Including Solid, Extended Surface, Fluid Contact Reaction Means; E.g., Inert Raschig Rings, Particulate Absorbent, Particulate Or Monolithic Catalyst, Etc. Patents (Class 422/211)
  • Patent number: 7297249
    Abstract: A fixed-bed reactor is described for carrying out reactions of fluid reaction mixtures in the presence of a particulate heterogeneous catalyst having a structured packing which forms interstices in the reactor interior, in which the quotient of the hydraulic diameter for the fluid flow through the structured packing and the equivalent diameter of the catalyst particles is in the range from 2 to 20, preferably in the range from 5 to 10, to such an extent that the catalyst particles are introduced into the interstices, loosely distributed and discharged under the action of gravity.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: November 20, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerd Kaibel, Christian Miller, Helmut Jansen, Björn Kaibel
  • Patent number: 7294317
    Abstract: A reactor and heat exchanger assembly is provided with the heat exchanger integrally affixed to the reactor exit head and adapted to immediately cool reactor gases from the reactor.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: November 13, 2007
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co.
    Inventors: Barry Billig, Bhupendra Ranibhai Baria
  • Patent number: 7294316
    Abstract: A honeycomb structure that is a plurality of honeycomb segments (21) bonded into one piece by a bonding material (25), the honeycomb segments (21) each having a large number of through-channels (11) separated from each other by partition walls (20), the bonding material (25) being composed of components substantially the same as components composing the unified body of honeycomb segments (21), and the honeycomb segments (21) being bonded to each other at their planes substantially parallel to the direction of channels of through- channels (11), in which honeycomb structure each bonded plane (22) of each honeycomb segment (21) has a structure possessing an unbonded area (12) containing at least an edge portion opening to a periphery of its gas inlet side end face (15) and/or a periphery of its gas outlet side end face (17). With this honeycomb structure, there is no cracking caused by the thermal stress during the use, and excellent durability can be obtained.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: November 13, 2007
    Assignee: NGK Insulators, Ltd
    Inventors: Takashi Harada, Yukio Miyairi, Yoshiyuki Kasai, Shinji Kawasaki
  • Patent number: 7294313
    Abstract: A device for producing ammonia from urea pellets includes a pellet dispensing device, a pellet accelerator, a pellet shooting channel, and an ammonia reactor having a chamber or zone for shooting in urea pellets and a pellet deflector arranged on an end of the shooting path. The device further includes a urea pellet evaporation device and a hydrolytic catalytic converter. The urea pellets are removed from the reservoir in a regulated number/quantity by a dispensing device and transported to the accelerating device, where the pellets are moved from the pellet shooting channel into the ammonia reactor, where they are broken down into small pieces by impacting a pellet deflector at the end of the shooting path. The pieces are converted into a gas mixture containing ammonia and isocyanic acid by means of a urea evaporation device. The isocyanic acid is subsequently converted into ammonia and carbon dioxide.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: November 13, 2007
    Assignee: Man Nutzfahrzeuge AG
    Inventors: Eberhard Jacob, Erwin Stiermann
  • Publication number: 20070258872
    Abstract: A compact catalytic reactor defines a multiplicity of first and second flow channels arranged alternately, the first flow channels being no more than 10 mm deep and providing flow paths for combustible reactants, and containing a catalyst structure (20) to catalyse combustion of the reactants, and having at least one inlet for at least one of the reactants. The first flow channel also includes an insert (40 or 60) adjacent to each inlet, this insert not being catalytic to the combustion reaction; the insert may define gaps which are narrower than the maximum gap size for preventing flame propagation.
    Type: Application
    Filed: April 26, 2007
    Publication date: November 8, 2007
    Applicant: COMPACTGTL PLC
    Inventors: David James West, Michael Joseph Bowe, Robert Frew Gillespie, Steven Brabon, Robert Peat
  • Patent number: 7288231
    Abstract: The present invention provides chemical reactors and reaction chambers and methods for conducting catalytic chemical reactions having gas phase reactants. In preferred embodiments, these reaction chambers and methods include at least one porous catalyst material that has pore sizes large enough to permit molecular diffusion within the porous catalyst material.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: October 30, 2007
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. VanderWiel, Robert S. Wegeng
  • Patent number: 7282073
    Abstract: Hydrogen is generated through the use of a fuel solution that is prepared using solid fuel component, e.g., a metal borohydride, and a liquid fuel component, e.g. water. Both of these components are dispensed in response to control signals. The solid fuel component can take different forms, including but not limited to granules, pellets and powder. Various devices, which operate in response to control signals, are disclosed for dispensing predetermined amounts of the solid and liquid components. Advantageously, this solution can be prepared, as needed, so as to obviate the need for storing and disposing of large amounts of highly alkaline fuel and discharged fuel solutions.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: October 16, 2007
    Assignee: Millennium Cell, Inc.
