Electrical Or Optical Patents (Class 427/10)
  • Patent number: 10381276
    Abstract: A laminate includes a plurality of buildup layers disposed on a core and a plurality of unit cells defined in the buildup layers. Each unit cell includes: at least one test via that passes through at least two of the buildup layers and that is electrically connected to testing locations on a probe accessible location of the laminate; and two or more dummy vias disposed in the unit cell. The dummy vias are arranged in the unit cell at one of a plurality of distances from the test via.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: August 13, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sushumna Iruvanti, Shidong Li, Marek A. Orlowski, David L. Questad, Tuhin Sinha, Krishna R. Tunga, Thomas A. Wassick, Randall J. Werner, Jeffrey A. Zitz
  • Patent number: 10358714
    Abstract: The disclosed embodiments include a system and method for manufacturing an integrated computational element (ICE) core. In one embodiment, the method comprises thermally evaporating a material to deposit the material on a substrate, wherein the material is deposited to establish a shape of the ICE core. The shape of the ICE core defines transmission, reflection, and absorptive electromagnetic intensity as a function of wavelength of the ICE core. In one embodiment, the method includes varying e-beam or ion-beam intensities and strengths to control the shape of the ICE core.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: July 23, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: David L. Perkins, Robert Paul Freese, Christopher Michael Jones, Richard Neal Gardner
  • Patent number: 10316405
    Abstract: The disclosed embodiments include a system and method for manufacturing an integrated computational element (ICE) core. The method comprises varying a distance between a thermal component relative to a substrate holder that holds at least one substrate during a thin film deposition process to improve uniformity of the ICE core. In one embodiment, varying the distance between the thermal component relative to the substrate holder that holds at least one substrate includes moving at least a portion of the substrate holder in at least one direction relative to the thermal component and also moving the thermal component in at least one direction relative to the substrate holder during the thin film deposition process.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: June 11, 2019
    Assignee: Halliburton Energy Services, Inc.
    Inventors: David L. Perkins, Robert Paul Freese, Christopher Michael Jones, Richard Neal Gardner
  • Patent number: 10301783
    Abstract: A control system for positioning a marker over a pre-existing roadway surface mark. The control system has an electromagnetic radiation source attached to the marker for producing a mark pattern on the roadway surface. An imager permits the control system to image both the pre-existing roadway surface mark and the mark pattern produced by the electromagnetic radiation source. A computer is responsive to the imager for producing an error signal based upon the location difference between (a) the image of the pre-existing roadway surface mark and (b) the image of the mark pattern produced by the electromagnetic radiation source. An actuator is responsive to the error signal for positioning the marker over the pre-existing roadway mark.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: May 28, 2019
    Assignee: LimnTech LLC
    Inventors: Douglas D. Dolinar, William R. Haller
  • Patent number: 9852890
    Abstract: This disclosure describes systems, methods, and apparatus for pulsed RF power delivery to a plasma load for plasma processing of a substrate. In order to maximize power delivery, a calibration phase using a dummy substrate or no substrate in the chamber, is used to ascertain a preferred fixed initial RF frequency for each pulse. This fixed initial RF frequency is then used at the start of each pulse during a processing phase, where a real substrate is used and processed in the chamber.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: December 26, 2017
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Michael Mueller, Myeong Yeol Choi
  • Patent number: 9711331
    Abstract: This disclosure describes systems, methods, and apparatus for pulsed RF power delivery to a plasma load for plasma processing of a substrate. In order to maximize power delivery, a calibration phase using a dummy substrate or no substrate in the chamber, is used to ascertain a preferred fixed initial RF frequency for each pulse. This fixed initial RF frequency is then used at the start of each pulse during a processing phase, where a real substrate is used and processed in the chamber.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 18, 2017
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Michael Mueller, Myeong Yeol Choi
  • Patent number: 9634516
    Abstract: A method for monitoring a temperature change of a power distribution circuit having a power line and return line includes measuring an output current and output voltage of the power distribution circuit at an input to a load electrically connected to the power distribution circuit, and determining a change in temperature of at least one of the power line and return line based on a change in at least one of the output current and output voltage.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: April 25, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Allan Roy Gale, Michael W. Degner, Larry Dean Elie
