Measuring Optical Property By Using Ultraviolet, Infrared, Or Visible Light Patents (Class 422/82.05)
  • Patent number: 9023281
    Abstract: Chemical indicator apparatuses containing one or more chemical indicators for use in monitoring the quality of water in an aquatic environment. The apparatuses are designed and configured to be submersible in the water that is being monitored. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo a physical change as levels of one or more constituents of the water change. Such indicators can be read by one or more suitable optical readers. These and other embodiments are designed and configured to be movable by a corresponding monitoring/measuring apparatus, for example, via a magnetically coupled drive. Also disclosed are a variety of features that can be used to provide a chemical indicator apparatus with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Publication number: 20150118110
    Abstract: A microfluidic device unit has a control device which includes at least one actuating unit and with a carrier for a microfluidic chip. The carrier is designed as module separate from the control device, but is connected with the same by at least one connecting line such that the actuating unit can actuate at least one function at the carrier. The carrier is provided with a receptacle for the microfluidic chip.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 30, 2015
    Inventor: Thomas HAHN
  • Patent number: 9017941
    Abstract: A method for nucleic acid analysis including injecting a slight amount of nucleic acid sample for analysis, characterized in that most of a nucleic acid sample which is not used, excluding the slight amount of the nucleic acid sample which is used for analysis, can be obtained as a pure product which is not contaminated with a fluorescent material, and a microchip for analyzing nucleic acid which enables such method for nucleic acid analysis, are provided. The method for nucleic acid analysis may analyze at least two different nucleic acid samples in a continuous manner by sequentially injecting the at least two different nucleic acid samples.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: April 28, 2015
    Assignee: Postech Academy-Industry Foundation
    Inventors: Jong Hoon Hahn, Byoung Joo Kwak, Han-Ok Kim
  • Publication number: 20150111196
    Abstract: A microfluidic chip orients and isolates components in a sample fluid mixture by two-step focusing, where sheath fluids compress the sample fluid mixture in a sample input channel in one direction, such that the sample fluid mixture becomes a narrower stream bounded by the sheath fluids, and by having the sheath fluids compress the sample fluid mixture in a second direction further downstream, such that the components are compressed and oriented in a selected direction to pass through an interrogation chamber in single file formation for identification and separation by various methods. The isolation mechanism utilizes external, stacked piezoelectric actuator assemblies disposed on a microfluidic chip holder, or piezoelectric actuator assemblies on-chip, so that the actuator assemblies are triggered by an electronic signal to actuate jet chambers on either side of the sample input channel, to jet selected components in the sample input channel into one of the output channels.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Applicant: PREMIUM GENETICS (UK) LTD.
    Inventors: Zheng XIA, Yu ZHOU, John LARSEN, Guocheng SHAO, Shane PETERSON, Marjorie FAUST
  • Publication number: 20150111199
    Abstract: Methods of studying, interrogating, analyzing, and detecting particles, substances, and the like with near field light are described. Methods of identifying binding partners, modulators, inhibitors, and the like of particles, substances, and the like with near field light are described. In certain embodiments, the methods comprise immobilizing or trapping the particle, substance, and the like.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 23, 2015
    Inventors: Robert Hart, Bernardo Cordovez
  • Publication number: 20150110675
    Abstract: An optical sensor includes an input part, a fixing part, and a determining part. The input part is provided on the upper side of the sensor. The fixing part on which a carrier is disposed is provided below the input part. The carrier has an acceptor that reacts with an analyte contained in the sample and is fixed on the carrier. The determining part includes a first metal layer, a second metal layer, and a hollow area. The first metal layer is configured to receive an electromagnetic wave. The second metal layer faces the first metal layer. The hollow area is sandwiched between the first metal layer and the second metal layer. The input part, the fixing part, and the hollow area form a part of a passage where the sample flows from the input part to the hollow area.
