Chromium Containing Patents (Class 420/583)
  • Patent number: 4464208
    Abstract: Disclosed is an amorphous alloy for a magnetic head, which is of the formula:(Co.sub.1-a-b-c Fe.sub.a Ru.sub.b TM.sub.c).sub.100-x-y Si.sub.x B.sub.ywherein TM is at least one of Ti, V, Cr, Mn, Ni, Zr, Nb, Mo, Hf, Ta and W, and, in atomic concentrations, 0.02.ltoreq.a.ltoreq.0.08, 0.07.ltoreq.b.ltoreq.0.2, c=0 or 0.01.ltoreq.c.ltoreq.0.1, 0.ltoreq.x.ltoreq.20 and 4.ltoreq.y.ltoreq.9, which is excellent in abrasion-resistance and simultaneously has high permeability.
    Type: Grant
    Filed: December 30, 1982
    Date of Patent: August 7, 1984
    Assignee: Tokyo Shibaura Denki Kabushiki Kaisha
    Inventor: Hiroshi Tateishi
  • Patent number: 4457891
    Abstract: A hydrogen storage material is described which comprises an alloy of the composition of 25 to 30.9% by weight of Ti, about 10 to about 42% by weight of V and about 27.1 to about 65.1% by weight of Mn. The proviso is that more than 2 up to at most 2.2 atoms are present per titanium atom. Up to about 40%, preferably about 10 to about 40%, of the vanadium atoms can be replaced by iron atoms and up to about 10%, preferably about 3 to about 10%, can be replaced by aluminum atoms, but not more than about 40% of the vanadium atoms in total are replaced. Moreover, in place of titanium, a mixture can be used in which up to about 20% of the titanium fraction are replaced by Ca, Y, La, misch metal, or mixtures thereof. Up to about 0.2 atom of Cr per the titanium atom, up to about 0.1 atom of Ni per titanium atom and up to about 0.05 atom of Cu per titanium atom can also be present, but not more than about 0.1 atom of Ni plus Cu, these atoms replacing the same number of vanadium atoms.
    Type: Grant
    Filed: March 14, 1983
    Date of Patent: July 3, 1984
    Assignee: Daimler-Benz Aktiengesellschaft
    Inventors: Otto Bernauer, Klaus Ziegler
  • Patent number: 4446101
    Abstract: A storage material for hydrogen comprising an alloy with the following composition:______________________________________ Ti(V.sub.1-a-b Fe.sub.a Al.sub.b).sub.x Cr.sub.y Mn.sub.2-x-y, ______________________________________ wherein: x = greater than 1, less than 2 y = 0 to approximately 0.2 x + y = not greater than 2 a = 0 to approximately 0.25 b = 0 to approximately 0.33 a + b = not greater than approximately 0.35 (1 - a - b) .multidot. x = not less than 1 ______________________________________This storage material for hydrogen can, in the cold state, absorb a maximum of 3.2% by weight of H.sub.2 and already possesses, at low temperatures, a high reaction speed for the absorption of hydrogen. During the absorption of hydrogen, the storage material exhibits self-heating to high temperatures. Thus, in addition to its use for storing hydrogen, it is also particularly suitable for use in preheating systems for hydride-type storage units of motor vehicles.
    Type: Grant
    Filed: September 29, 1982
    Date of Patent: May 1, 1984
    Assignee: Daimler-Benz Aktiengesellschaft
    Inventors: Otto Bernauer, Klaus Ziegler
  • Patent number: 4442068
    Abstract: A heat resistant cast iron-nickel-chromium alloy outstanding in creep fracture strength at high temperatures and resistance to thermal shock and to carburizing and containing the following components in the following proportions in terms of % by weight:C: 0.3-0.6,O<Si.ltoreq.2.0,O<Mn.ltoreq.2.0,Cr: 20-30,Ni: 30-40,W: 0.5-5.0,N: 0.04-0.15,B: 0.0002-0.004,Ti: 0.04-0.50 and0.07<Al.ltoreq.0.50the balance being substantially Fe.
    Type: Grant
    Filed: September 17, 1982
    Date of Patent: April 10, 1984
    Assignee: Kubota Ltd.