  • Patent number: 9550855
    Abstract: A metallic microcapsule containing a polymeric microcapsule having one or more polymeric precursors encapsulated therein; and a metallic shell enclosing a volume containing the polymeric microcapsule is disclosed. Also disclosed is a self-healing coating composition comprising (a) a film-forming binder; and (b) metallic microcapsules, the metallic microcapsules being the same or different and containing a polymeric microcapsule containing one or more polymeric precursors encapsulated therein; and a metallic shell enclosing a volume containing the polymeric microcapsule.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: January 24, 2017
    Assignee: The Johns Hopkins University
    Inventors: Jason J. Benkoski, Rengaswamy Srinivasan, Jeffrey P. Maranchi
  • Patent number: 9544987
    Abstract: This disclosure describes systems, methods, and apparatus for pulsed RF power delivery to a plasma load for plasma processing of a substrate. In order to maximize power delivery, a calibration phase using a dummy substrate or no substrate in the chamber, is used to ascertain a preferred fixed initial RF frequency for each pulse. This fixed initial RF frequency is then used at the start of each pulse during a processing phase, where a real substrate is used and processed in the chamber.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: January 10, 2017
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Michael Mueller, Myeong Yeol Choi
  • Patent number: 9404182
    Abstract: A solution for manufacturing semiconductors is provided. An embodiment provides a chemical vapor deposition reactor, which includes a chemical vapor deposition chamber. A substrate holder located in the chemical vapor deposition chamber can be rotated about its own axis at a first angular speed, and a gas injection component located in the chemical vapor deposition chamber can be rotated about an axis of the gas injection component at a second angular speed. The angular speeds are independently selectable and can be configured to cause each point on a surface of a substrate wafer to travel in an epicyclical trajectory within a gas flow injected by the gas injection component. An angle between the substrate holder axis and the gas injection component axis and/or a distance between the substrate holder axis and the gas injection component axis can be controlled variables.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: August 2, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Igor Agafonov, Michael Shur, Alexander Dobrinsky
  • Patent number: 9310130
    Abstract: An electrode material drying method and apparatus for drying electrode material are provided for achieving quality improvement of batteries. Electrode material portions containing a solvent are spaced apart from each other on the metal foil. An inductive coil that inductively heats the metal foil faces the metal foil. An amount of heat applied to an uncoated portion of the metal foil between the electrode material portions is reduced below that of a coated portion of the metal foil on which the electrode material portions are arranged. The heat evaporates the solvent in the electrode material portions by causing the metal foil to generate heat with inductive heating while moving the metal foil and the inductive coil relative to each other in an arrangement direction, that is, a direction in which the electrode material portions are arranged.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: April 12, 2016
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Shigenori Kazama, Akikazu Itou, Tomoyuki Natsume, Yusuke Tateyama
  • Patent number: 9182378
    Abstract: An apparatus for monitoring and detecting material deposited onto a substrate during a deposition process in a processing chamber includes a storage structure having a primary axis extending between respective first and second ends and an exterior lateral surface between the first and second ends extending about the primary axis. A plurality of monitor crystals are supported by the storage structure at spaced positions along said exterior lateral surface and in which a drive mechanism advances the storage structure rotatably and axially relative to the primary axis such that at least one monitor crystal is advanced or retracted relative to at least one measuring position. A retained crystal that is advanced to the measuring position can be electrically connected, using a brush contact or other mechanism, in order to excite the crystal using a resonance circuit.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 10, 2015
    Assignee: Inficon, Inc.
    Inventor: Carl A. Gogol, Jr.
  • Patent number: 9152902
    Abstract: To provide an identification document, particularly a passport, in which at least one contactless RFID chip (10) and an antenna (12) connected thereto are integrated on a page of the identification document, an additional layer (22) mechanically reinforcing the RFID chip is situated at the area of the RFID chip (10) on the page, thus providing an arrangement with which the RFID chip can withstand mechanical stress for years on end.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: October 6, 2015
    Assignee: NXP, B.V.
