Magnesium Containing Patents (Class 420/532)
  • Publication number: 20030143102
    Abstract: A first aluminum alloy of the present invention comprises Mg: 0.3-6 mass %, Si: 0.3-10 mass %, Zn: 0.05-1 mass %, Sr: 0.001-0.3 mass % and the balance being Al and impurities. A second aluminum alloy further contains one or more selective additional elements selected from the group consisting of Cu, Fe, Mn, Cr, Zr, Ti, Na and Ca. Furthermore, a third aluminum alloy comprises Mg: 0.1-6 mass %, Si: 0.3-12.5 mass %, Cu: 0.01 mass % or more but less than 1 mass %, Zn: 0.01-3 mass %, Sr: 0.001-0.5 mass % and the balance being Al and impurities. Furthermore, a fourth aluminum alloy further includes one or more optional additional elements selected from the group consisting of Ti, B, C, Fe, Cr, Mn, Zr, V, Sc, Ni, Na, Sb, Ca, Sn, Bi and In.
    Type: Application
    Filed: July 25, 2002
    Publication date: July 31, 2003
    Applicant: SHOWA DENKO K.K.
    Inventors: Hideaki Matsuoka, Masaki Yamanaka, Hiroki Yoshioka, Yasuo Okamoto, Masakatsu Kitamura
  • Patent number: 6585932
    Abstract: An aluminum-based material and method of manufacturing products from the aluminum-based material formed by a solid solution of zinc, magnesium and copper in aluminum with dispersed phase particles of aluminum, zinc, magnesium and copper essentially evenly distributed in the solution and particles of nickel aluminide being essentially evenly distributed in the matrix of the aluminum-based material that contains particles, essentially evenly distributed in the matrix, of at least one of the aluminides group such as chromium aluminide and zirconium aluminide, with a total content of 0.1-0.5% of the volume with the maximum amount of nickel aluminide particles being 3 &mgr;m and the proportion between the maximum and minimum amount of nickel aluminide particles of no more than 2 and with the maximum amount of chromium aluminide and zirconium aluminide particles is 0.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: July 1, 2003
    Assignee: Mantraco International, Inc.
    Inventors: Andrei Anatolyevich Axenov, Nikolay Alexandrovich Belov, Vadim Semenovich Zolotorevskij
  • Publication number: 20030108765
    Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.
    Type: Application
    Filed: November 7, 2002
    Publication date: June 12, 2003
    Inventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
  • Publication number: 20030086812
    Abstract: The invention relates to an aluminium brazing alloy, ideally suitable as fin stock material, having a composition, in weight %: Si 0.7-1.2, Mn 0.7-1.2, Mg up to 0.35, Fe up to 0.8, Zn up to 3.0, Ni up to 0.005, Cu up to 0.5, optionally one or more members selected from the group comprising Ti up to 0.20, In up to 0.20, Zr up to 0.25, V up to 0.25, and Cr up to 0.25, others up to 0.05 each and up to 0.15 in total, and an Al balance.
    Type: Application
    Filed: May 9, 2002
    Publication date: May 8, 2003
    Inventors: Adrianus Jacobus Wittebrood, Achim Burger, Klaus Vieregge, Job Anthonius Van Der Hoeven, Scott W. Haller
  • Patent number: 6537392
    Abstract: There is claimed an aerospace alloy having improved corrosion resistance performance, particularly intergranular corrosion resistance. The alloy consisting essentially of: about 0.6-1.15 wt. % silicon, about 0.6-1.0 wt. % copper, about 0.8-1.2 wt. % magnesium, about 0.55-0.86 wt. % zinc, less than about 0.1 wt. % manganese, about 0.2-0.3 wt. % chromium, the balance aluminum, incidental elements and impurities. While it is preferably made into sheet or plate product forms, it can also be extruded. Products made from this alloy exhibit at least about 5% greater yield strength and about 45% or greater resistance to intergranular corrosion attack than their 6013-T6 counterparts, as measured by average depth of corrosion after 24 hours exposure to an aqueous NaCl—H2O2 solution per ASTM Standard G110 (1992).
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: March 25, 2003
    Assignee: Alcoa Inc.
    Inventors: Paul E. Magnusen, Edward L. Colvin, Roberto J. Rioja
  • Publication number: 20030047250
    Abstract: Heat resistant Al die cast material having 12.5% to 14.0% of Si, 3.0% to 4.5% of Cu, 1.4% to 2.0% of Mg, and 1.12% to 2.4% of Zn. The die cast metal becomes amenable to age hardening treatment when appropriate amounts of Mg and Zn are added to an Al—Si—Cu alloy for enhancing mechanical strength and seizure characteristics.
    Type: Application
    Filed: March 27, 2002
    Publication date: March 13, 2003
    Inventors: Norimasa Takasaki, Yuuko Yoshimura
  • Patent number: 6531004
    Abstract: Weldable, high-magnesium-content aluminum-magnesium alloy consisting of at least 5-6% w/w magnesium (Mg), 0.05-0.15% w/w zirconium (Zr), 0.05-0.12% w/w manganese (Mn), 0.01-0.2% w/w titanium (Ti), 0.05-0.5% w/w of one or more elements from the scandium group and/or terbium (Tb), wherein at least scandium (Sc) is included, 0.1-0.2% w/w copper (Cu) and/or 0.1-0.4% w/w zinc (Zn), along with aluminum (Al), and unavoidable contamination does not exceed 0.1% w/w silicon (Si).
