contains at least either one element of Cu: 0.1-0.6 mass % and Ag: 0.01-0.15 mass %, Ti: 0.005-0.05 mass %, and at least one element out of Mn: 0.1-0.3 mass %, Cr: 0.05-0.2 mass %, Zr: 0.05-0.2 mass %.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yukimasa MIYATA, Shinji Yoshihara
  • Publication number: 20130136651
    Abstract: The present disclosure provides an aluminum (Al) alloy, for general casting, and a technique for producing the same. The Al alloy includes Al, Si in the range of 5 to 13 wt %, Ti in the range of 2 to 7 wt % and B in the range of 1 to 3 wt %. According to the disclosure, a TiB2 compound may be formed in the Al alloy, where the ratio of Ti:B may range from 2 to 2.5 wt %. The Al alloy of the disclosure has improved elasticity, and is suitable for general casting processes such as, for example, high pressure casting process.
    Type: Application
    Filed: June 15, 2012
    Publication date: May 30, 2013
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Hoon Mo PARK, Hoo Dam LEE
  • Publication number: 20130136652
    Abstract: The present disclosure provides an aluminum (Al) alloy for continuous casting, and a method of making the same. The Al alloy includes Al, Si in the range of 14 to 20 wt %, Ti in the range of 2 to 7 wt % and B in the range of 1 to 3 wt %. According to the disclosure, TiB2 compound may be formed in the alloy, where the ratio of Ti:B may range from 2 to 2.5 wt %. By a process of continuously casting the molten metal, an aluminum alloy with improved elasticity may be produced.
    Type: Application
    Filed: August 30, 2012
    Publication date: May 30, 2013
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Hoon Mo Park, Hyuk Kang
  • Patent number: 8444777
    Abstract: An object of the present invention is to provide an Al—Zn—Mg—Cu 7000-series Al alloy having high ductility as well as having high strength. For attaining this purpose, an Al alloy having a structure in which an inclusion is not included is produced by reducing an amount of oxygen contained in an Al alloy that is obtained by solidifying a preform resulting from rapid solidification by preferably spray forming a molten metal of an Al—Zn—Mg—Cu 7000-series Al alloy with an inert gas. This Al alloy has, as mechanical properties at an ordinary temperature, a tensile strength of 600 MPa or more, and an elongation of 15% or more when the tensile strength is from 600 MPa or more and less than 800 MPa or an elongation of 10% or more when the tensile strength is 800 MPa or more, and is excellent in cold workability such as rollability.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: May 21, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Hideo Hata, Katsura Kajihara, Shigenobu Namba, Hiroyuki Takeda, Mamoru Nagao
  • Publication number: 20130105045
    Abstract: An aluminum casting alloy has 8.5-9.5 wt. % silicon, 0.5-2.0 wt. % copper (Cu), 0.27-0.53 wt. % magnesium (Mg), wherein the aluminum casting alloy includes copper and magnesium such that 4.7?(Cu+10Mg)?5.8, and other elements, the balance being aluminum. Selected elements may be added to the base composition to give resistance to degradation of tensile properties due to exposure to heat. The thermal treatment of the alloy is calculated based upon wt. % composition to solutionize unwanted phases having a negative impact on properties and may include a three level ramp-up and soak to a final temperature followed by cold water quenching and artificial aging.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: ALCOA INC.
    Inventor: Alcoa Inc.