    Type: Application
    Filed: June 6, 2013
    Publication date: April 23, 2015
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yusuke Kitagawa, Kiyoshi Hashimotodani
  • Publication number: 20150111301
    Abstract: Rose Bengal for detecting a presence of and decomposing contaminants. A method of detecting the presence of a contaminant includes treating a substrate with Rose Bengal and exposing the substrate to a light having a wavelength within the visible spectrum. A response of the Rose Bengal is monitored during the light exposure. When a contaminant is present and is exposed to the light, a conversion of the Rose Bengal between a quinoid form and a lactone form is induced.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 23, 2015
    Applicant: The Government of the United States as Represented by the Secretary of the Air Force
    Inventor: Jeffery Ray Owens
  • Publication number: 20150111236
    Abstract: A method for detecting at least one analyte in at least one sample of a body fluid is disclosed. Therein, at least one test element (124) is used, the at least one test element (124) having at least one test field (162) with at least one test chemistry (154) is used, wherein the test chemistry (154) is adapted to perform at least one optically detectable detection reaction in the presence of the analyte. The method comprises acquiring an image sequence of images of the test field (162) by using at least one image detector (178). Each image comprises a plurality of pixels. The method further comprises detecting at least one characteristic feature of the test field (162) in the images of the image sequence. The method further comprises correcting a relative position change between the image detector (178) and the test field (162) in the image sequence by using the characteristic feature, thereby obtaining a sequence of corrected images.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Inventor: Kai Dickopf
  • Patent number: 9012228
    Abstract: Provided is a method for checking a blood status including: a step of supplying blood to the centrifugal container of a disk; a step of rotating the disk to centrifuge the blood cells and blood plasma in the centrifuge container, and detecting the actual moving distance per hour of the blood cells in the centrifugal container; and a step of establishing a first graph which represents the actual moving distance of the blood cells per hour, and a second graph which represents the theoretical moving distance of the blood cells per hour, and thereafter calculating the hematocrit of the blood cells and the viscosity of the blood plasma by comparing the first graph with the second graph.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Postech Academy-Industry Foundation
    Inventors: Dong Sung Kim, Moonwoo La, Sangmin Park
  • Patent number: 9005989
    Abstract: The invention relates to optoelectronic systems for detecting one or more target particles. The system includes a reaction chamber, a specimen collector, an optical detector, and a reservoir containing cells, each of the cells having receptors which are present on the surface of each cell and are specific for the target particle to be detected, where binding of the target particle to the receptors directly or indirectly activates a reporter molecule, thereby producing a measurable optical signal.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 14, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: James Douglas Harper, Richard Hart Mathews, Bernadette Johnson, Martha Susan Petrovick, Ann Rundell, Frances Ellen Nargi, Timothy Stephens, Linda Marie Mendenhall, Mark Alexander Hollis, Albert M. Young, Todd H. Rider, Eric David Schwoebel, Trina Rae Vian
  • Patent number: 9005524
    Abstract: The present invention provides a series of systems, devices, and methods relating to the determination of explosives, such as peroxides or peroxide precursors, and other species. Embodiments of the invention may allow a sample suspected of containing an explosive (e.g., a peroxide) or other species to interact with a reactant, wherein the sample may react and cause light emission from the reactant. Advantages of the present invention may include the simplification of devices for determination of peroxide-based explosives, wherein the devices are portable and, in some cases, disposable. Other advantages may include relative ease of fabrication and operation.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: April 14, 2015
    Assignee: Nomadics, Inc.
    Inventors: Robert Deans, Aimee Rose, Kevin M. Bardon, Lawrence F. Hancock, Timothy M. Swager
  • Publication number: 20150099307
    Abstract: A method of authenticating includes providing a glucose test strip having a top surface with a reagent thereon that has a structure which chemically reacts with glucose and an anti-counterfeiting identification feature (identification feature) including at least one ink. The glucose test strip is inserted into a glucose meter. The glucose meter includes a light source positioned to shine light on the ink after the inserting, a photodetector positioned to detect a reflected or transmitted signal after interaction with the ink, and stored information that identifies the identification feature. A processor implementing an algorithm automatically analyzes the reflected or transmitted signal by reference to the stored information to determine whether the glucose test strip is authentic.