    Inventors: Volker Timm, Kim Nguyen
  • Patent number: 9103032
    Abstract: Apparatus for forming a solar cell comprises a housing defining a chamber including a substrate support. A sputtering source is configured to deposit particles of a first type over at least a portion of a surface of a substrate on the substrate support. An evaporation source is configured to deposit a plurality of particles of a second type over the portion of the surface of the substrate. A cooling unit is provided between the sputtering source and the evaporation source. A control system is provided for controlling the evaporation source based on a rate of mass flux emitted by the evaporation source.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: August 11, 2015
    Assignee: TSMC Solar Ltd.
    Inventors: Edward Teng, Ying-Chen Chao, Chih-Jen Yang
  • Patent number: 9097649
    Abstract: Disclosed are methods and techniques for providing favorable fabrication characteristics for optical elements. One method includes providing a desired integrated computational element (ICE) design comprising a plurality of layers, each layer having a design thickness, randomizing the design thickness of each layer of the desired ICE design to simulate a fabrication error in each layer, thereby generating a plurality of randomized ICE designs, calculating a standard error of calibration between each randomized ICE design and the desired ICE design, correlating the standard error of calibration between a given layer of the desired ICE design and the fabrication error of each corresponding layer of each randomized ICE design, and ranking the plurality of layers of the desired ICE design based on the sensitivity to changes in the standard error of calibration.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: August 4, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael Neil Simcock, David L. Perkins
  • Patent number: 9052307
    Abstract: A method for fabricating a plurality of biosensors includes the steps of: providing a base with a surface; forming a carbon nanotube array including a plurality of carbon nanotubes substantially parallels to each other on the surface; forming a plurality of lead pairs on the surface, the plurality of lead pairs divides the plurality of carbon nanotubes into a plurality of first carbon nanotubes and a plurality of second carbon nanotubes; eliminating the plurality of second carbon nanotubes; cutting the plurality of first carbon nanotubes to form a plurality of third carbon nanotubes and a plurality of fourth carbon nanotubes; and fabricating a plurality of receptors to electrically connect the plurality of third carbon nanotubes to the plurality of fourth carbon nanotubes.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: June 9, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Xue-Shen Wang, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 9048373
    Abstract: An evaporation apparatus comprises a chamber configured to contain at least one dispensing nozzle and at least one substrate to be coated. The chamber has at least one adjustable shielding member defining an adjustable aperture. The member is positioned between the at least one dispensing nozzle and the at least one substrate. The aperture is adjustable in at least one of the group consisting of area and shape. The at least one adjustable shielding member has a heater.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 2, 2015
    Assignee: TSMC Solar Ltd.
    Inventors: Chung-Hsien Wu, Chi-Yu Chiang, Shih-Wei Chen, Wen-Tsai Yen
  • Patent number: 9008984
    Abstract: The present invention is directed to a device for process for predicting gloss of a coating resulting from a wet layer of a low gloss coating composition, such as automotive OEM or refinish paint. The device includes measuring reflectance of the layer of the coating composition applied over a test substrate and then allowing the layer to dry and/or cure into a coating. Thereafter, its gloss is measured with a gloss meter. The device is repeated with varying amounts of one or flatting agents added to the composition and the reflectance vs. gloss is plotted on a graph and by using a curve fitting equation a gloss prediction curve is obtained. By measuring the reflectance of a wet layer of a target low gloss coating composition the gloss of a coating that would result from such a layer is then predicted by using the gloss prediction curve. The device is most useful during the manufacture of coating compositions, such as automotive OEM and refinishes paints.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 14, 2015
    Assignee: Axalta Coating Systems IP Co., LLC
    Inventors: Ayumu Yokoyama, Anthony Moy
  • Patent number: 8986778
    Abstract: A method for non-destructive evaluation of an article of manufacture (30) by coating the article with a temperature-sensitive coating (34), stimulating the article with energy (18) to induce temperature changes in the article responsive to features of the article, then evaluating (24) a resulting topography of energy-induced changes (50, 52, 53) in the coating (34). The energy imparted to the article may be, for example, electromagnetic, magnetic, or sonic energy that produces localized changes in temperature in the article (30) in response to features (32) of the article such as flaws or other discontinuities. The coating (34) may be a suspension of liquid crystals in a liquid, and the energy may be an application of sonic energy. The coating may be a material that hardens (42, 54) or softens (44, 56) upon a slight increase in temperature. Layers (34, 35) of different energy-sensitive coatings (38, 40) may be applied to indicate different aspects of features of the article.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: March 24, 2015
    Assignee: Siemens Energy, Inc.