    Inventors: Phillip J. Petillo, Stephen C. Petillo
  • Patent number: 7279145
    Abstract: A unique reactor configuration especially suitable for interphase mass transfer and mixing of multiple phases, i.e. gas(es), liquid(s), and solid(s) where reaction is catalyzed by a solid catalyst comprises a draught tube reactor wherein the solid catalyst particles are maintained in an annular space between the draught tube of the reactor and an annulus-defining wall by means of filter elements positioned downstream and optionally also upstream from the catalyst bed.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: October 9, 2007
    Assignee: Lyondell Chemical Technology, L.P.
    Inventor: Prakash G. Balan
  • Patent number: 7278210
    Abstract: The invention relates to a method of producing a 3-D microscope flow-through cell, consisting of an upper and a lower substrate between which is located a flow channel, an electrode structure penetrating the flow channel and connected with external contacts and with through-connections at the ends of the flow channel for the connection of fluid inlets and outlets. The invention provides a method of producing 3-D microscope micro flow-through cells that are suitable for the reversible assembly of microscope flow-through cells for the ?m-volume range. According to the invention, this is obtained in that a base substrate is first provided with access holes and a flow channel, the flow channel being made of a sandwich of a material non-elastic inside and elastic outside, in that the flow channel for the purpose of a fluid-tight channel closure, is pressed against a second cover glass in order to provide a reversibly sealable flow channel.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: October 9, 2007
    Assignee: GeSIM Gesellschaft Fur Silizium-Mikrosysteme mbH Rossendorfer Technologiezentrum
    Inventors: Steffen Howitz, Mario Buerger
  • Patent number: 7276215
    Abstract: In a vertical reactor vessel through which vapor and liquid flow concurrently, the fluids pass vertically through a horizontal mixing box having internal flow baffles that form at least one mixing orifice through which the process stream flows at high velocity. In the mixing orifices the liquid is dispersed to obtain a large area for interphase heat and mass transfer. Each mixing orifice is followed by structure that divides the process stream into two lower velocity streams, whereby turbulent flow conditions are generated, and wherein hold-up time is provided to allow for heat and mass transfer. The fluids exit the mixing box through an outlet opening in a bottom wall of the mixing box. An impingement plate is located below this outlet opening to spread the liquid and decrease the velocity of the exiting jet. The outlet stream from the mixer is equilibrated regarding temperature and chemical composition.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: October 2, 2007
    Assignee: Morten Muller Ltd. ApS
    Inventor: Morten Müller
  • Patent number: 7276214
    Abstract: A chemical reactor is disclosed and which has a core composed of a stack of metal plates that are diffusion bonded in face-to-face relationship. A plurality of reaction zones are located within the core, as are a plurality of catalyst receiving zones, and both the reaction zones and the catalyst receiving zones are defined by respective aligned apertures in the plates. A first channel arrangement is provided in some of the plates for transporting a first reactant to and between the reaction zones, portions of the first channel arrangement that interconnect the reaction zones being formed over at least a portion of their length as heat exchange channels. A second channel arrangement is provided in others of the plates and is arranged to deliver a second reactant to each of the reaction zones.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: October 2, 2007
    Assignee: Meggit (UK) Ltd.
    Inventors: Anthony Matthew Johnston, Brian Scott Haynes
  • Patent number: 7276095
    Abstract: A stand-alone fuel processor (10) for producing hydrogen from a hydrocarbon fuel for a fuel cell engine in a vehicle. The fuel processor (10) includes a primary reactor (14) that dissociates hydrogen and other by-products from the hydrocarbon fuel as a reformate gas. The reformate gas is applied to a WGS reactor (48) to convert carbon monoxide and water to hydrogen and carbon dioxide. The WGS reactor (14) may include an adsorbent for adsorbing carbon monoxide. The reformate gas from the WGS reactor (48) is then sent to a rapid-cycle PSA device (12) for adsorbing the undesirable by-products in the gas and generates a stream of pure hydrogen. A liquid water separator (70) separates water from the reformate gas before it is applied to the PSA device (12). The PSA device (12) uses a portion of the separated hydrogen as a desorbing gas to purify the adsorbent in the PSA device (12). The by-products of the reformate gas can be used as a fuel in a combustor (30) that generates heat for the primary reactor (14).