    Type: Application
    Filed: September 5, 2014
    Publication date: April 9, 2015
    Inventor: EDUARDO BARTOLOME
  • Publication number: 20150099303
    Abstract: A colorimetric wet chemistry analyzer for determining a concentration of an analyte of interest in a sample is provided. The analyzer comprising includes a reaction chamber configured to receive the sample and facilitate a reaction that changes a color of the sample based on the concentration of the analyte of interest. A photometric cell is operably coupled to the reaction chamber to receive the sample and direct illumination therethrough. The photometric cell has a first illumination source configured to provide illumination at a first wavelength through the photometric cell and a second illumination source configured to provide illumination at a second wavelength through the photometric cell. The second wavelength is different than the first wavelength. A photo detector is configured to detect illumination passing through the photometric cell.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 9, 2015
    Inventors: Bradley A. Butcher, Chang-Dong Feng
  • Publication number: 20150099292
    Abstract: A spectroscopic system is provided. In one embodiment, the spectroscopic system comprises a light source adapted to provide a beam of illumination; an optical system adapted to provide the beam of illumination to a sample and receive a spectroscopy signal from the sample and direct the spectroscopy signal to at least one single channel detector, wherein the optical system comprises an adjustable dispersing element for directing one or more spectral features of the spectroscopy signal to the at least one single channel detector; a calibration detector adapted to determine a set point of the adjustable dispersing element; and a source synchronization component adapted to synchronize an operation of the light source and the at least one single channel detector. A method of calibrating a dispersing element of a spectrometer is also provided.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 9, 2015
    Applicant: MKS TECHNOLOGY (D/B/A SNOWY RANGE INSTRUMENTS)
    Inventors: Keith Carron, Mark Watson, Shane Buller
  • Patent number: 8999722
    Abstract: Sensors and methods for determination of analytes are provided. Analytes including explosives (e.g., RDX or PETN) may be determined by monitoring, for example, a change in an optical signal of a material upon exposure to the analyte. In some embodiments, the analyte and the material may interact via a chemical reaction to form a new emissive species. Embodiments described herein may provide inexpensive sensors with high selectivity and sensitivity.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: April 7, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Trisha L. Andrew
  • Patent number: 8999652
    Abstract: Mixtures of cell types can be analyzed by having at least two signal markers, with at least one at three different levels to provide a barcode for each cell type. The mixture of cells may be subjected to a common candidate moiety and the effect of the moiety on the cells determined along with identification of the cell by the barcode. Conveniently, surface marker proteins and labeled antibodies can be used to create the barcode and the cells analyzed with flow cytometry.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: April 7, 2015
    Assignee: Primity Bio, Inc.
    Inventors: Peter Oliver Krutzik, Thomas Scott Wehrman
  • Patent number: 8999264
    Abstract: A coating formula and method for surface coating non-porous surfaces. Microfluidic devices including said coating achieve desired properties including increased hydrophilicity, improved adhesion, stability and optical clarity.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Michael J. Pugia
  • Patent number: 8992860
    Abstract: The present invention relates to systems and methods for minimizing or eliminating diffusion effects. Diffused regions of a segmented flow of multiple, miscible fluid species may be vented off to a waste channel, and non-diffused regions of fluid may be preferentially pulled off the channel that contains the segmented flow. Multiple fluid samples that are not contaminated via diffusion may be collected for analysis and measurement in a single channel. The systems and methods for minimizing or eliminating diffusion effects may be used to minimize or eliminate diffusion effects in a microfluidic system for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 31, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Brian Murphy, Scott Corey, Alex Flamm, Ben Lane, Conrad Laskowski, Chad Schneider
  • Patent number: 8991238
    Abstract: The present invention relates to a portable digital reader for urinalysis. The portable digital reader for reading an analysis target chip including a plurality of test areas, comprises: a main body including a light emitting section having light emitting elements for radiating light, an integral optical splitter for uniformly distributing the light from the light emitting section to each test area of the analysis target chip, a light receiving section for receiving light reflected from the each test area so as to convert the same to electric signals, and a measuring section for measuring concentration according to the electric signals obtained from the light receiving section; a main supporting body having the analysis target chip and assembled with the main body; and an auxiliary supporting body assembled between the analysis target chip and the main supporting body, including a groove for assembling the analysis target chip, and assembled with the main supporting body to be exchanged after use.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: March 31, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dae Sik Lee, Hyun Woo Song, Byoung Goo Jeon, Min Joon Kim, Moon Youn Jung, Seon Hee Park
  • Publication number: 20150087820
    Abstract: The present disclosure generally pertains to systems and methods for the chemical synthesis of micro-quantities of oligonucleotides or other chemical molecules. The system includes a reusable glass micro-reactor containing a paramagnetic solid support, a magnet, an electronic drive controller and an optical spectroscopy system capable of driving a plurality individual reactors. The system utilizes the electroosmotic movement of reactants through microfluidic channels. Spectrophotometric monitoring of the reaction products allows for the real-time determination of synthesis yield.