  • Patent number: 8409373
    Abstract: A two or three phase aluminum alloy having high strength, modulus, ductility and toughness, comprising a fine grain matrix phase nano L12 alloy having a particle size ranging from about 20 nm to 5 microns and a more ductile larger aluminum alloy coarse grain phase having a particle size ranging from about 25 to 250 microns. The fine grain matrix phase alloy comprises aluminum, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. The alloy may also include ceramic reinforcements in addition to the fine grain matrix phase and the coarse grain phase.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: April 2, 2013
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Publication number: 20130068352
    Abstract: Novel aluminum alloys are provided for use in an impact extrusion manufacturing process to create shaped containers and other articles of manufacture. In one embodiment blends of recycled scrap aluminum are used in conjunction with relatively pure aluminum to create novel compositions which may be formed and shaped in an environmentally friendly process. Other embodiments include methods for manufacturing a slug material comprising recycled aluminum for use in the impact extraction process.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 21, 2013
    Applicant: BALL CORPORATION
    Inventors: John L. Siles, Samuel Melancon, Stanley M. Platek, Anthony Chatey
  • Publication number: 20130068411
    Abstract: An aluminium-copper alloy comprising substantially insoluble particles which occupy the interdendritic regions of the alloy, provided with free titanium in quantity sufficient to result in a refinement of the grain structure in the cast alloy.
    Type: Application
    Filed: February 10, 2011
    Publication date: March 21, 2013
    Inventors: John Forde, William Stott
  • Publication number: 20130028785
    Abstract: An aluminum-scandium alloy contains essentially of Si; Fe; Mn; Cr; Ti; from 1.9 wt % to 2.5 wt % Cu, from 2.0 wt % to 2.7 wt % Mg, from 5.9 wt % to 6.9 wt % Zn, from 0.08 wt % to 0.15 wt % Zr, from 0.01 wt % to 0.06 wt % Sc, balance aluminum and inevitable impurities.
    Type: Application
    Filed: June 15, 2012
    Publication date: January 31, 2013
    Applicant: Fusheng Precision Co., Ltd
    Inventor: Chan-Tung Chen
  • Publication number: 20120298513
    Abstract: The present invention provides an aluminum alloy component having an anodic oxide film less causing cracks and high in surface smoothness, which is capable of reducing abrasion of a cutting tool regardless of the excellent machinability. The aluminum alloy component (1) has an anodic oxide film formed on a surface of a base metal of an aluminum alloy. The aluminum alloy consists of Fe: 0.5 to 2 mass %, Cu: 0.35 to 0.6 mass %, Mg: 0.35 to 1.3 mass %, Si: 0.2 to 1.3 mass %, Cr: 0.005 to 0.3 mass %, Mn: 0.01 to 0.3 mass %, Ti: 0.005 to 0.1 mass %, and the balance being inevitable impurities, wherein Zn is controlled to be less than 0.25 mass %, and wherein Al—Fe series crystals and Al—Fe—Si series crystals having a maximum grain diameter of 30 ?m or less exist in the anodic oxide film in a dispersed manner with an average center-to-center distance of 10 to 100 ?m, and a percentage of a total occupied area of the Al—Fe series crystals and Al—Fe—Si series crystals in the anodic oxide film is 5% or more.
    Type: Application
    Filed: December 17, 2010
    Publication date: November 29, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryousuke Shimao, Shigekazu Nagai
  • Publication number: 20120291926
    Abstract: The disclosure relates to an alloy comprising, by weight, about 5.8% to about 6.8% zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0% to about 0.2% scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities. In embodiments, the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 22, 2012
    Inventors: Abhijeet Misra, James A. Wright
  • Publication number: 20120273098
    Abstract: A method for producing a structural sheet metal component formed from an aluminum alloy for a motor vehicle includes providing an aluminum sheet blank in a state T4 or T5 or T6 or T7, heating the aluminum sheet blank to a heating temperature between 100° C. and 450° C., forming the aluminum sheet blank to a structural sheet metal component, and heat post-treatment of the formed structural sheet metal component.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 1, 2012
