Micro-fluidic Device Patents (Class 422/502)
  • Patent number: 9029158
    Abstract: Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: May 12, 2015
    Assignee: California Institute of Technology
    Inventors: Yu-Chong Tai, Siyang Zheng, Jeffrey Chun-Hui Lin, Harvey Kasdan
  • Publication number: 20150125882
    Abstract: The present disclosure provides methods and systems for assaying a sample. A microfluidic device to perform an assay of a sample (e.g., biological sample) is described having a sample application site, a porous component and a flow channel. The porous component provides for uniform dissolution of a reagent and mixing of the sample and reagent without filtering the sample.
    Type: Application
    Filed: November 5, 2014
    Publication date: May 7, 2015
    Inventors: Scott Joseph Bornheimer, Jeffrey Sugarman, Wei Huang, Edward Michael Goldberg, Ming Tan
  • Publication number: 20150125947
    Abstract: The invention provides a new microfluidic device and method for performing operations on droplets. The invention extends to microfluidic systems comprising one or more of the microfluidic devices.
    Type: Application
    Filed: April 25, 2013
    Publication date: May 7, 2015
    Applicant: Scope Fluidics SP Z O.O.
    Inventors: Piotr Korczyk, Ladislav Derzsi, Tomasz Kaminski, Slawomir Jakiela, Piotr Garstecki
  • Publication number: 20150125879
    Abstract: Compositions and methods for providing devices comprised of a substrate and a Layer-By-Layer (LBL) film coated on at least a surface of the substrate, which LBL film comprises binding agents that specifically interact with cells. Such devices are useful, for example, in various cell isolation applications. Among other advantages, such devices permit isolation and release (e.g., via layer degradation) of cells under mild conditions.
    Type: Application
    Filed: September 25, 2014
    Publication date: May 7, 2015
    Inventors: Wei Li, Steven Andrew Castleberry, Paula Therese Hammond
  • Patent number: 9023296
    Abstract: A method of manufacturing a target reactor having a flow-channel system in which a plurality of reactants continuously flowing into said target reactor are mixed and interconvert to form a target volumetric flow-rate (f2) of a product continuously flowing out of said target reactor, wherein the smallest hydraulic diameter (dh2) of said target reactor is calculated based on the relationship d h ? ? 2 = d h ? ? 1 ? ( f 2 f 1 ) 3 - n 7 - n in a turbulent or transitional turbulent flow, wherein n is a non-integer number with 1>n?0, between the corresponding smallest hydraulic diameter (dh1) of a standard reactor having the same fluidic type of flow-channel system, f1 is a standard volumetric flow-rate of said standard reactor carrying out the same interconversion, and f2 is said target volumetric flow-rate.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: May 5, 2015
    Assignee: Lonza AG
    Inventors: Dominique Roberge, Norbert Kockmann, Michael Gottsponer, Markus Eyholzer
  • Patent number: 9023279
    Abstract: A self-contained assay facility housed in a fixed-wing or rotary wing aircraft that is completely equipped to melt and assay precious metals, particularly gold and silver. An induction furnace melts the metal that is then poured into an ingot. The ingot is weighed and analyzed using an XRF alloy analyzer and the percentage of gold and/or other metals recorded. The value of the gold at current market prices is calculated and the assay and the value of the ingot is printed and given to the seller. The seller may opt to receive the ingot and pay the assayer an assay fee. Alternately, the seller may ask to be paid in cash, in bullion, by wire transfer, or by an open hedge. A transfer or hedge is initiated and confirmed from the assay facility. The ingots are securely stored in a safe within the assay facility.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: May 5, 2015
    Assignee: AOW Holdings, LLC
    Inventor: Chris M. Noyes
  • Patent number: 9023294
    Abstract: Provided is a cell concentration and purification device, having: a function of continuously concentrating cells; a function of then subsequently disposing the cells continuously in a specific region of a channel; a function of simultaneously recognizing, based on an image, the shape and fluorescence emission of each single cell; and a function of recognizing the cells and then separating and purifying the same based on the data relating to the shape and fluorescence emission thereof.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: May 5, 2015
    Assignees: Kanagawa Academy of Science and Technology, National University Corporation Tokyo Medical and Dental University, On-Chip Cellonics Consortium Co., Ltd.