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: October 2, 2007
    Assignee: General Motors Corporation
    Inventors: Craig S. Gittleman, John B. Ruhl, Yan Zhang, William H. Pettit
  • Patent number: 7270689
    Abstract: A reformer for reacting a raw material gas to be reformed, with an oxidizing agent gas and a reforming agent gas in the presence of an oxidation catalyst and a reforming catalyst to obtain a hydrogen-containing gas, including: a set of catalyst layers consisting of an oxidation catalyst layer and a reforming catalyst layer, and two or more inlets for feeding the oxidizing agent gas to the oxidation catalyst and/or the reforming catalyst in plural stages. The reformer can produce a hydrogen-containing gas without forming a combustion region of a temperature of as high as one thousand and several hundreds centigrade and can be manufactured at a low cost.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: September 18, 2007
    Assignees: Toyo Engineering Corporation, K. E. M. Corporation
    Inventors: Hidetsugu Fujii, Fumitake Watanabe, Katsuya Uehara, Yukuo Katayama
  • Publication number: 20070212294
    Abstract: The present invention relates to a fuel reformer, a sprayer for the fuel reformer and a fuel reforming method, wherein the fuel reformer is characterized by comprising a spraying device for atomizing liquid fuel; and a reactor which reforms the fuel via a catalytic reaction of the fuel atomized by the spraying device. According to the invention, the reforming performance of a fuel reformer can be enhanced, and the reforming can be easily carried out when it is applied to the fuel comprising improper features for fuel reforming.
    Type: Application
    Filed: October 13, 2006
    Publication date: September 13, 2007
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Inyong Kang, Joongmyeon Bae, Hyunjin Ji
  • Patent number: 7267697
    Abstract: A fuel reforming system includes an inlet device for a reactor having a housing defining a frustoconical interior region having an inlet opening and an outlet opening. A tube mixer having a helical divider may be optionally employed to transfer fluid into the inlet opening. A retention member is placed at each of the openings and a plurality of particles is contained within the frustoconical interior region between the retention members. An insulator placed between the outlet opening and the catalyst reaction surface minimizes temperature non-uniformities over the catalyst surface area, which preserves the catalyst contained within the reaction surface and prevents premature onset of the reaction prior to contact of a reactant mixture with the reaction surface. As a reactant fluid material passes through the inlet device it forms a homogenous reactant fluid material which then flows onto a catalytic reaction surface to form a reformate.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: September 11, 2007
    Assignee: General Motors Corporation
    Inventors: Michael Bart Viola, Changsoo Kim, Calvin K. Koch
  • Patent number: 7267804
    Abstract: The membrane reactor of the present invention generates a desired gas such as hydrogen produced by steam reforming liquid fuels. The membrane reactor provides thermal integration between the heating source and the reaction catalyst by heat conduction through a solid medium. A gas purification system extracts energy from the waste gases to heat the membrane reactor. This, in concert with other control mechanisms provided results in a more efficient gas purification process.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: September 11, 2007
    Inventor: Robert E. Buxbaum
  • Patent number: 7261749
    Abstract: An autothermal reformer is provided for a fuel cell system utilizing one volume and a plurality of inlets for both start-up and normal operation. In start-up mode, thermal combustion is employed for heating the catalyst reformation section of the reformer. Two inlets are used to feed air and fuel into the system, which are mixed and ignited in the common volume. Once the catalyst has reached light-off temperature, a second set of inlets provide air, steam and fuel into the common volume. The mixture then passes into the catalytic reformation system.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: August 28, 2007
    Assignee: General Motors Corporation
    Inventors: William H Pettit, Mohammed E. H. Sennoun, Gerald E Voecks
  • Patent number: 7261748
    Abstract: A man portable hydrogen source, the source comprising one or more hydrogen generating elements (2), an ignition control system (3) and a pressure vessel (1). Each hydrogen generating element comprises a pellet holder (7) provided with one or more recesses and a thermal insulation layer (9) to reduce heat transfer to adjacent hydrogen generating elements; wherein at least one recess contains a pellet (8) of a chemical mixture which on thermal decomposition evolves hydrogen gas; wherein the ignition control system comprises one or more ignitors (14), associated with an individual pellet (8), and activation means to activate the ignitors; and wherein the evolved hydrogen and hydrogen generating elements are contained within the pressure vessel.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: August 28, 2007
    Assignee: Qinetiq Limited
    Inventors: Peter Brian Jones, Darren Jonathan Browning, Gary Owen Mepstead, Darren Paul Scattergood
  • Patent number: 7258845
    Abstract: A safe, reduced pressure apparatus for generating water vapor from hydrogen and oxygen and feeding high purity moisture to processes such as semiconductor production. The apparatus eliminates the possibility of the gas igniting by maintaining the internal pressure of the catalytic reactor for generating moisture at a high level while supplying moisture gas from the reactor under reduced pressure. A heat dissipation reactor improvement substantially increases moisture generation without being an enlargement in size by efficient cooling of the reactor alumite-treated fins.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: August 21, 2007
    Assignee: Fujikin Incorporated
    Inventors: Tadahiro Ohmi, Nobukazu Ikeda, Yukio Minami, Kouji Kawada, Katunori Komehana, Teruo Honiden, Touru Hirai, Akihiro Morimoto, Toshirou Nariai, Keiji Hirao, Masaharu Taguchi, Osamu Nakamura
  • Patent number: 7258844
    Abstract: A stacked assembly of plates is provided, a first portion of the length of the assembly being formed of one or more first perforated plates, with a central open region enclosed by inner annulus and limbs from the outer diameter of the inner annulus to the inner diameter of an outer peripheral annulus, whereby the first plate has a central passageway for the first fluid inside the inner annulus and a plurality of outer frusto-annular passageways for the second fluid, and, at one end of the first portion, a second portion of the length of the assembly formed of one or more second perforated plates of similar construction to the first plates, each second plate differing from the first plate in that its outer peripheral annulus has one or more discontinuities to provide an inlet or an outlet into the outer frusto-annular passageways of the second portion.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: August 21, 2007
    Assignee: Chart Industries, Inc.