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: March 11, 2003
    Assignee: EADS Deutschland GmbH
    Inventors: Blanka Lenczowski, Viktor Yelagin, Rainer Rauh, Valeri Zakharov, Yuri Filatov
  • Patent number: 6511555
    Abstract: The present invention relates to a cylinder head and motor block casting and a method of making the same, including an aluminum alloy having the following composition: Si 6.80-7.20, Fe 0.35-0.45, Cu 0.30-0.40, Mn 0.25-0.30, Mg 0.35-0.45, Ni 0.45-0.55 Zn 0.10-0.15, Ti 0.11-0.15 with the remainder being aluminum as well as unavoidable impurities with a maximum content of 0.05 each, but not more than a maximum of 0.15 impurities in all.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: January 28, 2003
    Assignee: Vaw Aluminium AG
    Inventors: Franz Josef Feikus, Leonhard Heusler
  • Publication number: 20020197506
    Abstract: Disclosed is an Al alloy for a welded construction having excellent welding characteristics, which Al alloy comprises 1.5 to 5 wt % of Si (hereinafter, wt % is referred to as %), 0.2 to 1.5% of Mg, 0.2 to 1.5% of Zn, 0.2 to 2% of Cu, 0.1 to 1.5% of Fe, and at least one member selected from the group consisting of 0.01 to 1.0% of Mn, 0.01 to 0.2% of Cr, 0.01 to 0.2% of Ti, 0.01 to 0.2% of Zr, and 0.01 to 0.2% of V, with the balance being Al and inevitable impurities. Also disclosed is a welded joint having this Al alloy base metal welded with an Al—Mg— or Al—Si-series filler metal.
    Type: Application
    Filed: July 30, 2002
    Publication date: December 26, 2002
    Inventors: Seizo Ueno, Yoichiro Bekki, Noboru Hayashi
  • Patent number: 6494137
    Abstract: A support for a lithographic printing plate obtained by performing surface graining and anodizing of an aluminum alloy plate, wherein the foregoing aluminum alloy plate contains specific contents of Fe, Si, Cu, Ti, Zn and Mg, with the balance being Al and incidental impurities. The presensitized plate obtained from this support for a lithographic printing plate is excellent in press life and in resistance to dot ink stain when processed into a lithographic printing plate. Preferably, the support for a lithographic printing plate, with regard to the surface of the support, has a center line average roughness Ra in the range of 0.2-0.6 &mgr;m, a maximum height Rmax in the range of 3.0-6.0 &mgr;m, a ten-point mean roughness Rz in the range of 2.0-5.5 &mgr;m, a center line peak height Rp in the range of 1.0-3.0 &mgr;m, a center line valley depth Rv in the range of 2.0-3.5 &mgr;m, a mean spacing Sm in the range of 40-70 &mgr;m, an average inclination &Dgr;a in the range of 6.0-12.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: December 17, 2002
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Akio Uesugi
  • Publication number: 20020157742
    Abstract: A process for thermally treating an article made from an aluminum alloy. The process comprises providing the aluminum alloy that consists essentially of from about 5.7 to about 6.7 wt. % of zinc, less than 2.2 wt. % copper, less than 4.2 wt. % of the total weight percent of magnesium and copper combined, and less than 10.60 wt. % of the total weight percent of magnesium, copper and zinc combined, the balance being substantially aluminum, incidental elements and impurities. The article is artificially aged at a first temperature. The article is heated to a second temperature, wherein the second temperature is higher than the first temperature. The article is artificially aged at the second temperature of from about 290 to about 360° F. for a duration of at least 6 hours. The article is cooled from the second temperature to 200° F. at a cooling rate of from about 20 to about 40° F./hour.
    Type: Application
    Filed: February 28, 2001
    Publication date: October 31, 2002
    Inventor: Alex Cho
  • Publication number: 20020153072
    Abstract: The present invention provides an aluminum alloy structural plate excelling in strength and corrosion resistance, in particular, resistance to stress corrosion cracking, and a method of manufacturing the aluminum alloy plate. This aluminum alloy structural plate includes 4.8-7% Zn, 1-3% Mg, 1-2.5% Cu, and 0.05-0.25% Zr, with the remaining portion consisting of Al and impurities, wherein the aluminum alloy structural plate has a structure in which grain boundaries with a ratio of misorientations of 3-10° is 25% or more at the plate surface. The aluminum alloy structural plate is manufactured by: homogenizing an ingot of an aluminum alloy having the above composition; hot rolling the ingot; repeatedly rolling the hot-rolled product at 400-150° C. so that the degree of rolling is 70% or more to produce a plate with a specific thickness, or repeatedly rolling the hot-rolled product at a material temperature of 400-150° C. in a state in which rolls for hot rolling are heated at 40° C.
    Type: Application
    Filed: November 2, 2001
    Publication date: October 24, 2002
    Inventors: Hiroki Tanaka, Hiroki Esaki, Tadashi Minoda
  • Publication number: 20020150498
    Abstract: A 7XXX series aluminum alloy having reduced quench sensitivity suitable for use in aerospace structural components, such as integral wing spars, ribs, extrusions and forgings comprises, in weight %: 6 to 10 Zn, 1.3 to 1.9 Mg, 1.4 to 2.2 Cu, wherein Mg≦Cu+0.3, one or more of 0 to 0.4 Zr, up to 0.4 Sc, up to 0.2 Hf, up to 0.4 Cr, up to 1.0 Mn and the balance Al plus incidental additions including Si, Fe, Ti and the like plus impurities. By controlling the Mg content to 1.3 to 1.7 wt. %, limiting Mg≦Cu+0.3 and 6.5≦Zn≦8.5, the alloy provides significantly improved combined strength and fracture toughness in heavy gauges.