    Inventors: Hideyuki Terazono, Kenji Yasuda, Masahito Hayashi, Hiroyuki Takei, Akihiro Hattori
  • Patent number: 9023281
    Abstract: Chemical indicator apparatuses containing one or more chemical indicators for use in monitoring the quality of water in an aquatic environment. The apparatuses are designed and configured to be submersible in the water that is being monitored. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo a physical change as levels of one or more constituents of the water change. Such indicators can be read by one or more suitable optical readers. These and other embodiments are designed and configured to be movable by a corresponding monitoring/measuring apparatus, for example, via a magnetically coupled drive. Also disclosed are a variety of features that can be used to provide a chemical indicator apparatus with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 9023641
    Abstract: The present invention relates to an leucocyte antigen mediated microfluidic assay and a microfluidic device for analyzing a subjects' body fluids containing leucocytes to determine if the subject has been previously exposed to a predetermined antigen.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: May 5, 2015
    Assignee: Advanced Animal Diagnostics
    Inventors: Rodolfo R. Rodriguez, Douglas J. Darr
  • Publication number: 20150118110
    Abstract: A microfluidic device unit has a control device which includes at least one actuating unit and with a carrier for a microfluidic chip. The carrier is designed as module separate from the control device, but is connected with the same by at least one connecting line such that the actuating unit can actuate at least one function at the carrier. The carrier is provided with a receptacle for the microfluidic chip.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 30, 2015
    Inventor: Thomas HAHN
  • Publication number: 20150118743
    Abstract: A nucleic acid extraction device has: a tube extending in a longitudinal direction in which a first plug formed of a wax or an oil, a second plug formed of a first washing liquid, a third plug formed of a wax, a fourth plug formed of an eluate, and a fifth plug formed of a wax or an oil are arranged in this order.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 30, 2015
    Inventors: Masato HANAMURA, Kotaro IDEGAMI
  • Publication number: 20150114222
    Abstract: A microfluidic device including: a substrate having a flow channel and an outlet port connected to the flow channel and configured to discharge liquid; and an inlet portion being present on a surface of the substrate and configured to allow injection of liquid into the flow channel, wherein the inlet portion includes a first tube and a second tube being present in an interior of the first tube and having a height smaller than that of the first tube, the outlet port includes a first outlet port and a second outlet port, the flow channel includes a first flow channel and a second flow channel, the second flow channel connects the second outlet port and a space between the first tube and the second tube, and the first flow channel and the second flow channel are not connected.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventor: Yoichi Murakami
  • Publication number: 20150118739
    Abstract: The present invention provides a micro flow-channel chip formed of two or more parts, wherein a first part has a through hole that forms a flow-channel connection portion, a second part has a projecting portion, the projecting portion of the second part is inserted into the through hole of the first part, thereby a volume of the flow-channel connection portion is reduced, and furthermore, both of the first part and the second part are molded with a die.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 30, 2015
    Inventor: Daigo Kobayashi
  • Publication number: 20150118728
    Abstract: According to embodiments of the present invention, an apparatus for separating a biological entity from a sample volume is provided. The apparatus includes an input chamber including an inlet configured to receive the volume sample, and an outlet, at least one magnetic element adjacent a portion of the input chamber, the magnetic element configured to provide a magnetic field in a vicinity of the portion of the input chamber to trap at least some leukocytes from the sample volume, and a filter in fluid communication with the outlet, the filter configured to separate the biological entity. According to further embodiments of the present invention, a method for separating a biological entity from a sample volume is also provided.