    Inventor: Keith Thomas Symonds
  • Publication number: 20070190373
    Abstract: The invention relates to a separator plate having a fuel reforming chamber for a molten carbonate fuel cell, which can be simply and easily manufactured to integrate the fuel reforming chamber, which enables indirect reforming, with a separator plate so as to realize uniform heat distribution of the separator plate, and to perform a fuel gas reforming reaction, which is an endothermic reaction, using heat generated during the operation of the fuel cell. According to the invention, a fuel gas such as methane (CH4) is supplied to a fuel reforming chamber to reform it therein so as to convert it into hydrogen, after which the converted fuel gas is supplied between the fuel gas guides of an anode part positioned directly on the fuel reforming chamber, and at the same time, an oxidizing gas is supplied between the oxidizing gas guides positioned directly beneath the fuel reforming chamber, thus generating electricity.
    Type: Application
    Filed: February 9, 2007
    Publication date: August 16, 2007
    Applicant: DOOSAN HEAVY INDUSTRIES & CONSTRUCTION CO., LTD.
    Inventors: Jong-Seung PARK, In-Gab CHANG, Yun-Sung KIM, Jeong-Seok YOO, Boo-Ho YOON, Bo-Hyun RYU, Kil-Ho MOON, Tae-Won LEE
  • Publication number: 20070183947
    Abstract: A fuel reforming apparatus including reaction substrates is provided. The reaction substrates of the present invention is made of stainless steel, nickel steel, or chromium steel. Each of the reaction substrates has a channel formed on the surface of the reaction substrate. Reactant for oxidation reaction or for fuel reforming reaction flow through the channel. A catalyst containing layer is formed on the surface of the channel by directly oxidizing the surface of the channel. Therefore, the catalyst containing layer is formed with oxidized steel. A catalyst layer is formed on the catalyst containing layer. A pair of substrates can be laminated to make one substrate a thermal source unit and another a reforming reaction unit.
    Type: Application
    Filed: February 1, 2007
    Publication date: August 9, 2007
    Inventors: Sung-Chul Lee, Ju-Yong Kim, Chan-Ho Lee, Man-Seok Han, Yong-Kul Lee, Dong-Myung Suh, Dong-Uk Lee, Jin-Kwang Kim, Jin-Goo Ahn, Leonid Gorobinskiy
  • Publication number: 20070179053
    Abstract: A composite oxide support containing ceria and an oxide of M1(M1 being Al, Zr or Ti) such that the atomic ratio of cerium to M1 is in the range of 1:4 to 1:40; a method of preparing the composite oxide support; a catalyst for low temperature water gas shift reaction, having a transition metal active component supported on the composite oxide support by an incipient wetness method; and a method of preparing the catalyst for low temperature water gas shift reaction are provided. The catalyst for low temperature water gas shift reaction prepared by using the composite oxide support can effectively remove carbon monoxide from the hydrogen produced from the low temperature water gas shift reaction at a lower temperature with a higher carbon monoxide conversion rate, compared with conventional catalysts for water gas shift reaction.