    Applicant: Benteler Automobiltechnik GmbH
    Inventors: Friedrich Bohner, Jochen Dörr, Jochem Grewe
  • Publication number: 20120258009
    Abstract: A method of conditioning the surface of a work piece, particularly of a strip or sheet, more particularly of a lithostrip or lithosheet, including an aluminum alloy is provided. The method for conditioning the surface of a work piece and a work piece including an aluminum alloy enabling an increasing manufacturing speed in electro-chemically graining and maintaining at the same time a high quality of the grained surface, includes a conditioning method which comprises at least the two steps, degreasing the surface of the work piece with a degreasing medium and subsequently cleaning the surface of the work piece by pickling.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 11, 2012
    Applicant: HYDRO ALUMINIUM DEUTSCHLAND GMBH
    Inventors: Bernhard Kernig, Henk Jan Brinkman
  • Publication number: 20120244033
    Abstract: An aluminum-carbon composition including aluminum and carbon, wherein the aluminum and the carbon form a single phase material, characterized in that the carbon does not phase separate from the aluminum when the single phase material is heated to a melting temperature.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 27, 2012
    Inventors: Jason V. Shugart, Roger C. Scherer, Roger Lee Penn
  • Publication number: 20120227870
    Abstract: An aluminum-alloy sheet includes 0.10 to 0.40 mass % of Si, 0.35 to 0.80 mass % of Fe, 0.10 to 0.35 mass % of Cu, 0.20 to 0.80 mass % of Mn, and 1.5 to 2.5 mass % of Mg, the balance being Al and unavoidable impurities, wherein a content ratio (Si/Fe) of the Si to the Fe is 0.75 or less, the solute Mn content is 0.12 to 0.20 mass %, and the aluminum-alloy sheet has a proof stress of 225 N/mm2 or more after having been baked at 270° C. for 20 seconds.
    Type: Application
    Filed: February 23, 2012
    Publication date: September 13, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Yuji Inoue, Yasuhiro Aruga, Katsushi Matsumoto, Kiyohito Tsuruda, Kazuharu Masada
  • Publication number: 20120230861
    Abstract: A swash plate includes aluminum (Al) as a main component and 35˜45 wt % of zinc (Zn), 1.5˜3.5 wt % of copper (Cu), 6˜10 wt % of silicon (Si), 0.2˜0.5 wt % of magnesium (Mg) and other inevitable impurities. A method of manufacturing the swash plate is also provided.
    Type: Application
    Filed: September 23, 2011
    Publication date: September 13, 2012
    Applicant: Hyundai Motor Company
    Inventor: Hee Sam Kang
  • Publication number: 20120227871
    Abstract: An aluminum-alloy sheet includes 0.10 to 0.40 mass % of Si, 0.35 to 0.80 mass % of Fe, 0.10 to 0.35 mass % of Cu, 0.20 to 0.80 mass % of Mn, and 1.5 to 2.5 mass % of Mg, the balance being Al and unavoidable impurities, wherein a content ratio (Si/Fe) of the Si to the Fe is 0.75 or less, the area fraction of Mg2Si intermetallic compound grains having a maximum length of 1 ?m or more is 0.10% or more in a region of a section of the aluminum-alloy sheet, the region being a central region in the thickness direction of the aluminum-alloy sheet, and the aluminum-alloy sheet has a proof stress of 225 to 270 N/mm2 after having been baked at 270° C. for 20 seconds.
    Type: Application
    Filed: February 23, 2012
    Publication date: September 13, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yuji INOUE, Yasuhiro Aruga, Katsushi Matsumoto, Kiyohito Tsuruda, Kazuharu Masada
  • Publication number: 20120224993
    Abstract: The invention relates to a special hot-dip plating alloy for a coating on the surface of a titanium alloy part, wherein the hot-dip plating alloy contains the following components by mass percentage: 8-24% of Si, 1.2-3.1% of Zn, 0.02-0.5% of RE, 0.5-3.2% of Mg, 0.05-1% of Fe, 0.05-0.5% of Cu, 1.0-2.0% of Mn, 0.5-2.0% of Cr, 0.02-0.5% of Zr, 1-2% of nano-oxide particle reinforcing agent and the balance of Al and inevitable impurities, and the nano-oxide particle reinforcing agent is selected from one or two of TiO2 and CeO2. The adoption of the hot-dip plating alloy produced by the invention can form the coating which has corrosion resistance and good wear resistance, and is well metallurgically bonded with a matrix on the surface of the titanium alloy.