    Type: Application
    Filed: April 19, 2013
    Publication date: April 30, 2015
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Abdur Rub Abdur Rahman, Chandran Jegatha, Lakshmi Shankar, Chee Chung Wong
  • Patent number: 9017623
    Abstract: Microfluidic structures and methods for manipulating fluids and reactions are provided. Such structures and methods may involve positioning fluid samples, e.g., in the form of droplets, in a carrier fluid (e.g., an oil, which may be immiscible with the fluid sample) in predetermined regions in a microfluidic network. In some embodiments, positioning of the droplets can take place in the order in which they are introduced into the microfluidic network (e.g., sequentially) without significant physical contact between the droplets. Because of the little or no contact between the droplets, there may be little or no coalescence between the droplets. Accordingly, in some such embodiments, surfactants are not required in either the fluid sample or the carrier fluid to prevent coalescence of the droplets. Structures and methods described herein also enable droplets to be removed sequentially from the predetermined regions.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: April 28, 2015
    Assignee: Raindance Technologies, Inc.
    Inventors: Seth Fraden, Galder Cristobal-Azkarate
  • Patent number: 9017611
    Abstract: A biochip including a chip body, a first electrode and a second electrode is provided. The body has a first accommodating cavity, a second accommodating cavity and a micro-fluid channel. The micro-fluid channel is connected with the first accommodating cavity and the second accommodating cavity. The first electrode has a first end and a second end. The first end is used for contacting a first probe of a detection apparatus. The second end is positioned in the first accommodating cavity. The second electrode has a third end and a forth end. The third end is used for contacting a second probe of the detection apparatus. The forth end is positioned in the second accommodating cavity.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 28, 2015
    Assignee: Wistron Corporation
    Inventors: Pai-Yang Lin, Yih-Far Chen, Chin-Kuan Lin, Hsiang-Chia Chen, Sheng-Hsiung Weng
  • Publication number: 20150111289
    Abstract: An interface cartridge for a microfluidic chip, with microfluidic process channels and fluidic connection holes at opposed ends of the process channels, provides ancillary fluid structure, including fluid flow channels and input and/or waste wells, which mix and/or convey reaction fluids to the fluidic connection holes and into the process channels of the microfluidic chip.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 23, 2015
    Applicant: Canon U.S. Life Sciences, Inc.
    Inventors: Ray Tsao, Hiroshi Inoue, Shulin Zeng, Brian Murphy, Kenton C. Hasson
  • Publication number: 20150110688
    Abstract: A method for fabricating a channel device that is formed by bonding a first substrate having a first adhesion surface to a second substrate having a second adhesion surface, the second adhesion surface having a plurality of grooves that become channel wall surfaces, the method including a first step of forming a layer of a liquid composed of a curable adhesive between the first adhesion surface and the second adhesion surface; a second step of forming menisci of the liquid in the vicinities of wall surfaces of the plurality of grooves after the first step by applying a pressure to bring the first adhesion surface and the second adhesion surface close to each other; and a third step of curing the adhesive while the first adhesion surface and the second adhesion surface are close to each other.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 23, 2015
    Inventor: Eishi Igata
  • Patent number: 9011796
    Abstract: A device for analysing a clinical sample comprises at least one depot chamber for receiving one or more reagents and at least one process chamber, whereas the process chamber is integrated in a first support member and the depot chamber is integrated in at least a second support member, whereas the support members are arranged in that the process chamber is connectable with the depot chamber by a relative movement of the first and second support member with respect to each other. According to the invention, the device further includes a pump element for transferring the substances inside the device from one chamber to another.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: April 21, 2015
    Assignees: Carpegen GmbH, Systec Elektronik und Software GmbH
    Inventors: Max Koltzscher, Antje Rötger, Krzysztof-Wlodzimierz Siemieniewicz, Jens Heitmann, Christoffer Mai, Klaus-Gerd Schoeler, Tilmann Wolter
  • Patent number: 9011775
    Abstract: Disclosed herein is a cation exchange capacity titration unit comprising a titration cell having a closed bottom end in fluid communication with an open top end; a recirculation loop comprising a pump and a sensing unit, wherein the pump comprises a pump inlet in fluid communication with the bottom end of the titration cell, and a pump outlet in fluid communication with a sensing unit inlet, the sensing unit inlet being in fluid communication with a sensing unit outlet, wherein the sensing unit outlet is in fluid communication with the top end of the titration cell such that operation of the pump results in an analyte sample flowing from the bottom end through the pump, through the sensing unit, and back into the top end of the titration cell in a continuous loop. A method of determining the cation exchange capacity of a sample is also disclosed.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: April 21, 2015
    Assignee: M-I L.L.C.