    Type: Application
    Filed: January 31, 2001
    Publication date: October 17, 2002
    Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell
  • Patent number: 6461566
    Abstract: An aluminum-based alloy having the following composition, % w/w: Lithium 1.5-1.9 Magnesium 4.1-6.0 Zinc 0.1-1.5 Zirconium 0.05-0.3  Manganese 0.01-0.8  Hydrogen 0.9 × 10−5-4.5 × 10−5 and at least one element selected from the following group: Beryllium 0.001-0.2  Yttrium 0.01-0.5 Scandium 0.01-0.3 Aluminum Remainder The process of heat treating the alloy includes the steps of quenching the alloy from a temperature of 400-500° C. in cold water or air, stretched-adjusting it to increase ductility up to 0 2 %, and a three stage heat treatment, in which in stage 1 the alloy is heated at 80-90° C. over the course of 3-12 h, in stage 2 it is heated at 110-185° C. over the course of 10-58 h, and in stage 3 it is heated at 90-110° C. for 14 h, or at a cooling rate of 2-8° C. C/h.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: October 8, 2002
    Assignees: Eads Deutschland GmbH, Viam (All Russian Institute of Aviation Materials)
    Inventors: Thomas Pfannenmüller, Erwin Loechelt, Peter-Jürgen Winkler, Sergej Mikhajlovich Mozharovskij, Dmitrij Sergejevich Galkin, Elena Glebovna Tolchennikova, Vladimir Mikhajlovich Chertovikov, Valentin Georgijevich Davydov, Evgenij Nikolajevich Kablov, Larisa Bagratovna Khokhlatova, Nikolay Ivanovich Kolobnev, Iosif Naumovich Fridlyander
  • Publication number: 20020121319
    Abstract: Aluminum alloy products, such as plate, forgings and extrusions, suitable for use in making aerospace structural components like integral wing spars, ribs and webs, comprises about: 6 to 10 wt. % Zn; 1.2 to 1.9 wt. % Mg; 1.2 to 2.2 wt. % Cu, with Mg≦(Cu+0.3); and 0.05 to 0.4 wt. % Zr, the balance Al, incidental elements and impurities. Preferably, the alloy contains about 6.9 to 8.5 wt. % Zn; 1.2 to 1.7 wt. % Mg; 1.3 to 2 wt. % Cu. This alloy provides improved combinations of strength and fracture toughness in thick gauges. When artificially aged per the three stage method of preferred embodiments, this alloy also achieves superior SCC performance, including under seacoast conditions.
    Type: Application
    Filed: October 4, 2001
    Publication date: September 5, 2002
    Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell, Cynthia M. Krist, Robert W. Westerlund
  • Patent number: 6440583
    Abstract: Disclosed is an Al alloy for a welded construction having excellent welding characteristics, which Al alloy comprises 1.5 to 5 wt % of Si (hereinafter, wt % is referred to as %), 0.2 to 1.5% of Mg, 0.2 to 1.5% of Zn, 0.2 to 2% of Cu, 0.1 to 1.5% of Fe, and at least one member selected from the group consisting of 0.01 to 1.0% of Mn, 0.01 to 0.2% of Cr, 0.01 to 0.2% of Ti, 0.01 to 0.2% of Zr, and 0.01 to 0.2% of V, with the balance being Al and inevitable impurities. Also disclosed is a welded joint having this Al alloy base metal welded with an Al—Mg- or Al—Si-series filler metal.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: August 27, 2002
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Seizo Ueno, Yoichiro Bekki, Noboru Hayashi
  • Patent number: 6399020
    Abstract: An aluminum alloy suitable for high temperature applications, such as heavy duty pistons and other internal combustion applications, having the following composition, by weight percent (wt %): Silicon  11.0-14.0 Copper  5.6-8.0 Iron   0-0.8 Magnesium  0.5-1.5 Nickel 0.05-0.9 Manganese   0-1.0 Titanium 0.05-1.2 Zirconium 0.12-1.2 Vanadium 0.05-1.2 Zinc 0.05-0.9 Strontium 0.001-0.1  Aluminum balance. In this alloy the ratio of silicon:magnesium is 10-25, and the ratio of copper:magnesium is 4-15. After an article is cast from this alloy, the article is treated in a solutionizing step which dissolves unwanted precipitates and reduces any segregation present in the original alloy. After this solutionizing step, the article is quenched, and is then aged at an elevated temperature for maximum strength.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: June 4, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jonathan A. Lee, Po-Shou Chen
  • Publication number: 20020043309
    Abstract: The invention relates to an aluminum casting alloy and to cast products made thereof consisting of, in weight percent: Mg 1.0 - 2.6, Si 0.5 - 2.0, Mn 0.9 - 1.4, Fe<0.50, Cu<1.0, Zn<0.30, Ti<0.20, Be<0.003, balance aluminum and inevitable impurities.