    Inventor: Paul J. Zombo
  • Patent number: 8962067
    Abstract: Processes for real time process control of the Polymer Dispersion Index (PDI) during polymerization processes. By tuning this chain length distribution in real time, a resulting polymer can have predetermined physical properties such as thickness, physical yield strength, decomposition time, thermal stability, etc. Techniques herein can dynamically control chain length distribution through use of a mass density measurement device located within a processing chamber and providing real time feedback of polymer growth. Chamber parameters can be controlled or modified before and during polymerization based on mass density feedback. Such chamber parameters can include pressure, temperature, chemistry, and process gas flow rates and flow periods.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: February 24, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Bruce Adair Altemus, Scott W. LeFevre
  • Patent number: 8927052
    Abstract: Provided herein are processes for depositing a plasma coating on a substrate and coated substrates obtained thereby. More particularly, processes for characterizing a plasma coating on a substrate are provided. The process for depositing a plasma coating includes the step of exposing the substrate to a plasma. The plasma includes at least one coating precursor and one fluorophore other than the coating precursor.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: January 6, 2015
    Assignee: Vito NV
    Inventor: Marjorie Dubreuil
  • Patent number: 8916229
    Abstract: Provided is a substrate processing apparatus in which after a module is disabled, a substrate is provided to a carry-in module capable of placing the wafers most rapidly in the plurality of unit blocks and the substrates are sequentially transported to the module group by the transportation means to be delivered to the carry-out module according to a providing sequence of the substrate to the carry-in module in each of the plurality of unit blocks. In particular, the substrates are extracted from the carry-out module according to a providing sequence of the substrate to the carry-in module and transported to a rear module or a substrate placing part. Thereafter, the substrates are transported to the rear module from the carry-out module or the substrate placing part according to a predetermined sequence in which the substrate is provided to the carry-in module in a normal state.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: December 23, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Akira Miyata, Kenichirou Matsuyama, Kunie Ogata
  • Publication number: 20140349007
    Abstract: A cold spray coating process is disclosed. The cold spray coating process includes positioning a cold spray nozzle relative to a bearing assembly, rotating the bearing assembly, and directing a powdered babbitt material through the cold spray nozzle, to a surface of the rotating bearing assembly. The powdered babbitt material adheres to the surface of the rotating bearing assembly, forming a coating on the surface. Another cold spray coating process includes positioning the cold spray nozzle relative to a bearing assembly, rotating the cold spray nozzle, and directing a powdered babbitt material through the cold spray nozzle, to a surface of the bearing assembly. The powdered babbitt material adheres to the surface, the rotating of the cold spray nozzle forming a coating on the surface. Another cold spray coating process includes monitoring properties of the coating on the surface of the bearing assembly with a coating monitor.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Inventors: Gary Austin LAMBERTON, Kathleen Blanche MOREY, Andrew Batton WITNEY
  • Publication number: 20140342164
    Abstract: The invention is directed to a detectable and stable composition comprising an organofunctional silane and/or hydrolyzate and/or partial or complete condensate thereof, a colloidal metal oxide, a water soluble organic dye having a positive charge and a counterion derived from a carboxylic acid of from 1 to 6 carbon atoms, and water. The invention is also directed to a method for determining the uniformity and film thickness of a detectable composition applied to a substrate comprising applying to the surface of the substrate the detectable composition and measuring an optical property of the applied coating, the resulting measurement being related to the uniformity of the applied composition.
    Type: Application
    Filed: March 24, 2014
    Publication date: November 20, 2014
    Applicant: Momentive Performance Materials Inc.
    Inventor: Lesley Hwang
  • Patent number: 8889214
    Abstract: A deposition amount measuring apparatus includes a plate-shaped body having a rotating shaft, a plurality of deposition amount sensors along side surfaces of the body, the deposition amount sensors being configured to measure an amount of deposition material, and a housing surrounding the body, the housing including an inflow port that exposes one of the deposition amount sensors.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: November 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kyung-Soo Kim, Seong-Ho Jeong, Hyun-Keun Song, Eu-Gene Kang
  • Publication number: 20140295059
    Abstract: A refurbishment process for a volumetric screw compressor of the ‘oil-free’ type, which comprises a male rotor and a female rotor, is described. The process comprises visually checking the wear condition of the rotors, treating their surface for removing the previous coating, and applying a new coating on the surface.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Applicant: Riem Service s.r.l.