    Inventors: George McMennamy, Marian Baranowski, Arkadiy Belkin
  • Patent number: 9011795
    Abstract: Provided are a valve unit and a microfluidic device including the valve unit. The valve unit includes: a valve substance container containing a valve substance, the valve substance including a phase change material that is solid at ambient temperature and melts by absorbing energy; a valve connection path connecting the valve substance container to a channel forming a fluid passage; and a pair of drain chambers formed along the channel at both sides of the valve connection path.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Beom-seok Lee, Yoon-kyoung Cho, Jeong-gun Lee, Jong-myeon Park
  • Patent number: 9012236
    Abstract: The invention provides a system that can process a raw biological sample, perform a biochemical reaction and provide an analysis readout. For example, the system can extract DNA from a swab, amplify STR loci from the DNA, and analyze the amplified loci and STR markers in the sample. The system integrates these functions by using microfluidic components to connect what can be macrofluidic functions. In one embodiment the system includes a sample purification module, a reaction module, a post-reaction clean-up module, a capillary electrophoresis module and a computer. In certain embodiments, the system includes a disposable cartridge for performing analyte capture. The cartridge can comprise a fluidic manifold having macrofluidic chambers mated with microfluidic chips that route the liquids between chambers. The system fits within an enclosure of no more than 10 ft3. and can be a closed, portable, and/or a battery operated system. The system can be used to go from raw sample to analysis in less than 4 hours.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 21, 2015
    Assignee: IntegenX Inc.
    Inventors: Stevan B. Jovanovich, William D. Nielsen, David S. Cohen, Michael Recknor, Mattias Vangbo, Ezra Van Gelder, Omar El-Sissi
  • Patent number: 9012228
    Abstract: Provided is a method for checking a blood status including: a step of supplying blood to the centrifugal container of a disk; a step of rotating the disk to centrifuge the blood cells and blood plasma in the centrifuge container, and detecting the actual moving distance per hour of the blood cells in the centrifugal container; and a step of establishing a first graph which represents the actual moving distance of the blood cells per hour, and a second graph which represents the theoretical moving distance of the blood cells per hour, and thereafter calculating the hematocrit of the blood cells and the viscosity of the blood plasma by comparing the first graph with the second graph.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Postech Academy-Industry Foundation
    Inventors: Dong Sung Kim, Moonwoo La, Sangmin Park
  • Patent number: 9011772
    Abstract: Provided herein is a bioprocessing device, bioprocessing card, and fluidics cartridge for performing automated bioprocessing of a sample. The bioprocessing card may include a plurality of pipette tips; and at least one pump in fluid communication with the plurality of pipette tips. In some embodiments, the pumps and the pipette tips are in fluid communication through a processing channel which may be a microscale channel. Also provided herein is an automated bioprocessing device comprising: at least one bioprocessing card; at least one fluidic cartridge; and an automated control system configured to control automated bioprocessing of a sample. Further provided herein are methods of use of the device, card, and cartridge.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: April 21, 2015
    Assignee: Life Technologies Corporation
    Inventors: Lars Norderhaug, Morten Egeberg, Tommy Rivrud, Lars Nokleby, Espir Kahatt, Jamie Hogan, Kornelija Zgonc, Norman Trolson
  • Patent number: 9005546
    Abstract: A flow cell having a support surface, and an integrated fluid reservoir made of two foil layers arranged on the support surface and joined with each other to enclose a storage space and a transport channel. The transport channel extends from a burst point that closes the storage space to a connecting opening and can be opened by fluid flowing from the storage space. A first of the foil layers of the fluid reservoir faces away from the support surface and projects beyond a second of the foil layers of the fluid reservoir that faces the support surface, and is bonded with the support surface in a projecting region.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: April 14, 2015
    Assignee: Thinxxs Microtechnology AG
    Inventor: Lutz Weber
  • Patent number: 9005545
    Abstract: The present invention relates to a method for detecting the presence and/or the reaction of a biomolecule by monitoring changes of electrical property accurately according to the biological, biochemical or chemical reaction of the biomolecule, and a biochip provided for this purpose.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 14, 2015
    Assignee: Digital Genomics Inc.