    Type: Application
    Filed: June 15, 2001
    Publication date: April 18, 2002
    Inventors: Martinus Godefridus Johannes Spanjers, Timothy John Hurd
  • Patent number: 6368427
    Abstract: A method of casting an aluminum base alloy to provide a cast product having improved hot crack resistance in the as-cast condition, the method comprising providing a melt of an aluminum base alloy comprised of 4 to less than 5 wt. % Cu, max. 0.1 wt. % Mn, 0.15 to 0.55 wt. % Mg, max. 0.4 wt. % Si, max. 0.2 wt. % Zn, up to 0.4 wt. % Fe, the balance comprised of aluminum, incidental elements and impurities. The dissolved Ti in the melt is maintained in the range of about 0.005 to 0.05 wt. % to improve the resistance of the alloy to hot cracking. A nucleating agent selected from the group consisting of metal carbides, aluminides and borides is added to the melt to provide an undissolved nucleating agent therein, in the range of 0.002 to 0.1 wt. % for grain refining. The alloy is solidified to provide a cast product having a grain size of less than 125 microns and free of hot cracks.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: April 9, 2002
    Inventor: Geoffrey K. Sigworth
  • Publication number: 20020039664
    Abstract: There is claimed an aerospace alloy having improved corrosion resistance performance, particularly intergranular corrosion resistance. The alloy consisting essentially of: about 0.6-1.15 wt. % silicon, about 0.6-1.0 wt. % copper, about 0.8-1.2 wt. % magnesium, about 0.55-0.86 wt. % zinc, less than about 0.1 wt. % manganese, about 0.2-0.3 wt. % chromium, the balance aluminum, incidental elements and impurities. While it is preferably made into sheet or plate product forms, it can also be extruded. Products made from this alloy exhibit at least about 5% greater yield strength and about 45% or greater resistance to intergranular corrosion attack than their 6013-T6 counterparts, as measured by average depth of corrosion after 24 hours exposure to an aqueous NaCl—H2O2 solution per ASTM Standard G110 (1992).
    Type: Application
    Filed: June 1, 2001
    Publication date: April 4, 2002
    Inventors: Paul E. Magnusen, Edward L. Colvin, Roberto J. Rioja
  • Patent number: 6355090
    Abstract: There is disclosed a method of producing an aluminum alloy for automotive parts, comprising adding a scrap of an aluminum wrought alloy or a pure aluminum ingot to an aluminum alloy casting scrap, melting the mixture to dilute impurities, and if necessary, adjusting elements of the resultant. According to the above method, aluminum alloy casting scraps, which contain large amounts of impurities and have been difficult to recycle into other articles until now, can be converted to an aluminum alloy material that is applicable as a wrought material usable as a higher-grade material.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: March 12, 2002
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Koji Ohyama, Yoichiro Bekki, Noboru Hayashi
  • Publication number: 20020015658
    Abstract: An aluminum-copper-zinc alloy having ancillary additions of lithium. The alloy composition includes from about 5 to 13 wt % zinc and from about 0.01 to 1.0 wt % lithium.
    Type: Application
    Filed: June 3, 1999
    Publication date: February 7, 2002
    Inventors: ROBERTO J. RIOJA, GARY H. BRAY, JAMES T. STALEY, DIANA K. DENZER
  • Publication number: 20020014288
    Abstract: Rolled, extruded or forged product made of an AlCuMg alloy processed by solution heat treatment, quenching and cold stretching, to be used in the manufacture of aircraft structural elements, with the following composition (% by weight): 1 Fe<0.15 Si<0.15 Cu:3.8-4.4 Mg:1-1.5 Mn:0.5-0.8 Zr:0.08-0.
    Type: Application
    Filed: January 10, 2000
    Publication date: February 7, 2002
    Inventors: TIMOTHY WARNER, PHILIPPE LASSINCE, PHILIPPE LEQUEU
  • Patent number: 6342111
    Abstract: An energy-absorbing member of extruded aluminum alloy which is composed of Mg (0.5-1.6 wt %), Zn (4.0-7.0 wt %), Ti (0.005-0.3 wt %), Cu (0.05-0.6 wt %), and at least one of the following elements: Mn (0.2-0.7 wt %), Cr (0.03-0.3 wt %), and Zr (0.05-0.25 wt %), with the remainder being Al and inevitable impurities, said energy-absorbing member having a hollow cross-section and fiber structure and being one which has undergone averaging treatment.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: January 29, 2002
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Toshiyuki Meki, Masakazu Hirano
  • Patent number: 6325870
    Abstract: An aluminum sheet material for automobiles is herein disclosed, having an aluminum alloy composition: (i) comprising 3.5 to 5 wt % of Si, 0.3 to 1.5 wt % of Mg, 0.4 to 1.5 wt % of Zn, 0.4 to 1.5 wt % of Cu, 0.4 to 1.5 wt % of Fe, and 0.6 to 1 wt % of Mn, and one or more members selected from the group of 0.01 to 0.2 wt % of Cr, 0.01 to 0.2 wt % of Ti, 0.01 to 0.2 wt % of Zr, and 0.01 to 0.2 wt % of V, with the balance of aluminum and unavoidable impurities, or (ii) comprising between more than 2.6 wt % and 5 wt % of Si, 0.2 to 1.0 wt % of Mg, 0.2 to 1.5 wt % of Zn, 0.2 to 1.5 wt % of Cu, 0.2 to 1.5 wt % of Fe, and between 0.05 and less than 0.6 wt % of Mn, and one or more members selected from the group of 0.01 to 0.2 wt % of Cr, 0.01 to 0.2 wt % of Ti, 0.01 to 0.2 wt % of Zr, and 0.01 to 0.2 wt % of V, with the balance of aluminum and unavoidable impurities.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: December 4, 2001
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kazuhisa Kashiwazaki, Yoichiro Bekki, Noboru Hayashi
  • Publication number: 20010043880
    Abstract: The thermal conductivity of the alloy of the invention can achieve 146 W/m·K, an increase of 45% compared with that of common aluminum die casting alloy-ADC12. The casting defects like shrinkage cavity, micro-porosity and amount of dross also become much less than those of pure aluminum. Further, the fluidity and mold erosion resistance of this alloy is also better than that of pure aluminum and almost equivalent to that of ADC12. When the aluminum die casting alloy of the invention is applied to a heat sink, the thermal resistance is even lower than that of ADC12 and 1070 pure aluminum.
