Laser Patents (Class 427/554)
  • Publication number: 20140050861
    Abstract: A method of forming surface modified substrates includes providing a substrate of material (M) having a bulk portion and an outer surface integrated with the bulk portion. A coating is deposited including metal organic molecules including at least one metal X or particles of metal X onto the outer surface. The coating is laser irradiated with a laser beam, where atoms of metal X diffuse into the outer surface to form a modified surface layer including both M and atoms of metal X on the bulk portion. The modified surface layer has a thickness of at least 1 nm, and a 25° C. electrical conductivity that is at least 2.5% above or 2.5% below a 25° C. electrical conductivity in the bulk portion.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 20, 2014
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: RAJAN VAIDYANATHAN, ARAVINDA KAR
  • Publication number: 20140050933
    Abstract: A flexible display comprises a flexible substrate made of plastic material, a display element on a first surface of the flexible substrate, and a surface residual film containing at least one of a metal material or a metal oxide material. The surface residual film is bonded to at least a part of a second surface of the flexible substrate. The second surface is opposed to the first surface. A method for manufacturing a flexible display comprises preparing a glass substrate, forming adhesive material film on the glass substrate, the adhesive material film being made of at least one of a metal material or a metal oxide material, and forming a flexible substrate from plastic material on the adhesive material film.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Tae-Woong KIM, Sung-Guk AN, Dong-un JIN, Hyung-Sik KIM, Young-Gu KIM, Sang-Joon SEO
  • Publication number: 20140044887
    Abstract: Apparatus for atomic layer deposition on a surface of a sheeted substrate, comprising: an injector head comprising a deposition space provided with a precursor supply and a precursor drain; said supply and drain arranged for providing a precursor gas flow from the precursor supply via the deposition space to the precursor drain; the deposition space in use being bounded by the injector head and the substrate surface; a gas bearing comprising a bearing gas injector, arranged for injecting a bearing gas between the injector head and the substrate surface, the bearing gas thus forming a gas-bearing; a conveying system providing relative movement of the substrate and the injector head along a plane of the substrate to form a conveying plane along which the substrate is conveyed.
    Type: Application
    Filed: January 30, 2012
    Publication date: February 13, 2014
    Applicant: Nederlandse Organisatie Voor Toegpast- Natuurwetenschappelijk Onderzoek TNO
    Inventor: Adrianus Johannes Petrus Maria Vermeer
  • Patent number: 8647721
    Abstract: A plastic panel assembly having a permanent mark therein at a subsurface location and formed after substantial manufacture of the panel assembly. The plastic panel includes a substrate and a coating over the substrate, the coating including a surface that defines an exterior surface of the panel assembly. A mark is located beneath the exterior surface of the panel assembly. In making the panel assembly, a plastic substrate is provided and a protective coating is applied to the substrate. After the step of applying the protective coating, a subsurface portion of panel assembly is exposed to a laser light. The laser light opacifies a subsurface portion of the panel assembly, thereby rendering the mark within the panel assembly.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: February 11, 2014
    Assignee: Exatec, LLC
    Inventors: Steven M. Gasworth, Gregory R. Harley, Eric F. J. M. van der Meulen, Stephen Shuler
  • Patent number: 8642138
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region and forming a first electrode layer overlying the surface region of the transparent substrate. The first electrode layer has an electrode surface region. In a specific embodiment, the method includes masking one or more portions of the electrode surface region using a masking layer to form an exposed region and a blocked region. The method includes forming an absorber layer comprising a sulfur entity overlying the exposed region and removing the mask layer. In a specific embodiment, the method causing formation of a plurality of metal disulfide species overlying the blocked region. In a specific embodiment, the metal disulfide species has a semiconductor characteristic. The method includes subjecting the plurality of metal disulfide species to electromagnetic radiation from a laser beam to substantially remove the metal disulfide species.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: February 4, 2014
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8637118
    Abstract: The present invention relates to a method of production of graphene comprising the following stages respectively: a stage of deposition of a thin layer comprising amorphous carbon on a substrate; a stage of annealing of said thin layer under photonic and/or electronic irradiation, by which a layer comprising graphene is obtained.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: January 28, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Aziz Zenasni