    Inventor: Jae-Hoon Lee
  • Patent number: 9005544
    Abstract: Disclosed herein are methods of performing microchemical reactions and electro-wetting-on-dielectric devices (EWOD devices) for use in performing those reactions. These devices and method are particularly suited for preparing radiochemical compounds, particularly compounds containing 18F.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 14, 2015
    Assignee: The Regents of the University of California
    Inventors: R. Michael Van Dam, Chang-Jin Kim, Supin Chen, Huijiang Ding, Gaurav Jitendra Shah, Pei Yuin Keng
  • Patent number: 9005525
    Abstract: A transportable, self-contained assay facility built in a modified standard shipping container that is completely equipped to melt and assay precious metals, particularly gold and silver. An induction furnace melts the metal that is then poured into an ingot. The ingot is weighed and analyzed using an XRF alloy analyzer and the percentage of gold and/or other metals recorded. The value of the gold at current market prices is calculated and the assay and the value of the ingot is printed and given to the seller. The seller may opt to receive the ingot and pay the assayer an assay fee. Alternately, the seller may ask to be paid in cash, by bullion, wire transfer, or by an open hedge. A transfer or hedge is initiated and confirmed from the assay facility. The ingots may be securely stored in a safe within the assay facility.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: April 14, 2015
    Assignee: AOW Holdings, LLC
    Inventors: Chris M. Noyes, Walter Nadonza
  • Publication number: 20150096390
    Abstract: In order to position components each including a channel in assembly, provided are a positioning method, which is particularly useful in manufacturing a component using an injection molding technology, and a device to which the method is applicable. Specifically, provided is a channel device, including: a first device including a channel; and a second device including a channel, the channel device being formed by joining the first device and the second device to each other so that the channel in the first device and the channel in the second device communicate to each other, the first device having a plurality of holes along an outer side of an edge of a region of the first device, which is joined to the second device.
    Type: Application
    Filed: September 17, 2014
    Publication date: April 9, 2015
    Inventor: Makoto Ogusu
  • Publication number: 20150099310
    Abstract: A sample port system/device associated with a fluid collection device is provided and is configured to receive fluid-containing devices of varying diameters. A method of improving the work flow and safety involved in acquiring and/or testing fluid samples using such sample port system/device is also provided.
    Type: Application
    Filed: May 1, 2013
    Publication date: April 9, 2015
    Applicant: SIEMENS HEALTHCARE DIAGNOSTICS INC.
    Inventor: James E. Rasmussen
  • Publication number: 20150098864
    Abstract: A microfluidic chip (100) with a flow-guiding body (111) and the applications thereof in biochemistry, immunology, and molecule detection. The flow-guiding body (111) is disposed in a solution tank (101) of the microfluidic chip (100), the surface of the flow-guiding body (111) is enclosed by the antigen or antibody, and the gap between the flow-guiding body (111) and a wall (105) of the solution tank is 0 mm to 1.5 mm.
    Type: Application
    Filed: September 20, 2012
    Publication date: April 9, 2015
    Applicant: BEIJING BOHUI INNOVATION TECHNOLOGY CO., LTD.