    Type: Application
    Filed: May 17, 2001
    Publication date: November 22, 2001
    Inventors: Jen-Dong Hwang, Chih-Chao Yang
  • Patent number: 6315842
    Abstract: A mold for plastics made of a rolled, extruded or forged AlZnMgCu aluminum alloy product >60 mm thick, and having a composition including, in weight %: 5.7 < Zn < 8.7 1.7 < Mg < 2.5 1.2 < Cu < 2.2 Fe < 0.14 Si < 0.11 0.05 < Zr < 0.15 Mn < 0.02 Cr < 0.02 with Cu+Mg<4.1 and Mg>Cu, other elements<0.05 each and<0.10 in total, the product being treated by solution heat treating, quenching and aging to a T6 temper.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: November 13, 2001
    Assignee: Pechiney Rhenalu
    Inventors: Ravi Shahani, Jean-Francois Verdier, Phlilippe Lassince, Guy-Michel Raynaud, Christophe Sigli, Pierre Sainfort
  • Publication number: 20010028861
    Abstract: There is claimed an alloy composition for castings, especially vehicle wheels. This cast composition is chromium-free, zirconium-free and consists essentially of: about 4-7 wt. % zinc, more preferably, about 4-5 wt. % zinc; about 1.2-1.8 wt. % magnesium; at least one of about 0.3-0.6 wt. % manganese and 0.1-0.25 wt. % copper; up to about 0.25 wt. % iron; and up to about 0.25 wt. % silicon, the balance aluminum and incidental impurities. Products made from this alloy exhibit fatigue properties equal to or greater than those for a 6061-T6 forging, typically about 850,000 cycles at about 12.5 ksi; and about 330,000 cycles at about 20 ksi. They also exhibit a typical T6 tensile yield strength of about 50 ksi or higher.
    Type: Application
    Filed: February 20, 2001
    Publication date: October 11, 2001
    Inventors: Que-Tsang Fang, Barrie S. Shabel
  • Publication number: 20010028860
    Abstract: There is claimed a high strength, aluminum alloy composition especially suited for cast vehicular structural components. This chromium- and lithium-free, alloy consists essentially of: about 3-3.6 wt. % zinc, about 1.3-1.6 wt. % magnesium, about 0.2-0.8 wt. % manganese, about 0.08-0.16 wt. % zirconium, up to about 0.3 wt. % copper, up to about 0.15 wt. % silicon, and up to about 0.25 wt. % iron, the balance aluminum, incidental elements and impurities. It exhibit a typical tensile yield strength greater than about 29 ksi without having to undergo T6-type thermal processing.
    Type: Application
    Filed: February 20, 2001
    Publication date: October 11, 2001
    Inventors: Que-Tsang Fang, Barrie S. Shabel
  • Publication number: 20010006607
    Abstract: An aluminum alloy extruded material for automotive structural members, which contains 2.6 to 5 wt % of Si, 0.15 to 0.3 wt % of Mg, 0.3 to 2 wt % of Cu, 0.05 to 1 wt % of Mn, 0.2 to 1.5 wt % of Fe, 0.2 to 2.5 wt % of Zn, 0.005 to 0.1 wt % of Cr, and 0.005 to 0.05 wt % of Ti, and satisfies relationship of the following expression (I), (Content of Mn (wt %))+0.32×(content of Fe (wt %))+0.097×(content of Si (wt %))+3.5×(content of Cr (wt %))+2.9×(content of Ti (wt %))≦1.36 (I) with the balance being made of aluminum and unavoidable impurities. A method of producing the aluminum alloy extruded material for automotive structural members, which comprises cooling with a refrigerant from outside of a die-exit side, at the time of extrusion.
    Type: Application
    Filed: December 15, 2000
    Publication date: July 5, 2001
    Inventors: Yoichiro Bekki, Noboru Hayashi
  • Patent number: 6135195
    Abstract: The present invention provides a thixoformable Al alloy composites wherein Si is added to ASTM 2000 series aluminum alloy so that the total Si content thereof may be 1-5 at. % and also a manufacturing method of thixoformable Al alloy composites comprising: obtaining a matrix of the composite containing 1-5 at. % of the total Si content by adding Si to ASTM 2000 series aluminum alloy; holding the matrix in the temperature range of 560-610.degree. C. to obtain a liquid fraction of 40-70% and thereafter performing a thixoforming process.