    Inventor: Fabio RUSSO
  • Publication number: 20140287135
    Abstract: A method for applying a uniform coating to a non-uniform substrate, the method including: a) optically characterizing the non-uniform substrate; b) adjusting a thickness and a color of a primer layer to achieve a first target color while depositing the primer layer on the non-uniform substrate; c) optically characterizing the non-uniform substrate comprising the primer layer deposited thereon; and, d) adjusting a thickness and a color of a first paint layer to achieve a second target color while depositing the first paint layer on the non-uniform substrate comprising the primer layer deposited thereon.
    Type: Application
    Filed: March 22, 2013
    Publication date: September 25, 2014
    Applicant: Xerox Corporation
    Inventors: Edward B. Caruthers, Grace T. Brewington, Lalit Keshav Mestha
  • Patent number: 8840953
    Abstract: A method of adjusting a clearance between a nozzle and a work to a desired value in a liquid application apparatus wherein a liquid discharged from the nozzle is applied to the work, comprises (a) a distance measurement step of measuring, by using a non-contact distance sensor positioned in parallel with the nozzle, a distance from the non-contact distance sensor to a reference surface of a contact detection sensor detecting a contact of the nozzle front end with the reference surface opposite to the nozzle front end, (b) a nozzle contacting step of making contacts with the nozzle front end and the reference surface of the contact detection sensor to obtain a positional information of the nozzle, (c) a distance measurement step of measuring, by the non-contact distance sensor, a distance from the non-contact distance sensor to the work before applying the liquid to the work, and (d) a step of adjusting a nozzle clearance to a desired value based on the relative positional information between the nozzle and th
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: September 23, 2014
    Assignee: Musashi Engineering, Inc.
    Inventor: Kazumasa Ikushima
  • Publication number: 20140255598
    Abstract: Disclosed are methods and techniques for providing favorable fabrication characteristics for optical elements. One method includes providing a desired integrated computational element (ICE) design comprising a plurality of layers, each layer having a design thickness, randomizing the design thickness of each layer of the desired ICE design to simulate a fabrication error in each layer, thereby generating a plurality of randomized ICE designs, calculating a standard error of calibration between each randomized ICE design and the desired ICE design, correlating the standard error of calibration between a given layer of the desired ICE design and the fabrication error of each corresponding layer of each randomized ICE design, and ranking the plurality of layers of the desired ICE design based on the sensitivity to changes in the standard error of calibration.
    Type: Application
    Filed: February 20, 2013
    Publication date: September 11, 2014
    Inventors: Michael Neil Simcock, David L. Perkins
  • Patent number: 8790743
    Abstract: A method for processing a substrate in a reactor by pulsing RF power, includes: applying RF power in pulses in the reactor to process the substrate; monitoring data from the reactor indicative of anomalous pulses of RF power, including data from a photo sensor equipped in the reactor; counting the number of anomalous pulses of RF power in the monitored data; determining whether or not the number of anomalous pulses of RF power is acceptable; and initiating a pre-designated sequence if the number of anomalous pulses of RF power is determined to be unacceptable.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: July 29, 2014
    Assignee: ASM IP Holding B.V.