    Type: Application
    Filed: December 6, 2006
    Publication date: August 2, 2007
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Hyun-chul Lee, Soon-ho Kim, Doo-hwan Lee, Yulia Potapova, Ok-young Lim, Eun-duck Park, Eun-yong Ko
  • Patent number: 7250143
    Abstract: The invention concerns a device for spraying water in a feedwater tank of a thermal power plant. Because the spraying device comprises a catalyst for the conversion of the gases contained in the water, the gases released from the water during the spray degasification can be removed easily, reliably and completely. Thus, the degree of efficiency of the thermal circuit of the power plant and the lifespan of the components arranged in the circuit are increased.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: July 31, 2007
    Assignee: Balke-Durr GmbH
    Inventors: Günter Grobelny, Robert-Joachim Keck
  • Publication number: 20070172403
    Abstract: Provided are a thermal siphon reactor and a hydrogen generator including the same. The hydrogen generator including the thermal siphon reactor includes: a housing; a reaction source container disposed in the housing; a reactor tube connected to the reaction source container in which a catalytic reaction of a reaction source provided from the reaction source container occurs; a catalyst layer which is porous, facilitates gas generation by being contacted with the reaction source, and is disposed in the reactor tube; and a product container which is connected to the reactor tube and collects a reaction product generated in the reactor tube, wherein in the reactor tube, a convection channel through which the reaction product is discharged passes through the reactor tube in the lengthwise direction of the reactor tube. The thermal siphon reactor and the hydrogen generator including the same have a self-operating ability, operate at low costs, and have small installment volume.
    Type: Application
    Filed: January 23, 2007
    Publication date: July 26, 2007
    Applicant: Samsung Engineering Co., Ltd.
    Inventors: Myong Hoon Lim, Tae Hee Park, Jae Hoi Gu, Yongho Yu
  • Patent number: 7244401
    Abstract: The present invention provides an apparatus useful for the separation of hazardous and non-hazardous organic and inorganic constituents from various matrices. A method of separating such constituents is also provided.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: July 17, 2007
    Assignee: IR Systems International
    Inventor: Jeffrey K. O'Ham
  • Patent number: 7244281
    Abstract: A plasma fuel reformer assembly for producing reformate gas includes a fuel reformer having an air/fuel input assembly, an electrode assembly, and a soot trap positioned downstream of the electrode assembly. The electrode assembly includes a first electrode and a second electrode that is spaced apart from the first electrode. The fuel reformer further includes a reformer controller electrically coupled to the air/fuel input assembly. The reformer controller includes a processing unit electrically connected to a memory unit.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: July 17, 2007
    Assignee: Arvin Technologies, Inc.
    Inventors: Samuel N. Crane, Jr., William Taylor, III
  • Patent number: 7241323
    Abstract: Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH4, H2, CO2, CO, H2O, NH3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: July 10, 2007
    Assignee: Advanced Fuel Research, Inc.
    Inventors: Michael A. Serio, Erik Kroo, Marek A. Wojtowicz, Eric M. Suuberg
  • Patent number: 7241376
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: July 10, 2007
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Patent number: 7238327
    Abstract: A catalytic converter and method for its assembly including an external shell formed in two halves containing a catalytic substrate, two internal shields and two-piece inlet and outlet cones. The inlet and outlet cones are attached as halves to each side of the external shell, and are assembled to each other as the external shells are assembled.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: July 3, 2007
    Assignee: Automotive Components Holdings, LLC
    Inventors: Carl Irving, Joseph Michael Lanzesira, Chris Darr, Houliang Li, Darren Nance
  • Patent number: 7235218
    Abstract: A compact catalytic reactor comprises a stack of plates (72, 74, 75) to define a multiplicity of first and second flow channels arranged alternately in the stack; each flow channel in which a chemical reaction is to take place is defined by straight-through channels across at least one plate, each such straight-through channel containing a removable gas-permeable catalyst structure (80) incorporating a metal substrate. The first flow channels (76) are oriented in a direction that is perpendicular to that of the second flow channels (77), and between successive second flow channels in the stack the reactor defines at least three side-by-side first flow channels (76); and the reactor incorporates flow diversion means (80; 88) such that the first fluid must flow through at least three such first flow channels (76) in succession, in flowing from an inlet to an outlet. The overall flow paths can therefore be approximately co-current or counter-current.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: June 26, 2007
    Assignee: Compactgtl PLC
    Inventor: Michael Joseph Bowe
  • Patent number: 7232848
    Abstract: An apparatus for converting a gaseous and/or liquid feed fluid to gaseous and/or liquid products using a solid catalyst comprises a reactor, a liquid phase disposed within the reactor volume, a fixed catalyst at least partially disposed in the liquid phase, a cooling system having a cooling element in thermal contact with the liquid phase, a feed inlet positioned to feed the feed fluid into the reactor volume, and a fluid outlet in fluid communication with the liquid phase. The catalyst is contained in a catalyst container and the container may be adjacent to said cooling element, extend through said cooling element, or may surround the catalyst container. The catalyst may be a Fischer-Tropsch catalyst.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: June 19, 2007