  • Publication number: 20140017457
    Abstract: Provided herein are methods and materials for the production of hydrophobic coatings, which may be thermally treated to produce binary hydrophobic-hydrophilic regions.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 16, 2014
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOIS
    Inventors: Constantine M. Megaridis, Thomas M. Schutzius, Ilker S. Bayer
  • Publication number: 20140009873
    Abstract: Techniques or processes for providing markings on products are disclosed. In one embodiment, the products have housings and the markings are to be provided on sub-surfaces of the housings. For example, a housing for a particular product can include an outer housing surface and the markings can be provided on a sub-surface of the outer housing surface yet still be visible from the outside of the housing. Since the markings are beneath the surface of the housing, the markings are durable.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 9, 2014
    Inventors: Michael S. Nashner, John T. Payne, Jody R. Akana
  • Publication number: 20140011067
    Abstract: A method for manufacturing a thin film lithium-ion rechargeable battery includes forming a first active material layer on a base, forming an electrolyte layer on the first active material layer, forming a second active material layer on the electrolyte layer, and annealing including emitting a laser beam to at least one amorphous layer among the first active material layer, the electrolyte layer, and the second active material layer to reform the amorphous layer to a crystalline or crystal precursor state.
    Type: Application
    Filed: December 26, 2011
    Publication date: January 9, 2014
    Applicant: Mamoru Baba
    Inventors: Mamoru Baba, Rongbin Ye, Masashi Kikuchi
  • Patent number: 8623469
    Abstract: Provided are a method of heating a composition which is applicable to a substrate provided with a material having low heat resistance and a method of forming a glass pattern which leads to reduction of cracks. A composition formed over a substrate is irradiated with a laser beam to bake the paste through local heating. Scan with the laser beam is performed so that there can be no difference in the laser beam irradiation period between the middle portion and the perimeter portion of the composition. Specifically, irradiation with the laser beam is performed so that the width of the beam spot overlapping with the composition in the scanning direction is substantially uniform.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: January 7, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Hidekazu Miyairi
  • Patent number: 8625152
    Abstract: Systems and methods for adding data to a printed publication are provided. One system comprises a data source for providing the data, a processing circuit, and an energy source. The processing circuit is configured to retrieve the data from the data source and to control the energy source to at least partially ablate the printed publication based on the data. The publication is printed by a web offset printing press as the substrate travels through a plurality of print units of the web offset printing press. The processing circuit is configured to control the energy source to ablate the printed publication in-line with its production on the print units.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: January 7, 2014
    Assignee: Quad/Graphics, Inc.
    Inventors: William T. Graushar, John A. Barndt, Robert H. Barton, Jr., Terrill Scott Clayton
  • Publication number: 20140005083
    Abstract: Embodiments of the present invention may provide textured surfaces to be lubricated, the texturing to enhance the effectiveness of the intended nano-lubrication. The texturing may make asperities and depressions in the surface to be lubricated. This texturing may be executed, for example, by chemical etching, laser etching, or other techniques. This texturing may create locations in the lubricated surface to hold or anchor the intended nano-lubricants, to facilitate the creation of a tribo-film on the surface when the lubricated surface is used under pressure, and resulting in delivery of multiple chemistries from the nano-lubricant.
    Type: Application
    Filed: June 13, 2013
    Publication date: January 2, 2014
    Applicant: NanoMech, Inc.
    Inventor: Ajay P. Malshe
  • Publication number: 20130344348
    Abstract: A zirconium alloy with a coating layer formed on a surface comprising a mixed layer, the mixed layer comprises one or more very high temperature oxidation resistant material and zirconium alloy parent material selected from the group consisting of Y2O3, SiO2, ZrO2, Cr2O3, Al2O3, Cr3C2, SiC, ZrC, ZrN, Si and Cr, and in a vertical direction on a boundary between the mixed layer and the zirconium alloy parent material is formed a gradient of compositions between the very high temperature oxidation resistance material and the zirconium alloy parent material.