    Inventors: Taku Omori, Naoki Inoue, Wataru Adachi
  • Patent number: 8778446
    Abstract: Flow cells configured for piezoelectric millimeter-sized cantilever sensors provide direct, sensitive detection of analytes in fluid media. The flow cells comprise a flow inlet and a flow outlet positioned to cause sample flow past a sensing surface of the cantilever sensor. The flow cell is configured for millimeter-sized cantilever sensors. The geometry of the flow cell influences the sample flow and thus the interaction of the flow with the cantilever sensor.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: July 15, 2014
    Assignee: Drexel University
    Inventors: Rajakkannu Mutharasan, Gossett Augustus Campbell
  • Patent number: 8728587
    Abstract: A plasma processing apparatus and method are disclosed which improve the repeatability of various plasma processes. The actual implanted dose is a function of implant conditions, as well as various other parameters. This method used knowledge of current implant conditions, as well as information about historical data to improve repeatability. In one embodiment, a plasma is created, a first sensing system is used to monitor a composition of the plasma and a second sensing system is used to monitor a total number of ions implanted. Information about plasma composition and dose per pulse is used to control one or more operating parameters in the plasma chamber. In another embodiment, this information is combined with historical data to control one or more operating parameters in the plasma chamber. In another embodiment, the thickness of material on the walls is measured, and used to modify one or more operating parameters.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: May 20, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: George Papasouliotis, Deven M. Raj, Harold Persing
  • Patent number: 8715785
    Abstract: The invention relates to: 1) a process for the mass production of hollow glass articles which, when positioned beside one another with the same orientation in one and the same plane, are liable to come into mutual contact along a surface of revolution, characterized in that after they have left the annealing lehr, they are rotated through one turn at least along the axis of said surface of revolution, this surface then being coated, by a process without any solid contact, with an additional layer which reduces the coefficient of friction; 2) a hollow glass article as obtained by this process; and 3) a packaging assembly of such articles.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: May 6, 2014
    Assignee: Saint-Gobain Emballage
    Inventors: Eric Martin, Jean-Michel Munos, Frederic Mertz
  • Patent number: 8707898
    Abstract: Fanfold and/or perforated media comprising a substrate including one or more friable coatings and an overcoat covering at least a portion of the one or more friable coatings proximate to one or more associated fanfolds and/or perforations is provided, wherein the overcoat mitigates spallation of the one or more friable coatings. Methods and apparatus for making the same are also disclosed.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: April 29, 2014
    Assignee: NCR Corporation
    Inventors: Mary Ann Wehr, Paul C. Blank, Timothy W. Rawlings, Patricia A. Puckett
  • Patent number: 8697179
    Abstract: A method of evaluating a coating applied to a surface comprises the step of applying the coating to the surface. The coating including a conversion gel to chemically bind the surface and an indicator substantially uniformly distributed throughout the coating wherein the indicator modifies an appearance of the coating. The method further comprising the step of determining whether the indicator is present on the surface at a substantially uniform concentration.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: April 15, 2014
    Assignee: The Boeing Company
    Inventors: Joseph H. Osborne, Ronald R. Stephenson, Kenneth A. Krienke, Larry K. Olli
  • Patent number: 8691322
    Abstract: A method for measuring the thickness of a coating on a component section of a rotating component, wherein a heat expansion of the component section is determined by detecting a component core temperature and an actual coating thickness is produced, a device for conducting a method of this type having a temperature detecting system and having an evaluating device, as well as a production process and a coating system, are disclosed.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: April 8, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Jochen Zierhut, Susanne Hogger
  • Patent number: 8691323
    Abstract: A method for monitoring and controlling the thickness of coating on a creping cylinder is disclosed. The methodologies involve a coordinated scheme of apparatuses that function to monitor various aspects of a creping cylinder coating so that the thickness of the coating can be determined.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: April 8, 2014
    Assignee: Nalco Company
    Inventors: William A. Von Drasek, Rodney H. Banks, Gary S. Furman
  • Patent number: 8686711
    Abstract: A method for calibrating a high frequency measuring device so as to accurately measure plasma processing parameters within a chamber. A calibration parameter is calculated from a first set of three reference loads measured by a high frequency measurement device. A second calibration parameter is calculated from S parameters measured between a connection point where the high-frequency measuring device is connected and the inside of the chamber of a plasma processing device. A second set of three reference loads, which include the impedance previously calculated and encompass a range narrower than that encompassed by the first set of three reference loads, is measured with the reference loads in the chamber.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 1, 2014
    Assignee: DAIHEN Corporation
    Inventors: Ryohei Tanaka, Yoshifumi Ibuki
  • Patent number: 8679573
    Abstract: An apparatus includes a piezoelectric print head capable of ejecting a droplet of a coating substance towards a stent strut, a sensor capable of sensing a parameter of the droplet, and a controller, communicatively coupled to the print head and the sensor, capable of determining if the parameter of the droplet meets a requirement. A method includes ejecting a droplet of a coating substance towards a stent strut with a piezoelectric print head, sensing a parameter of the droplet, and determining whether the parameter of the droplet meets a requirement.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: March 25, 2014
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Jason Van Sciver, Greg Teaby, Phil Foreman, Manish Gada
  • Publication number: 20140011040
    Abstract: Methods and systems for coating metal substrates are provided. The methods and systems include sequential application of low flow and high flow powder coatings followed by a single heating step to provide a cured coating. The methods and systems include a marker that allows coating uniformity to be monitored and assessed during application. The described methods provide coatings with optimal surface smoothness and edge coverage.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 9, 2014
    Applicant: Valspar Sourcing, Inc.