    Inventors: Junichi Sugitani, Teruo Yoshimoto, Makoto Takahashi
  • Patent number: 4439236
    Abstract: Boron-containing transition metal alloys based on one or more of iron, cobalt and nickel, and containing at least two metal components, are characterized by being composed of ultrafine grains of a primary solid-solution phase randomly interspersed with particles of complex borides which are predominantly located at the junctions of at least three grains of the primary solid-solution phase. These alloys are obtained by devitrification of the solid, amorphous state under specific heat-treatment conditions. These alloys can be consolidated into three-dimensional bodies.
    Type: Grant
    Filed: April 26, 1982
    Date of Patent: March 27, 1984
    Assignee: Allied Corporation
    Inventor: Ranjan Ray
  • Patent number: 4436697
    Abstract: A soldering alloy containing 25 to 35% iron, 15 to 25% chromium, 3 to 6% silicon, 1 to 4% molybdenum, the remainder essentially cobalt.
    Type: Grant
    Filed: September 23, 1982
    Date of Patent: March 13, 1984
    Assignee: Fried. Krupp Gesellschaft mit beschrankter Haftung
    Inventors: Ronald Friedrich, Manfred Muller
  • Patent number: 4435212
    Abstract: A high permeability alloy having an excellent wear resistance, comprising 3-10 wt % of Al, 4-11 wt % of Si, 2.1-20.0 wt % of Ru and the balance Fe, and further containing or not containing 0.01-1.0 wt % of at least one element selected from a group consisting of rare earth elements, Zr and Nb, and/or 0.2-0.5 wt % of Ti, or 0.5-20.0 wt % of Cr.
    Type: Grant
    Filed: December 6, 1982
    Date of Patent: March 6, 1984
    Assignee: The Furukawa Electric Company Ltd.
    Inventors: Norio Ueshima, Nobuo Okawa, Kiyoshi Takayanagi
  • Patent number: 4416709
    Abstract: The present invention relates to an amorphous magnetic alloy material suited for use as a core material of a magnetic head.When the magnetic head is subjected to a slide contact with a magnetic tape over a long period of time, a film of oxide and the like is formed on the surface of an amorphous magnetic alloy material due to chemically corrosive media frequently contained in the magnetic coating layer of the magnetic tape or due to carbon dioxide, water and the like contained in the air.The amorphous magnetic alloy material of the present invention is highly corrosion resistant due to the combination of chromium and platinum family element(s), and, the inconveniences in a magnetic head, due to chemical wear, can be prevented even where the magnetic head is operated or stored in a considerably severe condition.
    Type: Grant
    Filed: September 10, 1981
    Date of Patent: November 22, 1983
    Assignee: TDK Electronics Co., Ltd.
    Inventors: Kazuo Ohya, Hiroki Fujishima, Norio Ishijima, Hiroyoshi Itoga, Yasuhiko Kominami
  • Patent number: 4410604
    Abstract: An economical brazing alloy composition includes high amounts of iron. A brazed assembly includes iron-based brazing alloys.
    Type: Grant
    Filed: November 16, 1981
    Date of Patent: October 18, 1983
    Assignee: The Garrett Corporation
    Inventors: Matthew J. Pohlman, Lynn E. Kindlimann
  • Patent number: 4384891
    Abstract: A metal alloy having high catalytic activity comprising a refractory base metal mass containing carbon and at least one metal of the platinum type, the surface of which has been subjected to intergranular acid corrosion which produces microfissures and causes the formation of microcrystals of the platinum metals. The catalyst is useful in exhaust catalystic converters.
    Type: Grant
    Filed: July 7, 1980
    Date of Patent: May 24, 1983
    Assignee: Regie Nationale des Usines Renault
    Inventor: Jean-Louis Barnabe
  • Patent number: 4370163
    Abstract: A hydrogen storage Ti-Fe alloy of the general formula, Ti.sub.1-x A.sub.x Fe.sub.y-z B.sub.z, in which A is Zr, Hf or a mixture thereof, B is a member selected from Cr, Cu, Co, Mo, V, Ni, Nb, Mn and a mixture thereof, and x, y and z are values of certain ranges, respectively. The alloy is predominantly comprised of an effective alloy phase of CsCl type body-centered cubic crystals. The alloy of the formula where z=O is within the scope of the invention. A process for making an alloy of this type is also disclosed.
    Type: Grant
    Filed: September 4, 1980
    Date of Patent: January 25, 1983
    Assignee: Matsushita Electric Industrial Company, Limited
    Inventors: Yoshio Moriwaki, Takaharu Gamou, Nobuyuki Yanagihara, Toshio Yamashita, Tsutomu Iwaki