    Type: Application
    Filed: July 17, 2014
    Publication date: March 26, 2015
    Inventors: Lance Amate Larka, John D. Williams, Randy Gaillard
  • Patent number: 8986614
    Abstract: A self-contained, fully automated, biological assay-performing apparatus includes a housing; a dispensing platform including a controllably-movable reagent dispensing system, disposed in the housing; a reagent supply component disposed in the housing; a pneumatic manifold removably disposed in the housing in a space shared by the dispensing platform, removably coupled to a fluidic transport layer and a plurality of reservoirs, wherein the fluidic transport layer, the reservoirs, and a test sample to be introduced therein are disposed in the housing in the space separate from the dispensing platform; a pneumatic supply system removably coupled to the pneumatic manifold in the housing in a space separate from the dispensing platform; and a control system coupled to at least one of the dispensing platform and the pneumatic supply system, disposed in the housing.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 24, 2015
    Assignee: Rheonix, Inc.
    Inventors: Peng Zhou, Lincoln C. Young, Benjamin Thomas, Zongyuan Chen, Todd Roswech, Gwendolyn Spizz, Rubina Yasmin, Greg Mouchka
  • Patent number: 8986611
    Abstract: A sample analysis apparatus configured to automatically press a start button upon installation of a sample tube is provided. The sample analysis apparatus includes: a body of the sample analysis apparatus; a door housing which may be provided in an opened state or a closed state, and configured to be coupled to the body of the sample analysis apparatus by a hinge; a tube accommodating unit included in the door housing and configured to accommodate the sample tube; a start button included in the body of the sample analysis apparatus and configured to start analysis of the sample; and an operating member positioned at a first position which is distant from the start button the sample tube is not installed in the tube accommodating unit, and a second position which is configured to operate the start button when a sample tube is installed and the door housing is closed.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong Koo Lee, Tae Soo Kim, In Duk Hwang, Seock Woo Jang, Chul Ho Yun
  • Patent number: 8986625
    Abstract: A method for sampling a sulphur-containing solid product including supplying a gas flow comprising hydrogen sulphide, bringing the gas flow into contact with a solid reagent and reacting the solid reagent with the hydrogen sulphide contained in the gas flow, the reaction fixing the sulphur of the hydrogen sulphide by forming a sulphur-containing solid product which is different in color from the solid reagent, and recovering the sulphur-containing solid product. The invention also relates to a device suitable for the implementation of this method.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Total S.A.
    Inventors: Daniel Dessort, Robert Le Van Loï, Nadine Loubere
  • Publication number: 20150079693
    Abstract: A product and method for the detection of one or more analytes in a collected sample employs capillary action in a sample card containing a sample substrate, at least one test capsule and an absorbent pad. The absorbent pad absorbs the contents of the test capsule and delivers the same to the sample substrate, with the contents of the test capsule chemically reacting with at least one detection reagent to establish an optical indicator for the analyte(s). The sample card can be automatically tested within a reader device which supplies one or more light sources, records and processes an optical signal produced by the chemical reaction, and outputs a test result.
    Type: Application
    Filed: April 3, 2013
    Publication date: March 19, 2015
    Applicant: REDXDEFENSE, LLC
    Inventors: Arman Ghodousi, Sarah Josepha Toal, Gregory Scott Ericksen, Daniel Douglas Montgomery, Thomas Emory McVeigh, Jacek Kotowicz
  • Patent number: 8980636
    Abstract: A system and method for performing automated titrations. An automatic titrator utilizes control devices and sensors adapted for various chemical reactions to perform titrations and determine the content of a desired component of a solution. Batch and continuous mode titrations are possible. Titrant is added to a sample either in varying amounts or rates and a titration endpoint is observed via sensors. Control devices detect when the titration endpoint occurs and calculates the desired content. Various reactions within the solution may be suppressed in order to titrate isolated components individually.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Ecolab USA Inc.