    Assignee: ConocoPhillips Company
    Inventors: Sergio R. Mohedas, Rafael L. Espinoza, Jianping Zhang
  • Patent number: 7229598
    Abstract: A honeycomb body, which is composed in such a manner that a strip of corrugated foil made of heat-resistant stainless steel containing aluminum and a strip of flat foil made of stainless steel are alternately wound or laminated on each other, is incorporated into an outer cylinder made of metal and integrated into one body by means of diffusion bonding, so that a diffusion bonded metallic catalyst carrier can be formed. Surface roughness of the strip of foil after the completion of diffusion bonding is 0.001 to 2.0 ?m when it is expressed by center line average height Ra, and no sintered bridges are formed at both end portions of the diffusion bonded section in the longitudinal direction. The catalyst carrier is manufactured in a condition so that ?b, which is defined by ?b=6.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: June 12, 2007
    Assignee: Nippon Steel Corporation
    Inventors: Yasuo Takahashi, Tadayuki Otani, Kazutoshi Iwami, Masayuki Kasuya
  • Patent number: 7226490
    Abstract: An apparatus for converting hydrocarbon fuel to a hydrogen rich gas including a first heat exchanger for heating the hydrocarbon fuel, a first desulfurization reactor for reacting a heated hydrocarbon fuel to produce a substantially desulfurized hydrocarbon fuel, a manifold for mixing the substantially desulfurized hydrocarbon fuel with an oxygen containing gas to produce a fuel mixture, a second heat exchanger for heating the fuel mixture, an autothermal reactor including a catalyst for reacting the heated fuel mixture to produce a first hydrogen containing gaseous mixture, a second desulfurization reactor for producing a second hydrogen containing gaseous mixture that is substantially desulfurized, a water gas shift reactor for reacting the second hydrogen containing gaseous mixture to produce a third hydrogen containing gaseous mixture with a substantially decreased carbon monoxide content, and a selective oxidation reactor for reacting the third hydrogen containing gaseous mixture to produce the hydrogen
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: June 5, 2007
    Assignee: Texaco, Inc.
    Inventors: Vijay A. Deshpande, Curtis Krause
  • Patent number: 7223373
    Abstract: A catalytic reactor comprises a plurality of sheets defining flow channels between then. Within each flow channel is a foil of corrugated material whose surfaces are coated with catalytic material. The flow channels extend in transverse dire options, but the foils are shaped to cause the gas in those channels to flow at least partly in counter current to the gas flowing in the other channels. The reactor incorporates header chambers to supply gas mixtures to the flow channels, each header being in the form of a cap attached to the outside of the back and covering a face of the stack. Hence different gas mixtures are supplied to the different channels which may be at different pressures, and the corresponding chemical reactions are also different, and heat is transferred through the sheets separating the adjacent channels. When the catalyst in one set of flow channels becomes spent, it can be replaced by removing a header.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: May 29, 2007
    Assignee: Compactgtl PLC
    Inventor: Jason Andrew Maude
  • Patent number: 7220392
    Abstract: A fuel conversion reactor includes a shell-and-tube heat exchanger for controlling the temperature of a hot gaseous mixture produced by catalytic or non-catalytic reaction of a fuel with a gaseous fluid, and for controlling the temperature of the gaseous fluid and/or the fuel prior to the reaction. The reactor is either a catalytic or non-catalytic burner, or a fuel reformer for converting a fuel to hydrogen. A preferred reactor includes an outer shell having first and second ends and an inner surface, a primary inner shell extending into the outer shell, the primary inner shell defining a heat exchanging chamber and having primary and secondary ends, and a secondary inner shell having a first end located adjacent the secondary end of the primary inner shell. One or more outlet apertures are formed between the two inner shells for passage of the gaseous fluid out of the heat exchanging chamber.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: May 22, 2007
    Assignee: Dana Canada Corporation
    Inventors: Xiaoyang Rong, Brian E. Cheadle
  • Patent number: 7220393
    Abstract: A nitric oxide gas generator which includes a body having a dilution inlet chamber, a chemical mixing chamber, and a dilution outlet chamber. A dilution inlet for diluent gases is provided into the dilution inlet chamber. An inlet is provided to permit entry of the diluent gases into the chemical mixing chamber. An outlet is provided to permit the exit of diluted nitric oxide gas from the chemical mixing chamber to the dilution outlet chamber. A dilution outlet is provided for removal of diluted nitric oxide gas from the dilution outlet chamber. Supports are provided for supporting chemicals to be reacted to produce nitric oxide gas. A heat source is provided to heat the chemical mixing chamber in which chemicals are mixed to initiate a chemical reaction that produces nitric oxide gas.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: May 22, 2007
    Inventors: Randy Miller, Christie Woodruff
  • Patent number: 7220290
    Abstract: The present invention relates to a composition and method for storage and controlled release of hydrogen. In particular, the present invention relates to the use of borohydride based solutions as a hydrogen storage source and a catalyst system to release hydrogen therefrom.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: May 22, 2007
    Assignee: Millennium Cell, Inc.