    Type: Application
    Filed: March 31, 2010
    Publication date: September 6, 2012
    Applicant: JIANGSU LINLONG NEW MATERIALS CO., LTD.
    Inventors: Lixin Feng, Minyan Zhang, Pingze Zhang
  • Publication number: 20120207640
    Abstract: High strength aluminum alloys and methods for producing them. The alloys consist essentially of about 9.0 to 10.3 wt. % zinc, about 2.5 to 3.5 wt. % magnesium, about 1.5 to 3.0 wt. % copper and less than about 0.05 wt. % of any other alloying constituent. The balance consists of aluminum. These alloys are compatible with ceramic reinforcements used in metal matrix composites.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 16, 2012
    Applicant: Gamma Technology, LLC
    Inventor: William C. Harrigan, JR.
  • Publication number: 20120164021
    Abstract: A cold-hardening aluminium casting alloy with good thermal stability for the production of thermally and mechanically stressed cast components, wherein the alloy includes from 11.0 to 12.0 wt % silicon from 0.7 to 2.0 wt % magnesium from 0.1 to 1 wt % manganese less than or equal to 1 wt % iron less than or equal to 2 wt % copper less than or equal to 2 wt % nickel less than or equal to 1 wt % chromium less than or equal to 1 wt % cobalt less than or equal to 2 wt % zinc less than or equal to 0.25 wt % titanium 40 ppm boron optionally from 80 to 300 ppm strontium and aluminium as the remainder with further elements and impurities due to production individually at most 0.05 wt %, in total at most 0.2 wt %. The alloy is suitable in particular for the production of cylinder crank cases by the die-casting method.
    Type: Application
    Filed: May 20, 2008
    Publication date: June 28, 2012
    Applicant: ALUMINIUM RHEINFELDEN GMBH
    Inventors: Dan Dragulin, Rudiger Franke
  • Patent number: 8206517
    Abstract: New 7XXX alloys having improved ballistics performance are disclosed. The new alloys generally are resistant to armor piercing rounds at 2850 fps, resistant to fragment simulated particles at 2950 fps, and are resistant to spalling. To achieve the improved ballistics properties, the alloys are generally overaged so as to obtain a tensile yield strength that is (i) at least about 10 ksi lower than peak strength and/or (ii) no greater than 70 ksi.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: June 26, 2012
    Assignee: Alcoa Inc.
    Inventors: Dustin M. Bush, Ian Murray, Roberto J. Rioja, Ralph R. Sawtell
  • Publication number: 20120156089
    Abstract: Provided is material for an aluminum alloy exhibiting a sufficient heat resistance, tensile strength as well as stress corrosion cracking resistance necessary for use as automobile parts. Also, provided are a forged part forged from such aluminum alloy and an aluminum alloy high strength bolt made thereof. The aluminum alloy (by mass) is consisted of (by mass) 1.0 to 1.7% of Si, 0.05 to 0.5% of Fe, 0.8 to 1.5% of Cu, 0.6 to 1.2% of Mn, 0.9 to 1.5% of Mg, 0.05 to 0.5% of Zn, 0.05 to 0.3% of Zr, 0.01 to 0.2% of V, and when needed, Ti exceeding 0% and not more than 0.05%, and, when further needed, Ni exceeding 0% and not more than 0.7%, the remainder being Al and unavoidable impurities.
    Type: Application
    Filed: December 14, 2010
    Publication date: June 21, 2012
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Fumihiko Gejima
  • Publication number: 20120138481
    Abstract: The invention relates to an aluminium alloy lithographic sheet product having an enhanced electrolytic graining response in which Zn between 0.5 and 2.5 wt % is added to an aluminium base alloy, in particular an alloy of the 1XXX, 3XXX or 5XXX series alloys. The invention also relates to a method of producing a lithographic sheet product.