    Inventors: John Wilhelm Bolduc, Blake Roberts Otting, Paul R. Kraus, Robert Ryther
  • Patent number: 8980180
    Abstract: To measure a starting point of production of gel particles with high sensitivity in measurement of a target substance in a sample through a gelation reaction while minimizing light attenuation in a solvent in which a phenomenon occurs, provided is a gel particle measurement device including: a sample cuvet (1) accommodating a sample (S) and a solution containing a reagent (R); stirring means (2) for stirring a mixed solution (W); an incident light source (3) for irradiating the mixed solution (W) with coherent light (Bm); backscattered light detecting means (4) provided outside the sample cuvet (1) on the same side on which the incident light source (3) is provided, the backscattered light detecting means (4) detecting a backscattered light component, which returns toward the incident light source, in the light scattered in the mixed solution (W) in the sample cuvet (1); scattered light fluctuation measuring means (5) for measuring a fluctuation component of backscattered light based on a detection output fro
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: March 17, 2015
    Inventor: Toru Obata
  • Patent number: 8980572
    Abstract: A method for generating and localizing a signal in a solid phase substrate detection system comprises applying a solution of target material to a substrate; binding the target with a specific affinity molecule having an attached label, the label comprising multiple signal precursor molecules; applying a carrier to the substrate, and treating the label to convert the signal precursor molecules to signal generating molecules. The carrier comprises solvent for the label and thickener for localizing the signal. The carrier may include developer that converts signal precursor molecules to signal generating molecules. Developer is not necessary if the signal precursor molecules are converted to signal generating molecules by e.g. temperature change, pH change, sonication, light irradiation, microwave heating. A test device for detecting target in a fluid sample, and a kit of parts for determining the presence of target in a fluid sample are also disclosed.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: March 17, 2015
    Assignee: Supernova Diagnostics, Inc.
    Inventors: Ling Wai Wong, Pui Yee Cangel Chan, Wing Cheung Mak, King Keung Sin, Reinhard Renneberg
  • Publication number: 20150072432
    Abstract: A system and method for measuring cooling effectiveness of a component is disclosed. The method includes providing a component with a coating applied on a surface of the component. Further, the method includes supplying a first gaseous medium over a surface of the component through a plurality of holes in the component and feeding a second gaseous medium along the surface of the component. Further, the method includes exposing the surface of the component to the first and second gaseous mediums for a predetermined period. The method further includes obtaining an image of the surface of the component exposed to the first and second gaseous mediums for the predetermined period. The method includes analyzing the obtained image to determine whether at least a portion of the coating is removed from the surface of the component upon exposure to the second gaseous medium.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 12, 2015
    Applicant: General Electric Company
    Inventors: James Albert Tallman, Peter Joel Meschter, Lawrence Bernard Kool
  • Publication number: 20150072435
    Abstract: An apparatus and a method for the colorimetric detection testing of peroxide-based compositions is disclosed. The apparatus comprises a first carrier having an acidic compound in dry form for hydrolysis of peroxide-based compounds and a second carrier having a colorimetric detection reagent composition in dry form. The carriers are positioned with respect to a support member to facilitate transfer of a solution containing a peroxide-based compound hydrolyzed by the acidic compound when activated into contact with the reagent composition of the second carrier for observation of any resulting color indication. The method comprises steps of applying the acidic compound and colorimetric detection reagent composition is liquid forms to the respective carriers and allowing the applied formulations to dry.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Applicant: Precision Laboratories, Inc.
    Inventors: Eva Hrboticka, James A. Bertsch
  • Patent number: 8974732
    Abstract: A method for determining the area of an analysis chamber covered by a biologic fluid sample quiescently residing within the chamber is provided. The chamber has a first panel with an interior surface, and a second panel with an interior surface, both of which panels are transparent.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: March 10, 2015
    Assignee: Abbott Point of Care, Inc.
    Inventors: Niten V. Lalpuria, Stephen C. Wardlaw
  • Patent number: 8974751
    Abstract: Sample liquid is collected in a chamber downstream of a separating device. Adjoining the chamber are a plurality of channels which guide the sample liquid to one or more investigating regions.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: March 10, 2015
    Assignee: Boehringer Ingelheim Microparts GmbH
    Inventors: Tobias Rodenfels, Gert Blankenstein
  • Patent number: 8968674
    Abstract: Provided herein is a fluid sensor, which includes a closed reaction unit in which reaction of a fluid sample takes place. The reaction unit is tapered on a side through which the fluid is injected so as to prevent generation of air bubbles during the injection of the fluid. Thus, the sensor has improved sensitivity.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hun Joo Lee, Soo Suk Lee, Jung Nam Lee
  • Patent number: 8968677
    Abstract: An improved apparatus and method for dispersion of a labeling conjugate in a diagnostic assay, the result being a one-step assay. By eliminating a conjugate pad as in conventional lateral diagnostic devices, and forming a frazil ice pellicle (FIP), rehydration and flow are improved resulting in better reproducibility, improved sensitivity, and reduced costs of individual assay devices. The formation of a frazil ice film formed on a super cooled surface of a sample receiving means simplifies assay assembly. Lyophilization of the FIP improves the release of a sample/analyte/label matrix into a macro channel as in a direct flow assay, while at the same time allowing reagents to mix and flow, thereby optimizing the assay performance. The reagents of the conjugate and the formation of the FIP stabilize the conjugate proteins and provide extended shelf life to the diagnostic assay device.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 3, 2015
    Assignee: Quantum Design International, Inc.