    Inventor: Qi Yang
  • Patent number: 8999378
    Abstract: The present invention provides porous electroactive hydrogels, the deformation angle of which is controlled by electroactuation, and methods for preparing and using such hydrogels.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 7, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Kevin Kit Parker, Megan O'Grady
  • Patent number: 8999264
    Abstract: A coating formula and method for surface coating non-porous surfaces. Microfluidic devices including said coating achieve desired properties including increased hydrophilicity, improved adhesion, stability and optical clarity.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Michael J. Pugia
  • Patent number: 8999263
    Abstract: A microfluidic separation device is provided that includes a first sample channel region and a second sample channel region, where the first sample channel region has an array of channels that are smaller than the second channel region, a first detection region and a second detection region located at the interface of the first sample channel region, a detection channel, an illuminating electric field, Raman-scattering nanoparticles having surface plasmon resonances for detection when illuminated by the electric field, where the resonances create an enhanced local electric field along specific directions resulting in an enhanced Raman response, and a nanoparticle input channel disposed to input the nanoparticles into the second sample channel region, where the nanoparticles are larger than the cross-section of the first sample channel region and the cross-section of the second detection region, where the nanoparticles collect in the first detection region to form region of densely packed nanoparticles.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 7, 2015
    Assignee: OndaVia, Inc.
    Inventors: Mark C. Peterman, Merwan Benhabib, Benjamin A. Obrock
  • Patent number: 8999265
    Abstract: Disclosed embodiments concern a microfluidic device comprising a bonding agent and two or more components. In particular disclosed embodiments, the microfluidic device is made out of the disclosed bonding agent. Also disclosed are embodiments of a method for making a microfluidic device, wherein the method includes using the disclosed bonding agent to couple two or more components together.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 7, 2015
    Assignee: State of Oregon acting by and through the State Board of Higher Education on behalf of Oregon State University
    Inventors: Myra T. Koesdjojo, Vincent T. Remcho, Jintana Nammoonnoy
  • Publication number: 20150093817
    Abstract: A particle manipulation system uses a MEMS-based, microfabricated particle manipulation device which has an inlet channel, output channels, and a movable member formed on a substrate. The movable member moves parallel to the fabrication plane, as does fluid flowing in the inlet channel. The movable member separates a target particle from the rest of the particles, diverting it into an output channel. However, at least one output channel is not parallel to the fabrication plane. The device may be used to separate a target particle from non-target material in a sample stream. The target particle may be, for example, a stem cell, zygote, a cancer cell, a T-cell, a component of blood, bacteria or DNA sample, for example. The particle manipulation system may also include a microfluidic structure which focuses the target particles in a particular portion of the inlet channel.
    Type: Application
    Filed: October 1, 2013
    Publication date: April 2, 2015
    Applicant: Owl biomedical, Inc.
    Inventors: John S. Foster, Nicholas C. Martinez, Stefan Miltenyi, Kamala R. Qalandar, Kevin E. Shields, Kimberly L. Turner
  • Patent number: 8992857
    Abstract: A mixing method and device are disclosed. The mixing method includes providing a drop generating device including a first drop ejector, a second drop ejector and a collector. The mixing method also includes ejecting a plurality of drops of a first reactant from the first drop ejector and ejecting a plurality of drops of a second reactant from the second drop ejector and collecting the drops with the collector.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: March 31, 2015
    Assignee: Xerox Corporation
    Inventors: David Allen Mantell, Peter Michael Gulvin, Pinyen Lin, Andrew W Hays
  • Patent number: 8992858
    Abstract: A microfluidic device comprises pumps, valves, and fluid oscillation dampers. In a device employed for sorting, an entity is flowed by the pump along a flow channel through a detection region to a junction. Based upon an identity of the entity determined in the detection region, a waste or collection valve located on opposite branches of the flow channel at the junction are actuated, thereby routing the entity to either a waste pool or a collection pool. A damper structure may be located between the pump and the junction. The damper reduces the amplitude of oscillation pressure in the flow channel due to operation of the pump, thereby lessening oscillation in velocity of the entity during sorting process. The microfluidic device may be formed in a block of elastomer material, with thin membranes of the elastomer material deflectable into the flow channel to provide pump or valve functionality.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: March 31, 2015
    Assignee: The United States of America National Institute of Health (NIH), U.S. Dept. of Health and Human Services (DHHS)
    Inventors: Hou-Pu Chou, Anne Y. Fu, Stephen R. Quake
  • Patent number: 8992859
    Abstract: A micromachined tube (microtube) suitable for microfluidic devices. The microtube is formed by isotropically etching a surface of a first substrate to define therein a channel having an arcuate cross-sectional profile, and forming a substrate structure by bonding the first substrate to a second substrate so that the second substrate overlies and encloses the channel to define a passage having a cross-sectional profile of which at least half is arcuate. The substrate structure is thinned to define the microtube and walls thereof that surround the passage.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: March 31, 2015
    Assignee: Integrated Sensing Systems, Inc.