    Inventors: Steven C. Amendola, Michael Binder, Stefanie L. Sharp-Goldman, Michael T. Kelly, Phillip J. Petillo
  • Patent number: 7220390
    Abstract: This invention relates to an apparatus, comprising: at least one process microchannel having a height, width and length, the height being up to about 10 mm, the process microchannel having a base wall extending in one direction along the width of the process microchannel and in another direction along the length of the process microchannel; at least one fin projecting into the process microchannel from the base wall and extending along at least part of the length of the process microchannel; and a catalyst or sorption medium supported by the fin.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: May 22, 2007
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Dongming Qiu, Richard Q. Long, Barry L. Yang, Thomas Yuschak, Steven T. Perry
  • Patent number: 7217304
    Abstract: This invention is directed to a heat exchanged membrane reactor for electric power generation. More specifically, the invention comprises a membrane reactor system that employs catalytic or thermal steam reforming and a water gas shift reaction on one side of the membrane, and hydrogen combustion on the other side of the membrane. Heat of combustion is exchanged through the membrane to heat the hydrocarbon fuel and provide heat for the reforming reaction. In one embodiment, the hydrogen is combusted with compressed air to power a turbine to produce electricity. A carbon dioxide product stream is produced in inherently separated form and at pressure to facilitate injection of the CO2 into a well for the purpose of sequestering carbon from the earth's atmosphere.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 15, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry W. Deckman, John W. Fulton, Jeffrey M. Grenda, Frank Hershkowitz
  • Patent number: 7214251
    Abstract: The compact steam reformer of the present invention integrally comprises a housing; a reforming reactor having an upper mixing compartment for mixing natural gas and steam and a lower compartment for accommodating a catalyst bed; a natural gas feeding coiled pipe through which natural gas is introduced while being heated; a steam generating coiled pipe in which pure water is converted to steam by the exhaust; a metal fiber burner for heating the reforming reactor; a high-temperature converter for primarily removing carbon monoxide from a synthetic gas; a low-temperature converter for secondarily reducing the carbon monoxide level of the synthetic gas; and a heat exchanger, provided between the high-temperature converter and the low-temperature converter, for cooling the gas effluent from the high-temperature converter.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: May 8, 2007
    Assignees: Korea Gas Corporation, Kyungdong City Gas Co. Ltd., Korea Research Institute of Chemical Technology
    Inventors: Young-Sam Oh, Young-Soon Baek, Won-Ihl Cho, Taek-Yong Song, Jeong-Hwan Lee, Sang-Eon Park, Ki-Won Jun, Ri-Sang Choi
  • Patent number: 7214252
    Abstract: An apparatus for pyrolysis and gasification of organic substances and mixtures thereof is provided with a pyrolysis reactor (1), a fluidized-bed firing (3) for pyrolysis residue, a reaction zone (2) for the pyrolysis gases (13) and circulating fluidized-bed material (35). The pyrolysis reactor (1) has a sluice for introducing application material (10) thereinto. An inlet for the fluidized-bed material (35) is disposed next to the combustion fluidized bed (3). Transport apparatus (14) for mixture of solid pyrolysis residue and circulating fluidized bed material (35) is disposed at or near a bottom of the fluidized bed (3) and lower end of the pyrolysis reactor (1). An overflow is situated at or near the top of the fluidized bed (3) while a heat transfer member is positioned within the reaction zone (2).