    Type: Application
    Filed: March 22, 2010
    Publication date: June 7, 2012
    Inventors: Andrew Coleman, David S. Wright, Nicolas Kamp, Jeremy Mark Brown
  • Publication number: 20120121825
    Abstract: Provided are a bottom chassis, a method of fabricating the same, and a liquid crystal display (LCD) including the same. The bottom chassis is fabricated using an aluminum alloy plate including, by weight, 0.5 to 1.5% manganese, 0.8 to 1.5% magnesium, 0.01 to 0.03% titanium, less than 0.02% molybdenum, and 96% or more aluminum.
    Type: Application
    Filed: June 29, 2011
    Publication date: May 17, 2012
    Inventor: Sang-Joon PARK
  • Publication number: 20120094103
    Abstract: The invention relates to an aluminium alloy for producing lithographic printing plate supports. The object of providing an aluminium alloy and an aluminium strip made of an aluminium alloy which make it possible to produce printing plate supports having improved flexural fatigue strength transverse to the rolling direction and having improved heat resistance, without impairing roughening properties, is achieved for an aluminium alloy in that the aluminium alloy contains the following alloy components in percent by weight: 0.2%?Fe?0.5%, 0.41%?Mg?0.7%, 0.05%?Si?0.25%, 0.31%?Mn?0.6%, Cu?0.04%, Ti<0.1%, Zn?0.1%, Cr?0.1%, the rest being Al and unavoidable impurities, each in an amount of 0.05% at most to give a total of 0.15% at most.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 19, 2012
    Applicant: HYDRO ALUMINIUM DEUTSCHLAND GMBH
    Inventors: Bernhard Kernig, Jochen Hasenclever, Gerd Steinhoff, Christoph Settele
  • Patent number: 8157932
    Abstract: An aluminum casting alloy, comprises, in weight percent, about 4-9% Zn; about 1-4% Mg; about 1-2.5% Cu; less than about 0.1% Si; less than about 0.12% Fe; less than about 0.5% Mn; about 0.01-0.05% B; less than about 0.15% Ti; about 0.05-0.2% Zr; about 0.1-0.5% Sc; no more than about 0.05% each miscellaneous element or impurity; no more than about 0.15% total miscellaneous elements or impurities.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: April 17, 2012
    Assignee: Alcoa Inc.
    Inventors: Xinyan Yan, Jen C. Lin, Cagatay Yanar, Larry Zellman, Xavier Dumant, Robert Tombari, Eric Lafontaine
  • Publication number: 20120087826
    Abstract: The present invention discloses a high strength Al—Zn—Mg—Cu (7000 series) alloy that can be cast, the cast alloy having a tensile strength of at least 500 megapascals (MPa) and 4% elongation. The cast alloy composition can include about 5.5-9.0 weight percent (wt. %) of zinc, 2.0-3.5 wt. % of magnesium, 0.1-0.5 wt. % scandium, 0.05-0.20 wt. % zirconium, 0.5-3.0 wt. % copper, 0.10-0.45 wt. % manganese, 0.01-0.35 wt. % iron, 0.01-0.20 wt. % silicon with a balance of aluminum and possible casting impurities. The alloy also has good fluidity comparable to high silicon cast aluminum alloys and components can be manufactured using direct chill casting, sand casting, and/or sand casting under high pressure.
    Type: Application
    Filed: October 4, 2011
    Publication date: April 12, 2012
    Applicant: UES, INC.
    Inventors: Oleg N. Senkov, Svetlana V. Senkova
  • Publication number: 20120055591
    Abstract: New 6xxx aluminum alloy bodies and methods of producing the same are disclosed. The new 6xxx aluminum alloy bodies may be produced by preparing the aluminum alloy body for post-solutionizing cold work, cold working by at least 25%, and then thermally treating. The new 6xxx aluminum alloy bodies may realize improved strength and other properties.