    Type: Grant
    Filed: July 24, 1998
    Date of Patent: October 24, 2000
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae Chul Lee, Ho In Lee, Ji Young Byun
  • Patent number: 6126898
    Abstract: An aluminum-copper alloy comprising substantially insoluble particles which occupy the interdendritic regions of the alloy.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: October 3, 2000
    Assignee: Aeromet International PLC
    Inventor: Simon Andrew Butler
  • Patent number: 6056836
    Abstract: Sheet for welded constructions having an ultimate tensile strength R.sub.m >275 MPa, elongation A>22% and a product A.times.R.sub.m >7000, having the composition, in % by weight:______________________________________ Mg: 4.2-4.7; Mn: 0.20-0.40; Zn: <0.20; Fe: 0.20-0.45; Si <0.25; Cr <0.15; Cu <0.25; Ti <0.10; Zr <0.10; ______________________________________other elements <0.05 each and <0.20 in total,balance Al.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: May 2, 2000
    Assignee: Pechiney Rhenalu
    Inventors: Jean-Luc Hoffman, Guy-Michel Raynaud, Martin-Peter Schmidt, Herve Ribes
  • Patent number: 6056835
    Abstract: The present invention relates to a process for producing a superplastic aluminum alloy capable of being used for plastic working such as extrusion, forging and rolling. An object of the present invention is to provide an ingot-made high speed superplastic aluminum alloy in which superplasticity is developed at a strain rate higher than that of conventional static recrystallization type superplastic aluminum alloys, and a process for producing the same. The superplastic aluminum alloy of the invention has structure which is obtained by adding to a basic alloy containing from at least 4.0 to 15% by weight of Mg and from 0.1 to 1.0% by weight of one or more elements selected from the group consisting of Mm, Zr, V, W, Ti, Ni, Nb, Ca, Co, Mo and Ta, and further selective elements of Sc, Cu. Li, Sn, In and Cd, which contains from 0.1 to 4.0% by volume fraction of spheroidal precipitates of intermetallic compounds having a particle size from 10 to 200 nm, and which has a mean grain size from 0.1 to 10 .mu.m.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: May 2, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiharu Miyake, Tetsuya Suganuma
  • Patent number: 6027582
    Abstract: A rolled, forged or extruded AlZnMgCu alloy product, used to manufacture structural elements for aircraft, particularly wing spars. The product is greater than 60 mm thick, and has a composition (% by weight):5.7<Zn<8.71.7<Mg<2.51.2<Cu<2.20.07<Fe<0.14Si<0.110.05<Zr<0.15Mn<0.02Cr<0.02with Cu+Mg<4.1, and Mg>Cu,other elements <0.05 each and <0.10 in total. The product is treated by solution heat treating, quenching and possibly aging, and has in the treated T7451 or T7452 temper the following properties:a) a yield strength measured at quarter-thickness>400 MPa in the L and TL directions,b) toughness under plane strain in the S-L direction>26 MPa.sqroot.m and in the L-T direction >74-0.08e-0.07R.sub.0.2L MPa.sqroot.m (e=thickness in mm), andc) a stress corrosion threshold>240 MPa.
    Type: Grant
    Filed: July 21, 1997
    Date of Patent: February 22, 2000
    Assignee: Pechiney Rhenalu
    Inventors: Ravi Shahani, Jean-Francois Verdier, Phlilippe Lassince, Guy-Michel Raynaud, Christophe Sigli, Pierre Sainfort
  • Patent number: 5993576
    Abstract: A wear-resistant wrought Al alloy having a desirable high fatigue strength, toughness and flexure strength when subjected to a quenching and an age hardening heat treatment. The Al alloy contains 8.0 to 13.0% by weight of Si, 0.1 to 0.5% by weight of Fe, 1.5 to 5.0% by weight of Cu, 0.4 to 1.5% by weight of Mg, 0.05 to 0.5% by weight of Cr, 0.05 to 0.5% by weight of Ni, an element selected from the group consisting of 0.005 to 0.05% by weight of Sr and 0.05 to 0.3% by weight of Sb, and the remainder being Al and unavoidable impurities, wherein there is no more than 0.04% by weight of Mn as an unavoidable impurity. The Al alloy having Si particles being finely dispersed therein, wherein an average diameter of an equivalent circle of Si particles is not more than 5.00 .mu.m and an average roundness of Si particles is not less than 0.50. The amounts of Fe, Cr and Ni contained in the alloy and the amount of Mn as an impurity are such to prevent Si particles and other intermetallic compounds from enlarging.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: November 30, 1999
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Akira Ichinose, Akira Hideno, Nobuaki Ohara
  • Patent number: 5954897
    Abstract: A die-casting aluminum base alloy consisting of, by weight %,Zn:10.about.25%, Si:6.about.10%,Cu:0.5.about.3.0%, Mn:0.1.about.0.5%,Mg:0.02.about.0.08%, Fe:less than 1.3%,and the rest of Al and unavoidable impurity.This alloy can be heat treated at low temperature from 260.degree. C. to 450.degree. C., at which steel parts inserted in this alloy will not deteriorate.This alloy has excellent mechanical strength, stress corrosion cracking resistance and wear resistance, and can be used for ball joints apparatus such as a stabilizer conrod for automobile.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: September 21, 1999
    Assignee: Nisso Metalochemical Co., Ltd.
    Inventors: Minoru Ohtake, Yutaka Fujiwara
  • Patent number: 5939164
    Abstract: The present invention relates to an aluminum alloy for a magnetic disk substrate having a composition consisting of, by percent by weight, 2.0 to 6.0% of Mg, 0.05 to 0.15% of Cu, 0.10 to 0.30% of Zn and 0.05 to 0.12% of Zr, wherein the contents of Cu, Zn and Zr satisfy the relationship: 0.15%.ltoreq.2Cu+6Zr-3Zn.ltoreq.0.32% (wherein Cu, Zr, and Zn respectively represent their contents in terms of percent by weight), and the composition further consists of one or both of 0.01 or more to less than 0.05% of Cr and 0.01 or more to less than 0.05% of Mn, impurities consisting of Si, Fe and Ti, which are respectively regulated to be 0.05% or less, 0.05% or less, and 0.02% or less, and other inevitable impurity elements respectively regulated to be 0.02% or less, with the remainder being Al. The present invention also relates to a clad material for a magnetic disk substrate, in which one or both surfaces of a core material, consisting of at least less than 3.