    Type: Application
    Filed: January 23, 2013
    Publication date: December 26, 2013
    Applicants: KOREA HYDRO AND NUCLEAR POWER CO., LTD., KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Yang-Hyun Koo, Byoung-Kwon Choi, Jeong-Yong Park, Il Hyun Kim, Yang-Il Jung, Dong Jun Park, Hyun Gil Kim
  • Patent number: 8613983
    Abstract: The method of laser surface treating pre-prepared zirconia surfaces provides for applying an organic resin in a thin, uniform film to a zirconia surface; maintaining the resin-coated zirconia surface in a controlled chamber at approximately 8 bar pressure at a temperature of approximately 175 degrees Centigrade for approximately 2 hours; heating the resin-coated zirconia surface to approximately 400 degrees Centigrade in an inert gas atmosphere, thereby converting the organic resin to carbon; and irradiating the carbon-coated zirconia surface with a laser beam while applying nitrogen under pressure, thereby forming a zirconium carbonitride coating.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 24, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas
  • Publication number: 20130337186
    Abstract: The present invention provides a reactor and a method for the production of high purity silicon granules. The reactor includes a reactor chamber; and the reaction chamber is equipped with a solid feeding port, auxiliary gas inlet, raw material gas inlet, and exhaust gas export. The reaction chamber is also equipped with an internal gas distributor; a heating unit; an external exhaust gas processing unit connected between a preheating unit and a gas inlet. The reaction chamber is further equipped with a surface finishing unit, a heating unit and a dynamics generating unit. The reaction is through decomposition of silicon-containing gas in densely stacked high purity granular silicon layer reaction bed in relative motion, and to use remaining heat of exhaust gas for reheating. The present invention achieves a large scale, efficient, energy saving, continuous, low cost production of high purity silicon granules.
    Type: Application
    Filed: August 17, 2013
    Publication date: December 19, 2013
    Inventor: Xi Chu
  • Publication number: 20130319971
    Abstract: A method for manufacturing a flexible circuit electrode array adapted to electrically communicate with organic tissue including the following steps: a) providing a flexible polymer base layer; b) curing the base layer; c) depositing a metal layer on base layer; d) patterning the metal layer and forming metal traces on the base layer; e) roughening the surface of the base layer; f) chemically reverting the cure of the surface of the base layer; g) depositing a flexible polymer top layer on the surface of the base layer and the metal traces; h) curing the top layer and the surface of the base layer forming one single flexible polymer layer; and i) creating openings through the single layer to the metal trace layer.
    Type: Application
    Filed: November 2, 2012
    Publication date: December 5, 2013
    Applicant: Second Sight Medical Products, Inc.
    Inventor: Second Sight Medical Products, Inc.
  • Publication number: 20130323158
    Abstract: A method of forming single and few layer graphene on a quartz substrate in one embodiment includes providing a quartz substrate, melting a portion of the quartz substrate, diffusing a form of carbon into the melted portion to form a carbon and quartz mixture, and precipitating at least one graphene layer out of the carbon and quartz mixture.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Inventors: Xianfan Xu, Dapeng Wei, Peide Ye
  • Patent number: 8597737
    Abstract: The method of carbo-nitriding alumina surfaces is a process for applying a carbo-nitride coating to an alumina or alumina-based composite surface. The method involves the step of applying a phenolic resin to the alumina surface in a thin, uniform film. The resin-coated alumina surface is maintained in a controlled chamber at about 8 bar pressure at a temperature of about 175° C. for about 2 hours. The surface is then heated at about 400° C. for several hours in an argon atmosphere. This converts the phenolic resin to carbon. The carbon coated alumina surface is then scanned by a laser beam while applying nitrogen under pressure. The end result is the conversion of the alumina at the surface to aluminum carbo-nitride, the oxygen being released in the form of carbon dioxide.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: December 3, 2013
    Assignee: King Fahd University of Petroleum & Minerals
    Inventors: Bekir S. Yilbas, Naser M. Al-Aqeeli, Cihan Karatas
  • Publication number: 20130302533
    Abstract: A method for epitaxial addition of repair material onto a process surface (38) of a directionally solidified component (30). The component is positioned in a fluidized bed (34) to drift particles of a repair material over the process surface as laser energy (36) is rastered across the surface to melt the particles and to fuse repair material onto the entire surface simultaneously. The component is moved downward (39) in the bed in a direction parallel to the grain orientation in the component as material is added to the surface, thereby providing continuous epitaxial addition of material to the surface without recrystallization.