    Type: Application
    Filed: September 8, 2011
    Publication date: March 8, 2012
    Applicant: Alcoa Inc.
    Inventors: Rajeev G. Kamat, John M. Newman, Ralph R. Sawtell, Jen C. Lin
  • Patent number: 8118950
    Abstract: Improved aluminum-copper-lithium alloys are disclosed. The alloys may include 3.4-4.2 wt. % Cu, 0.9-1.4 wt. % Li, 0.3-0.7 wt. % Ag, 0.1-0.6 wt. % Mg, 0.2-0.8 wt. % Zn, 0.1-0.6 wt. % Mn, and 0.01-0.6 wt. % of at least one grain structure control element, the balance being aluminum and incidental elements and impurities. The alloys achieve an improved combination of properties over prior art alloys.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: February 21, 2012
    Assignee: Alcoa Inc.
    Inventors: Edward L. Colvin, Roberto J. Rioja, Les A. Yocum, Diana K. Denzer, Todd K. Cogswell, Gary H. Bray, Ralph R. Sawtell, Andre L. Wilson
  • Publication number: 20120027639
    Abstract: An alloy for use in die casting having improved thermal conductivity and strength includes at least about 86.0 percent aluminum by weight, from about 9.70 to about 10.70 percent silicon, by weight, from about 0.40 to about 0.70 percent iron, by weight, about 0.25 percent copper, by weight, about 0.50 percent manganese, by weight, from about 0.10 to about 0.20 percent titanium, by weight; and from about 0.010 to about 0.025 percent strontium, by weight.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 2, 2012
    Applicant: GIBBS DIE CASTING CORPORATION
    Inventor: James M. Evans
  • Patent number: 8105449
    Abstract: An aluminum alloy extruded product includes an aluminum alloy including 6.0 to 7.2 mass % of Zn, 1.0 to 1.6 mass % of Mg, 0.1 to 0.4 mass % of Cu, at least one component selected from the group consisting of Mn, Cr, and Zr in a respective amount of 0.25 mass % or less and a total amount of 0.15 to 0.25 mass %, 0.20 mass % or less of Fe, and 0.10 mass % or less of Si, with the balance substantially being aluminum, the aluminum alloy extruded product having a hollow cross-sectional shape, a recrystallization rate of 20% or less of a cross-sectional area of the extruded product, and a 0.2% proof stress of 370 to 450 MPa.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: January 31, 2012
    Assignee: Aisin Keikinzoku Co., Ltd.
    Inventors: Arata Yoshida, Shinji Makino, Tomoo Yoshida
  • Publication number: 20120000578
    Abstract: Aluminum alloys having improved properties are provided. The alloy includes about 0 to 2 wt % rare earth elements, about 0.5 to about 14 wt % silicon, about 0.25 to about 2.0 wt % copper, about 0.1 to about 3.0 wt % nickel, approximately 0.1 to 1.0% iron, about 0.1 to about 2.0 wt % zinc, about 0.1 to about 1.0 wt % magnesium, 0 to about 1.0 wt % silver, about 0.01 to about 0.2 wt % strontium, 0 to about 1.0 wt % scandium, 0 to about 1.0 wt % manganese, 0 to about 0.5 wt % calcium, 0 to about 0.5 wt % germanium, 0 to about 0.5 wt % tin, 0 to about 0.5 wt % cobalt, 0 to about 0.2 wt % titanium, 0 to about 0.1 wt % boron, 0 to about 0.2 wt % zirconium, 0 to 0.5% yttrium, 0 to about 0.3 wt % cadmium, 0 to about 0.3 wt % chromium, 0 to about 0.5 wt % indium, and the balance aluminum. Methods of making cast aluminum parts are also described.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Qigui Wang, Wenying Yang, Yucong Wang, Patricia E. Shaw