    Type: Grant
    Filed: February 25, 1997
    Date of Patent: August 17, 1999
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yoshinari Kubo, Ken-ichi Ogura, Yoichiro Bekki, Satoru Yamada, Koji Kinoshita
  • Patent number: 5925315
    Abstract: An antifrictional aluminum alloy and a method for making an aluminum alloy without lead are provided. The alloy has improved tribological characteristics and a base composition, in weight percent as follows:Silicon: 3.0-6.0Copper: 2.0-5.0Zinc: 0.5-5.0Magnesium: 0.25-0.5Nickel: 0.2-0.6Tin: 0.5-5.0Bismuth: 0.1-1.0Iron: up to 0.7Aluminum: essentially the balance.
    Type: Grant
    Filed: July 9, 1997
    Date of Patent: July 20, 1999
    Assignee: Caterpillar Inc.
    Inventor: Anna N. Bourkhina
  • Patent number: 5906689
    Abstract: An aluminum-based alloy composition having improved corrosion resistance and extrudability consists essentially of, in weight percent, an amount of copper up to about 0.03%, between about 0.1 and 0.5% manganese, between about 0.03 and 0.30% titanium, between about 0.06 and 1.0% zinc, an amount of iron up to about 0.50%, between about 0.05 and 0.12% Si, less than 0.01% manganese, less than 0.01% nickel, up to 0.5% chromium with the balance aluminum and incidental impurities. A process of making an aluminum alloy article having high corrosion resistance also is provided.
    Type: Grant
    Filed: June 6, 1996
    Date of Patent: May 25, 1999
    Assignee: Reynolds Metals Company
    Inventor: Subhasish Sircar
  • Patent number: 5891273
    Abstract: The invention relates to a cylinder liner, cast into a reciprocating piston engine, of a highly hypereutectic aluminum/silicon alloy which is free of hard material particles independent of the melt and has such a composition that fine primary silicon crystals and intermetallic phases automatically form from the melt as hard particles. By spray-compacting, a blank of finely sprayed melt droplets is caused to grow, a fine distribution of the hard particles being produced by controlled introduction of small melt droplets. The blank can be transformed by an extrusion step into a form approximating the cylinder liner. After subsequent premachining with chip removal, the running surface is precision-machined and subsequently honed in at least one stage, after which the hard particles located in the running surface are exposed, plateau faces of the particles being formed, which faces protrude from the remaining surface of the matrix structure of the alloy.
    Type: Grant
    Filed: January 29, 1997
    Date of Patent: April 6, 1999
    Assignee: Mercedes-Benz AG
    Inventors: Franz Ruckert, Peter Stocker, Roland Rieger
  • Patent number: 5888320
    Abstract: A method of producing an aluminum product having high formability high fracture toughness, high strength and improved corrosion resistance, the method comprising: (a) providing stock including an aluminum base alloy consisting essentially of about 0.7 to 1.0 wt. % silicon, not more than about 0.3 wt. % iron, not more than about 0.5 wt. % copper, about 0.8 to 1.1 wt. % magnesium, about 0.3 to 0.4 wt. % manganese, and about 0.5 to 0.8 wt. % zinc, the remainder substantially aluminum, incidental elements and impurities; (b) homogenizing the stock at a temperature ranging from about 950.degree. to 1050.degree. F. for a time period ranging from about 2 to 20 hours; (c) hot rolling at a temperature ranging from about 750.degree. to 950.degree. F. will increase; (d) solution heat treating at a temperature ranging from about 1000.degree. to 1080.degree. F. for a time period ranging from about 5 minutes to one hour; (e) cooling by quenching at a rate of about 1000.degree. F./second to a temperature of 100.degree. F.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: March 30, 1999
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventor: Ralph C. Dorward
  • Patent number: 5879478
    Abstract: The invention relates to an aluminum alloy for thixoforming with the composition (by weight): Si: 5%-7.2% Cu: 1%-5% Mg<1% Zn<3% Fe<1.5% other elements<1% each and<3% in total, with % Si<7.5-% Cu/3, which, when reheated to the semisolid state to the point at which a liquid fraction ratio between 35 and 55% is obtained, has an absence of non-remelted polyhedral silicon crystals.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: March 9, 1999
    Assignee: Aluminium Pechiney
    Inventors: Willem Loue, Michel Garat
  • Patent number: 5863359
    Abstract: There is claimed a lower wing structure for a commercial jet aircraft which includes a substantially unrecrystallized rolled plate member made from an aluminum alloy consisting essentially of about 3.6 to 4.0 wt. % copper, about 1.0 to 1.6 wt. % magnesium, about 0.3 to 0.7 wt. % manganese, about 0.05 to 0.25 wt. % zirconium, the balance aluminum and incidental elements and impurities. On a preferred basis, the alloy products of this invention include very low levels of both iron and silicon, typically on the order of less than 0.1 wt. % each, and more preferably about 0.05 wt. % or less iron and about 0.03 wt. % or less silicon. This alloy composition may be rolled to form lower wing skin plates and extruded or rolled to form wing box stringers therefrom.