    Inventors: Ronald T. LaBorde, Nicholas J. Neild
  • Patent number: 8968653
    Abstract: A sample analyzer comprising: a sample preparing section for preparing first and second measurement sample including reagent and sample; a first detector for detecting a predetermined component in the first measurement sample prepared by the sample preparing section; a second detector for detecting the predetermined component in the second measurement sample prepared by the sample preparing section; and a controller configured for performing operations, comprising: (a) controlling the first detector to detect the predetermined component in the first measurement sample prepared by the sample preparing section; (b) determining the reliability of the result detected by the first detector; (c) controlling the sample preparing section to prepare the second measurement sample from the same sample when the result has been determined to be unreliable; and (d) controlling the second detector to detect the predetermined component in the second measurement sample, is disclosed.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: March 3, 2015
    Assignee: Sysmex Corporation
    Inventors: Daigo Fukuma, Takaaki Nagai, Masaharu Shibata
  • Patent number: 8961898
    Abstract: The present invention provides a bilayer membrane produced using a microchannel capable of easily forming bilayer membranes such as planar lipid bilayer membranes in large quantities, and a production method thereof. A process for producing a bilayer membrane of the present invention comprises forming a state where two liquid phases or liquid and gaseous phases each containing amphipathic molecules are alternately arranged in a microchannel, discharging one of the two liquid phases or the gaseous phase of the liquid and gaseous phases through branch minichannels formed in the wall on one side or in the walls on both sides to contact the remaining liquid phases adjacent to each other, and thereby forming a side-by-side arrangement of bilayer membranes comprising the amphipathic molecules.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 24, 2015
    Assignee: Tokyo Institute of Technology
    Inventors: Takasi Nisisako, Takahiro Baba
  • Patent number: 8965574
    Abstract: A method for controlling an automated work cell which includes at least one robot arm having at least three degrees of freedom controlled according to a plurality of control axes; a control center; a device for controlling the robot arm which includes a plurality of motor controllers each controlling operation of one motor and suitable for operating at least one portion of the robot arm; and a communication bus between the control center and the device for controlling the robot arm; wherein the method includes steps of: a) sending instructions emitted by the control center to control the control axes to a single arithmetic unit belonging to the device for controlling the robot; b) determining, within the arithmetic unit and according to instructions received from the orders for each of the motors controlled by a motor controller; and c) sending each motor controller an order, determined in step b), for the motor controlled by each motor controller.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: February 24, 2015
    Assignee: Staubli Faverges
    Inventors: Luc Joly, Jean Michel Bonnet Des Tuves, François Pertin, Gérald Vogt
  • Patent number: 8961879
    Abstract: The invention relates to curable compositions which are prepared from polyol components containing one or more polyols and isocyanate components containing one or more isocyanates, which compositions contain at least one indicator having at least one quinonoid group, which indicator signifies the degree of curing by a change of color. The invention also relates to a method for indicating the progress of curing in such curable compositions.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: February 24, 2015
    Assignee: Mankiewicz Gebr. & Co. GmbH & Co. KG
    Inventors: Guenther John, Stefanie Ehmke (nee Behrens Brammertz)
  • Patent number: 8962258
    Abstract: Provided are a multiple immunoassay apparatus on a chip in which a structure comprising multiple microfluidic channels is associated with a tissue sample, which allows immunohistochemical reactions to be conducted therein, to examine various markers specific for certain diseases, and a method for performing multiple immunoassays using the same. The multiple immunoassay apparatus comprises: at least one antibody-introducing unit through which at least one antibody is introduced into the apparatus; at least one reaction unit in which the antibody reacts with a sample in an immunohistochemical pattern; and at least one fluid outlet through which a fluid including the antibody is discharged outside the apparatus.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: February 24, 2015
    Assignees: Korea Advanced Institute of Science and Technology, National Cancer Center