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: May 8, 2007
    Assignee: Herhof Umwelttechnik GmbH
    Inventors: Wolfgang Krumm, Günter Funk, Stefan Hamel
  • Patent number: 7201883
    Abstract: A catalytic reactor comprises a plurality of sheets defining flow channels between them. Within each flow channel is a foil of corrugated material whose surfaces are coated with catalytic material. Flow channels for a first gas extend in oblique directions relative to the flow channels for a second gas. The reactor incorporates header chambers to supply gas mixtures to the flow channels, the headers communicating with adjacent channels being separate. The reactor enables different gas mixtures to be supplied to adjacent channels, which may be at different pressures, and the corresponding chemical reactions are also different. Where one of the reactions is endothermic while the other reaction is exothermic, heat is transferred through the sheets separating the endothermic reaction. When the catalyst in one set of flow channels becomes spent, it can be replaced by removing a header.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: April 10, 2007
    Assignee: Compactgtl PLC
    Inventors: Michael Joseph Bowe, Clive Derek Lee-Tuffnell
  • Patent number: 7198766
    Abstract: Chilled coolant is prepared by liquid coolant utilizing the latent heat generated by a gasification of liquefied propylene, for example, and this chilled coolant is used in heat exchangers which are used in a process for production of acrylic acid or acrolein. This method allows effective utilization of the latent heat which used to be discarded and permits a reduction of energy consumption of cooling required separately in the step for production. By recovering the chilled coolant with the liquid coolant, it makes possible to stabilize the gasification of propylene, etc. and consequently stabilize the production of acrylic acid. This invention consists of providing the method for the production of acrylic acid, etc. and the apparatus which make effective use of the latent heat generated in the steps of production.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: April 3, 2007
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Kazuto Okazaki, Yukihiro Matsumoto, Kazuhiko Sakamoto, Osamu Dodo
  • Patent number: 7195663
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, and fuel processing and fuel cell systems that include hydrogen purification devices. In some embodiments, the fuel processing systems and the hydrogen purification membranes include a metal membrane, which is at least substantially comprised of palladium or a palladium alloy. In some embodiments, the membrane contains trace amounts of carbon, silicon, and/or oxygen. In some embodiments, the membranes form part of a hydrogen purification device that includes an enclosure containing a separation assembly, which is adapted to receive a mixed gas stream containing hydrogen gas and to produce a stream that contains pure or at least substantially pure hydrogen gas therefrom. In some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processor, and in some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processing or fuel cell system.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: March 27, 2007
    Assignee: IdaTech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Patent number: 7192562
    Abstract: An apparatus is disclosed for the generation of hydrogen peroxide. The apparatus provides for the production of a large scale volume of hydrogen peroxide by the generation of a liquid bearing bubble cloud. The bubbles are generated with a tiny volume before flowing over the reactor bed to generate the hydrogen peroxide.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: March 20, 2007
    Assignee: UOP LLC
    Inventors: Gavin P. Towler, Kurt M. Vanden Bussche
  • Patent number: 7189271
    Abstract: A catalytic reactor comprises a plurality of thin tray-like metal sheets each with a peripheral rim and arranged as a stack to define first gas flow channels between adjacent sheets, alternating with second gas flow channels between adjacent sheets, so as to ensure good thermal contact between gases in the first and the second gas flow channels. Each sheet also defines at least four apertures for flow of gases, and tubes and seal apertures in one sheet to corresponding apertures in the adjacent sheet. The gas flows through the channels may be guided by corrugations, and are preferably in countercurrent in adjacent channels. Appropriate catalysts are coated onto the sheets and in the two gas flow channels.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: March 13, 2007
    Assignee: Compactgtl PLC
    Inventor: Jason Andrew Maude
  • Patent number: 7189377
    Abstract: 1.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: March 13, 2007
    Assignee: BP Chemicals Limited
    Inventors: Simon Jobson, Derrick John Watson
  • Patent number: 7189270
    Abstract: A method and apparatus for conversion of solid and liquid fuels to a synthesis gas, steam and/or electricity in which about 10% to about 40% of a solid fuel and/or a liquid fuel is introduced into a gasifier and gasified, resulting in formation of a synthesis gas. The remaining portion of the solid fuel and/or liquid fuel is introduced into a first stage of a multi-stage combustor, resulting in formation of products of combustion and ash and/or char. The synthesis gas is introduced into a second stage of the multi-stage combustor disposed downstream of the first stage and overfire oxidant is introduced into a third stage of the multi-stage combustor disposed downstream of the second stage. The ash and/or char from the multi-stage combustor is then recycled into the gasifier.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: March 13, 2007
    Assignee: Gas Technology Institute
    Inventors: Bruce Bryan, Iosif Rabovitser
  • Patent number: 7186389
    Abstract: Method for carrying out in continuous, under so-called pseudo-isothermal conditions and in a predetermined reaction environment, such as a catalytic bed, a selected chemical reaction, comprising the steps of providing in the reaction environment at least one tubular heat exchanger fed with a first flow of a heat exchange operating fluid at a respective predetermined inlet temperature, the fluid passing through the at least one tubular heat exchanger according to a respective inlet/outlet path, which method also provides the step of feeding into the at least one tubular heat exchanger and at one or more intermediate positions of said path, a second flow of operating fluid having a respective predetermined inlet temperature.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: March 6, 2007
    Assignee: Methanol Casale S.A.
    Inventors: Ermanno Filippi, Enrico Rizzi, Mirco Tarozzo