    Inventors: Douglas Ray Sparks, Nader Najafi
  • Patent number: 8992860
    Abstract: The present invention relates to systems and methods for minimizing or eliminating diffusion effects. Diffused regions of a segmented flow of multiple, miscible fluid species may be vented off to a waste channel, and non-diffused regions of fluid may be preferentially pulled off the channel that contains the segmented flow. Multiple fluid samples that are not contaminated via diffusion may be collected for analysis and measurement in a single channel. The systems and methods for minimizing or eliminating diffusion effects may be used to minimize or eliminate diffusion effects in a microfluidic system for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 31, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Brian Murphy, Scott Corey, Alex Flamm, Ben Lane, Conrad Laskowski, Chad Schneider
  • Patent number: 8992183
    Abstract: Electro-osmosis is used to create droplets in order to easily, carefully, and quickly pick-and-place millions of objects (ranging in size from millimeters to nanometers) individually or in parallel. Droplets are formed within channels that are individually controlled in order to achieve a predetermined configuration of the selected objects.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: March 31, 2015
    Assignee: Cornell University
    Inventors: Cheryl Perich, Ashley Macner, Hod Lipson, Paul Steen, Robert MacCurdy
  • Publication number: 20150086443
    Abstract: A microfluidic chip for a microfluidic system includes a micro-to-macro seal. The microfluidic chip has a substrate, at least one microfluidic pathway in the substrate, and a PDMS seal layer on the substrate and above the microfluidic pathway. The PDMS seal layer provides a seal above the microfluidic pathway and prevent particles or contaminants entering the micro-channel during transportation or prior to application. During application, a needle or piping pierces through the PDMS seal layer, and fluid can be pumped into the microfluidic chip without concern for the fluid leaking despite high pressure required to pump or drive the fluid into the microfluidic pathway.
    Type: Application
    Filed: September 22, 2013
    Publication date: March 26, 2015
    Applicant: FLUXERGY, LLC
    Inventors: Tej PATEL, Ryan REVILLA, MATTHEW D'OOGE
  • Publication number: 20150086446
    Abstract: A channel device includes a first substrate having a groove portion for forming a channel, and a second substrate having a protruding portion that covers the groove portion, the first substrate and the second substrate being bonded together with an adhesive. The protruding portion of the second substrate extends along the extending direction of the groove portion of the first substrate, and mutually corresponding parts of the protruding portion of the second substrate and the groove portion of the first substrate are in direct and linear contact with each other without an adhesive therebetween, and the channel is thereby formed.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Inventor: Tomohiro Saito
  • Publication number: 20150087544
    Abstract: A method of flowing a fluid with a tracer in a microfluidic channel of an assay device and detecting the tracer for determining the channel location or condition of the channel.
    Type: Application
    Filed: September 6, 2014
    Publication date: March 26, 2015
    Inventors: Martin A. Putnam, Jeffrey T. Branciforte, Charles O. Stanwood
  • Publication number: 20150086444
    Abstract: A flow passage device includes a first base body having a first hole and a second base body having a second hole connected to the first hole to form a flow passage. A first portion formed around the first hole has a specified shape for holding an adhesive. The second base body has a high-wettability surface around the second hole with a low-wettability surface disposed proximate the high-wettability surface, and at least part of the high-wettability surface has a shape matching at least part of the specified shape. The first and second base body are bonded to each other with the adhesive to form the flow passage by aligning the at least part of the first portion with the at least part of the high-wettability surface with positions of the first and the second holes aligned with each other.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventor: Masaya Ogura
  • Publication number: 20150087559
    Abstract: A microfluidic device comprising a microfluidic channel network sealed on one side by a membrane sheet, the sheet having PDMS defining at least the surface sealing the channel, the membrane sheet on its opposite side sealing one side of a pneumatic channel, the pneumatic channel arranged to enable pneumatic deflection of a deflectable portion of the membrane sheet into contact with an opposed surface to control flow in a channel of the network, the membrane sheet confining in a channel of the network at least one micro-particle, micro-length tube or glass nano reactor, functionalized with a capture agent, that has been inserted into that channel. A microfluidic device having a microfluidic channel containing at least two micro-particles, micro-length tubes or glass nano reactors, one functionalized with nucleic acid and another with antibody or antigen.