    Inventors: Je-Kyun Park, MinSeok Kim, Eun Sook Lee, Sun-Young Kong, Solm Kwon
  • Patent number: 8962263
    Abstract: The invention provides methods and compositions for simultaneously detecting the activation state of a plurality of proteins in single cells using flow cytometry. The invention further provides methods and compositions of screening for bioactive agents capable of coordinately modulating the activity of a plurality of proteins in single cells. The methods and compositions can be used to determine the protein activation profile of a cell for predicting or diagnosing a disease state, and for monitoring treatment of a disease state.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: February 24, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Omar D. Perez, Garry P. Nolan
  • Publication number: 20150044098
    Abstract: A hyperspectral imaging system, including: at least one hyperspectral imaging unit, including: at least one lens configured to direct light scattered by, reflected by, or transmitted through a target medium to at least one hyperspectral filter arrangement configured to separate the light into discrete spectral bands; an imaging sensor to: receive the discrete spectral bands from the at least one hyperspectral filter arrangement; detect light by a plurality of pixels for each of the spectral bands; and generate electrical signals based at least in part on at least a portion of the light; and at least one image processor in communication with the at least one imaging sensor and configured to generate hyperspectral image data associated with the target medium; and at least one processor configured to determine biological data based at least partially on at least a portion of the hyperspectral image data.
    Type: Application
    Filed: January 30, 2013
    Publication date: February 12, 2015
    Inventors: Anthony Smart, Brandon Woolsey, Aaron Alexander Rowe, Ivo Clarysse, Walter De Brouwer
  • Publication number: 20150044764
    Abstract: The present invention relates to a biochemical assay cartridge. More particularly, the present invention provides a biochemical assay cartridge including an insertion-type solution cartridge and a reaction cartridge receiving the insertion-type solution cartridge, in which the solution cartridge is inserted into the reaction cartridge to catch a protruding protection film inducement unit by a latch in the reaction cartridge and thus break the protection film inducement unit and a protection film for sealing a reaction solution storage unit attached to the solution cartridge is automatically detached to discharge the reaction solution from the solution cartridge to the reaction cartridge.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Guen Sig Cha, Hakhyun Nam, Dongxuan Shen, Joo Young Cho, Kap Soo Park, Jihoon Kim
  • Patent number: 8951483
    Abstract: The present invention relates to an examination element that includes an antenna; a hygroscopic portion that absorbs a specimen; a reagent portion that, reacts with the specimen; and a chip including a semiconductor device capable of wireless communication and a photo sensor that detects a change in a color of the reagent portion. A change in the reagent portion is detected by the photo sensor, the detected data is stored in the semiconductor device capable of wireless communication, and the data is transmitted to an external database.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Kunio Hosoya
  • Patent number: 8951779
    Abstract: The present invention provides a bio memory disc where a lab-on-a-chip process system including an assay-diagnosis unit, a nucleic acid hybridization assay unit, or an immuno-assay unit and a semiconductor memory is disposed, a bio memory disc drive apparatus including a controller for controlling and driving an optical disc including CD or DVD and the bio memory disc and an assay method using the same.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: February 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-chern Yoo
  • Publication number: 20150037215
    Abstract: A Lab On a Chip (LOC) comprises: a sample inlet for receiving a liquid sample; and a Sample Preparation Module (SPM) coupled to the sample inlet. The SPM comprises: a mixing chamber; a reagent chamber containing a reagent; a semi-permeable membrane oriented between the mixing chamber and the reagent chamber; and a tuned energy source, wherein the tuned energy source selectively causes contents of the reagent chamber to expand and pass through the semi-permeable membrane into the mixing chamber to mix the reagent with the liquid sample. The LOC further comprises a microchannel coupled to the SPM; a light source; an optic module optically proximate to the microchannel; and a plurality of lenses within the optic module, wherein each lens has a different effective focal length for generating a single composite image of an object passing through the microchannel.