    Inventors: Owen H. Decker, Thomas E. Reno, Robert D. Breitzman, Carlos A. Concha, Jeffrey D. Rogozinski
  • Publication number: 20130323407
    Abstract: An apparatus for depositing a material layer on a sample inside a vacuum chamber comprises a sample stage (100) for arranging at least one sample (103a, 103b, 103c, 103d); an evaporation source (101, 201), connected to a current source, for a thread-shaped evaporation material (102, 202); a quartz oscillator (105) for measuring the deposited material layer thickness; and an evaluation device (113) associated with the oscillator (105). An electronic control system (112) associated with the evaporation source (101, 201) is configured to deliver electric current in the form of at least two current pulses having a pulse length less than or equal to 1 s. The evaluation device (113) takes into account transient decay behavior of the oscillator (105) immediately after a current pulse to derive the material layer thickness deposited after each pulse. The invention further relates to a method that can be carried out using said apparatus.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 5, 2013
    Inventors: Paul WURZINGER, Anton LANG
  • Publication number: 20130313480
    Abstract: Provided herein are processes for depositing a plasma coating on a substrate and coated substrates obtained thereby. More particularly, processes for characterizing a plasma coating on a substrate are provided. The process for depositing a plasma coating includes the step of exposing the substrate to a plasma. The plasma includes at least one coating precursor and one fluorophore other than the coating precursor.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 28, 2013
    Applicant: VITO NV
    Inventor: Marjorie Dubreuil
  • Patent number: 8501399
    Abstract: A method of detection comprising a conjugate of a randomly and asymmetrically branched dendritic polymer.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: August 6, 2013
    Assignee: ANP Technologies, Inc.
    Inventors: Ray Yin, Dujie Qin, Jing Pan
  • Patent number: 8501416
    Abstract: The present invention relates generally to microfluidic structures, and more specifically, to microfluidic structures and methods including meandering and wide channels. Microfluidic systems can provide an advantageous environment for performing various reactions and analysis due to a reduction in sample and reagent quantities that are required, a reduction in the size of the operating system, and a decrease in reaction time compared to conventional systems. Unfortunately, the small size of microfluidic channels can sometimes result in difficulty in detecting a species without magnifying optics (such as a microscope or a photomultiplier). A series of tightly packed microchannels, i.e., a meandering region, or a wide channel having a dimension on the order of millimeters, can serve as a solution to this problem by creating a wide measurement area.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: August 6, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Vincent Linder, Samuel K. Sia, George M. Whitesides, Max Narovlyansky, Adam Siegel
  • Patent number: 8491971
    Abstract: The producing method of a gas barrier layer uses a material having at least one Si—H bond, a material having at least one N—H bond, and at least one of nitrogen gas, hydrogen gas and a noble gas and forms the gas barrier layer by plasma-enhanced CVD using a plasma in which an emission intensity A of emission at 414 nm, an emission intensity B of emission at 336 nm, an emission intensity C of emission at 337 nm, and an emission intensity D of emission at 656 nm satisfy formulas a to c: 2<B/A<20??Formula a: C/B<2??Formula b: 0.5<D/B<50.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: July 23, 2013
    Assignee: Fujifilm Corporation
    Inventor: Toshiya Takahashi
  • Patent number: 8486485
    Abstract: An imprintable medium dispenser includes a chamber, a nozzle, and an actuator connected to the chamber and configured to be actuated and thereby generate a pressure wave within the chamber such that imprintable medium is dispensed from the nozzle. The imprintable medium dispenser is provided with a control circuit which includes a monitoring apparatus configured to receive a transient oscillation signal generated when the actuator is actuated, and to monitor the operation of the imprintable medium dispenser by monitoring the transient oscillation signal.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: July 16, 2013
    Assignee: ASML Netherlands B.V.