    Type: Application
    Filed: September 6, 2014
    Publication date: March 26, 2015
    Inventors: Martin A. Putnam, John H. Leamon, Jeffrey T. Branciforte, Charles O. Stanwood
  • Patent number: 8986629
    Abstract: A device for controlling, detecting, and measuring a molecular complex is disclosed. The device comprises a common electrode. The device further comprises a plurality of measurement cells. Each measurement cell includes a cell electrode and an integrator electronically coupled to the cell electrode. The integrator measures the current flowing between the common electrode and the cell electrode. The device further comprises a plurality of analog-to-digital converters, wherein an integrator from the plurality of measurement cells is electrically coupled to one analog-to-digital converter of the plurality of analog-to-digital converters.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: March 24, 2015
    Assignee: Genia Technologies, Inc.
    Inventors: Kevin Deierling, Roger J. A. Chen, David J. Fullagar
  • Patent number: 8986627
    Abstract: Materials, components, and methods consistent with the present invention are directed to the fabrication and use of micro-scale channels with a fluid, where the temperature and flow of the fluid is controlled through the geometry of the micro-scale channel and the configuration of at least a portion of the wall of the micro-scale channel and the constituent particles that make up the fluid. Moreover, the wall of the micro-scale channel and the constituent particles are configured such that collisions between the constituent particles and the wall are substantially specular.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: March 24, 2015
    Assignee: Forced Physics, LLC
    Inventor: Scott Davis
  • Patent number: 8986614
    Abstract: A self-contained, fully automated, biological assay-performing apparatus includes a housing; a dispensing platform including a controllably-movable reagent dispensing system, disposed in the housing; a reagent supply component disposed in the housing; a pneumatic manifold removably disposed in the housing in a space shared by the dispensing platform, removably coupled to a fluidic transport layer and a plurality of reservoirs, wherein the fluidic transport layer, the reservoirs, and a test sample to be introduced therein are disposed in the housing in the space separate from the dispensing platform; a pneumatic supply system removably coupled to the pneumatic manifold in the housing in a space separate from the dispensing platform; and a control system coupled to at least one of the dispensing platform and the pneumatic supply system, disposed in the housing.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 24, 2015
    Assignee: Rheonix, Inc.
    Inventors: Peng Zhou, Lincoln C. Young, Benjamin Thomas, Zongyuan Chen, Todd Roswech, Gwendolyn Spizz, Rubina Yasmin, Greg Mouchka
  • Patent number: 8985547
    Abstract: A microfluidic valve assembly includes a structure defining a microfluidic fluid path and an actuator that can be moved between different positions controlling flow through the channel. In one embodiment, the actuator can be threaded into at least a portion of the structure, and can be moved rotationally between a first position, causing relatively greater constriction of a microfluidic fluid path, and a second position causing relatively lesser constriction of the fluid path. Actuating the actuator, e.g., by rotation, can deform material between the valve and the fluid path, thereby constricting at least a portion of the underlying fluid path and regulating the flow of a fluid in the fluid path. In another aspect, the invention provides a reservoir into which fluid can be placed and from which fluid can be introduced into a microfluidic system. In one embodiment, the reservoir is expandable and thereby able to store fluid under pressure for delivery to a microfluidic system.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: March 24, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Douglas B. Weibel, Andrew Lee, Scott Potenta, Adam Siegel, Maarten Kruithof, George M. Whitesides