    Type: Application
    Filed: September 4, 2014
    Publication date: February 5, 2015
    Inventors: TIMOTHY DURNIAK, ROBERT R. FRIEDLANDER, JAMES R. KRAEMER
  • Publication number: 20150037786
    Abstract: A handheld diagnostic system may include a disposable sample holder for receiving and containing a biological sample and an analysis module having a chip-scale microscope. The sample holder may include a plurality of uniformly spaced tick marks. The analysis module may include a sensor for detecting the tick marks as the sample holder is inserted into the analysis module. The chip-scale microscope may include an image sensor for capturing images of the sample. Each time the sensor detects a tick mark, control circuitry may issue a control signal to the image sensor to capture an image of the biological sample. This type of automated image capture mechanism ensures that images are captured at a uniform spatial distribution even when the sample holder is inserted into the analysis module at variable speed. The analysis module may transmit sample imaging data to a portable electronic device.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Inventor: Kenneth Edward Salsman
  • Publication number: 20150037898
    Abstract: Devices and methods are provided for determining concentration of at least one analyte in a body fluid sample such as blood, especially a blood glucose concentration. In the methods, a test element is provided that has at least one reagent element configured so as to carry out at least one optically detectable detection reaction in the presence of the analyte. The body fluid sample is applied to the test element and a time course of at least one optical measurement variable of the reagent element is detected. At least one first time interval of the time course of the optical measurement variable is used to determine at least one disturbance variable value in the body fluid sample, in particular a concentration of a disturbance variable such as hematocrit. At least one second time interval of the time course is used to determine analyte concentration. The at least one disturbance variable value can be used to correct/compensate the analyte concentration.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Susanne Baldus, Jochen Schulat, Sebastian Trick
  • Patent number: 8945471
    Abstract: Second harmonic nanoprobes for multipurpose imaging of samples and a method of using such probes to monitor nucleotide sequencing in a Multi-SHG Detection Imaging (MSDI) modality and to monitor external electric field using voltage sensitive second harmonic generating (SHG) nanoprobes are provided. The SHG nanoprobes are comprised of various kinds of nanocrystals that do not possess an inversion symmetry and therefore are capable of generating second harmonic signals that can then be detected by conventional two-photon microscopy for in vivo imaging of biological processes and structures such as cell signaling, neuroimaging, protein conformation probing, DNA conformation probing, gene transcription, virus infection and replication in cells, protein dynamics, tumor imaging and cancer therapy evaluation and diagnosis as well as quantification in optical imaging for a wide-range of biological and non-biological processes and devices.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: February 3, 2015
    Assignee: California Institute of Technology
    Inventors: Periklis Pantazis, Sotirios Masmanidis, Scott E. Fraser
  • Patent number: 8947656
    Abstract: A mobile computing device that includes an image sensor may be used to detect the result of a biomolecular assay. The biomolecular assay may be performed in an optical assay medium that provides an optical output in response to light from a light source, with the optical output indicating result. A wavelength-dispersive element may be used to disperse the optical output into spatially-separated wavelength components. The mobile computing device may be positioned relative to the wavelength-dispersive element such that different wavelength components are received at different locations on the image sensor. With the mobile computing device positioned in this way, the image sensor may be used to obtain one or more images that include the separated wavelength components of the optical output. A wavelength spectrum of the optical output may be determined from the one or more images, and the result may be determined from the wavelength spectrum.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 3, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventor: Brian T. Cunningham
  • Patent number: 8945937
    Abstract: A method of analyzing graphene includes providing a first graphene structure including graphene having grains and grain boundaries, and a support portion for supporting the graphene, generating a second graphene structure by oxidizing the first graphene structure, and detecting a shape of the graphene.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: February 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-hee Lee, Gang-hee Han, Dinh Loc Duong
  • Patent number: 8945938
    Abstract: The invention provides various compositions, devices, and methods useful for detecting an analyte by colorimetric readout. The compositions and devices include polymers constructed to have pores specifically imprinted to provide for capture of an analyte in the pores; nanoparticles layered on the polymers; and photochromic optical switch molecules coated on the nanoparticles. Capture of the analyte in the pores of the polymer results in a change in the spatial relation of the nanoparticles layered on the polymer, which in turn causes the photochromic optical switch molecules coated thereon to undergo a change in energy state corresponding to a visible change in the optical spectra of the photochromic optical switch molecules.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: February 3, 2015
    Assignee: Medtech Detect, LLC
    Inventor: Richard H. Knop