    Type: Grant
    Filed: June 9, 1995
    Date of Patent: January 26, 1999
    Assignee: Aluminum Company of America
    Inventors: Lynette M. Karabin, John Liu, Allison S. Warren, Gary H. Bray
  • Patent number: 5851320
    Abstract: An improved aluminum alloy containing specific additions of silicon and copper to improve wear resistance and improve solutionizing of the alloying constituents, and a process for forming a wear-resistant component from the alloy. The improved aluminum alloy is also characterized by good strength and sufficient ductility so as to permit forging of a wear-resistant component from the alloy. A preferred composition for the alloy, in weight percent, is about 13.0 to about 15.5 percent silicon; about 0.8 to about 2.0 percent copper; about 0.8 to about 1.3 percent magnesium, and the balance being aluminum and impurities. The aluminum alloy is particularly well suited to form pistons of the type used in compressors of automotive air conditioning systems.
    Type: Grant
    Filed: January 5, 1996
    Date of Patent: December 22, 1998
    Assignee: Norsk Hydro, A. S.
    Inventors: Lars Auran, Gary Hugh Rhinehart, Saumin Shantilal Mehta
  • Patent number: 5800927
    Abstract: There is claimed a sheet or plate structural member suitable for aerospace applications and having improved combinations of strength and toughness. The member is made from a substantially vanadium-free, lithium-free, aluminum-based alloy consisting essentially of: about 4.85-5.3 wt. % copper, about 0.5-1.0 wt. % magnesium, about 0.4-0.8 wt. % manganese, about 0.2-0.8 wt. % silver, about 0.05-0.25 wt. % zirconium, up to about 0.1 wt. % silicon, and up to about 0.1 wt. % iron, the balance aluminum, incidental elements and impurities, the Cu:Mg ratio of said alloy being between about 5 and 9, and more preferably between about 6.0 and 7.5. The invention exhibits a typical tensile yield strength of about 77 ksi or higher at room temperature and can be processed into various lower wing members or into the fuselage skin of high speed aircraft.
    Type: Grant
    Filed: June 19, 1996
    Date of Patent: September 1, 1998
    Assignee: Aluminum Company of America
    Inventor: Lynette M. Karabin
  • Patent number: 5776269
    Abstract: A process for making an essentially lead-free screw machine stock alloy, comprising the steps of providing a cast aluminum ingot having a composition consisting essentially of about 0.55 to 0.70 wt. % silicon, about 0.15 to 0.45 wt. % iron, about 0.30 to 0.40 wt. % copper, about 0.8 to 0.15 wt. % manganese, about 0.80 to 1.10 wt. % magnesium, about 0.08 to 0.14 wt. % chromium, nor more than about 0.25 wt. % zinc, about 0.007 to 0.07 wt. % titanium, about 0.20 to 0.8 wt. % bismuth, about 0.15 to 0.25 wt. % tin, balance aluminum and unavoidable impurities; homogenizing the alloy at a temperature ranging from about 900.degree. to 1060.degree. F. for a time period of at least 1 hour; cooling to room temperature; cutting the ingot into billets; heating and extruding the billets into a desired shape; and thermomechanically treating the extruded alloy shape.
    Type: Grant
    Filed: August 24, 1995
    Date of Patent: July 7, 1998
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Larry E. Farrar, Jr., Norman LeRoy Coats, II
  • Patent number: 5755898
    Abstract: Compressor scrolls are made of an aluminum alloy containing 4.0 to 5.0% by weight of Cu, 9.0 to 12.0% by weight of Si, 0.5 to 1.5% by weight of Mg, and 0.6 to 1.0% by weight of Fe. The scrolls are manufactured using a high speed die casting method.
    Type: Grant
    Filed: January 23, 1996
    Date of Patent: May 26, 1998
    Assignee: Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventors: Shinya Yamamoto, Takamitsu Mukai, Yasushi Watanabe, Nobuhiro Ishizaka
  • Patent number: 5725694
    Abstract: A free-machining alloy is disclosed containing bismuth, tin and indium. The free-machining constituents act as low melting point compounds for machining and are specially adapted for use in aluminum alloys such as AA6000 series and AA 2000 series alloys. The bismuth, tin and indium are effective replacements for the lead and bismuth addition used previously to improve machinability.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: March 10, 1998
    Assignee: Reynolds Metals Company
    Inventor: Subhasish Sircar
  • Patent number: 5652063
    Abstract: There is claimed a sheet or plate structural member suitable for aerospace applications and having improved combinations of strength and toughness. The member is made from a substantially vanadium-free aluminum-based alloy consisting essentially of: about 4.85-5.3 wt. % copper, about 0.5-1.0 wt. % magnesium, about 0.4-0.8 wt. % manganese, about 0.2-0.8 wt. % silver, about 0.05-0.25 wt. % zirconium, up to about 0.1 wt. % silicon, and up to about 0.1 wt. % iron, the balance aluminum, incidental elements and impurities, the Cu:Mg ratio of said alloy being between about 5 and 9, and more preferably between about 6.0 and 7.5. The invention exhibits a typical tensile yield strength of about 77 ksi or higher at room temperature and can be processed into various lower wing members or into the fuselage skin of high speed aircraft.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: July 29, 1997
    Assignee: Aluminum Company of America
    Inventor: Lynette M. Karabin