    Inventors: Johan Frederik Dijksman, Anke Pierik, Martin Maurice Vernhout, Sander Frederik Wuister, Yvonne Wendela Kruijt-Stegeman, Ivar Schram
  • Patent number: 8420155
    Abstract: An alloyed semiconductor quantum dot comprising an alloy of at least two semiconductors, wherein the quantum dot has a homogeneous composition and is characterized by a band gap energy that is non-linearly related to the molar ratio of the at least two semiconductors; a series of alloyed semiconductor quantum dots related thereto; a concentration-gradient quantum dot comprising an alloy of a first semiconductor and a second semiconductor, wherein the concentration of the first semiconductor gradually increases from the core of the quantum dot to the surface of the quantum dot and the concentration of the second semiconductor gradually decreases from the core of the quantum dot to the surface of the quantum dot; a series of concentration-gradient quantum dots related thereto; in vitro and in vivo methods of use; and methods of producing the alloyed semiconductor and concentration-gradient quantum dots and the series of quantum dots related thereto.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 16, 2013
    Assignee: Indiana University Research and Technology Corporation
    Inventors: Shuming Nie, Robert E. Bailey
  • Publication number: 20130052772
    Abstract: A method of manufacturing an optical reflector including an alternating stack of at least one first layer of complex refraction index n1 and at least one second layer of complex refraction index n2, in which the first layer includes semiconductor nanocrystals, including the following steps: calculation of the total number of layers of the stack, of the thicknesses of each of the layers and of the values of complex refraction indices n1 and n2 on the basis of the characteristics of a desired spectral reflectivity window of the optical reflector, including the use of an optical transfer matrices calculation method; calculation of deposition and annealing parameters of the layers on the basis of the total number of layers and of the values of previously calculated complex refraction indices n1 and n2; deposition and annealing of the layers in accordance with the previously calculated parameters.
    Type: Application
    Filed: August 10, 2012
    Publication date: February 28, 2013
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Kavita Surana, Mathieu Baudrit, Pierre Mur, Philippe Thony
  • Patent number: 8377501
    Abstract: A coating and developing system and control method is provided. The system and control method curtails the amount of time for which a substrate is held with no purpose while improving the throughput of the coating and developing system. An inspection station through which a substrate processed in a processing station is transferred to a carrier station includes a plurality of different inspection modules respectively taking different inspection times, a buffer unit for temporarily holding a substrate and a substrate carrying means controlled by a controller. When the inspection module is engaged in inspecting a substrate, the substrate carrying means carries another substrate to be inspected by the same inspection module to the buffer unit and the substrate is held in the buffer unit. Thus, the holding of wafers in the inspection modules can be suppressed and the throughput can be improved.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: February 19, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yasushi Hayashida, Yoshitaka Hara, Tomohiro Kaneko
  • Patent number: 8377503
    Abstract: A method for real-timely monitoring thickness change of a coating film is disclosed. In the method, a coating module having a chamber and a film thickness-monitoring module containing an SPR optical fiber sensor, a light source, a light-receiving detector, and optical fibers are first provided. The optical fibers are used to connect the SPR optical fiber sensor with the light source and the light-receiving detector. The SPR optical fiber sensor has a sensing area and is arranged in the chamber. The light source provides the SPR optical fiber sensor with light. Then, a substrate is put into the chamber. While coating process is performed on the substrate, a film is also formed on the sensing area of the SPR optical fiber sensor. The light-receiving detector receives signals output from the sensing area of the SPR optical fiber sensor and then outputs signals of light-intensity change.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: February 19, 2013
    Assignee: Forward Electronics Co., Ltd.
    Inventors: Yu-Chia Tsao, Chung-Pei Lee, Ko-Shao Chen, Jia-Huey Tsao, Chun-Chih Lin, Ren-Kun Liang