    Type: Application
    Filed: October 24, 2012
    Publication date: November 14, 2013
    Inventor: GERALD J. BRUCK
  • Publication number: 20130301104
    Abstract: A window assembly comprises a plurality of dynamic electrochromic zones formed on a single transparent substrate in which at least two electrochromic zones are independently controllable. In one exemplary embodiment, the window assembly comprises an Insulated Glass Unit (IGU), and at least one transparent substrate comprises a lite. In another exemplary embodiment, the IGU comprises at least two lites in which at least one lite comprises a plurality of independently controllable dynamic zones.
    Type: Application
    Filed: May 28, 2013
    Publication date: November 14, 2013
    Applicant: View, Inc.
    Inventors: Peter Egerton, Drew Gaskell
  • Patent number: 8580355
    Abstract: The subject of the invention is a process for obtaining a material comprising a substrate and at least one at least partially crystalline titanium-oxide-based thin film deposited on a first side of said substrate, said process comprising the following steps: said at least one titanium-oxide-based thin film is deposited; said at least one titanium-oxide-based thin film is subjected to a crystallization treatment, supplying energy capable of raising each point of said at least one titanium-oxide-based thin film to a temperature of at least 300° C. while maintaining a temperature not exceeding 150° C.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: November 12, 2013
    Assignee: Saint-Gobain Glass France
    Inventors: Anne Durandeau, Andriy Kharchenko, Nicolas Nadaud
  • Patent number: 8574678
    Abstract: A method of texturing a synthetic material, such as polyvinyl chloride (PVC), to resemble a natural material is provided. The method can include texturing a PVC profile after extrusion in order to achieve a surface roughness of about 70 to about 300 micro inches roughness average. The method can include producing a line pattern surface roughness to make the textured PVC resemble a wood finish, particularly when the method includes applying a paint or stain to the textured PVC. The method can include producing a radial pattern surface roughness to make the textured PVC resemble a brushed metal finish. The method of the present invention can be applied to existing PVC elements, such as extruded elements, either at the manufacturing level or at the consumer level. A kit can also be provided including a texturing means, a paint or stain, and instructions.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: November 5, 2013
    Assignee: Dallaire Industries Ltd.
    Inventor: Patrick Marceau
  • Publication number: 20130287965
    Abstract: A method is provided for producing a sliding rail of a longitudinal adjustment device for a vehicle seat, in which the longitudinal adjustment device has at least one pair of rails having two sliding rails and having sliding and/or rolling elements, the two sliding rails can be moved in the longitudinal direction against one another, the sliding and/or rolling elements are disposed between the sliding rails, and the sliding rails have contact tracks by which the sliding and/or rolling elements are in contact. A sliding rail is produced and then painted. Subsequently, at least one contact track is irradiated with a laser. In this way the layer of paint located on the contact track is removed.
    Type: Application
    Filed: October 28, 2011
    Publication date: October 31, 2013
    Inventors: Burckhard Becker, Peter Fuchs, Thomas Gittermann, Harald Schmidt
  • Publication number: 20130280440
    Abstract: A coating material containing metal oxide is applied to one side of a substrate, both coating and substrate being transparent to visible light. An absorber material is placed in heat transfer proximity to the coating and a laser beam is transmitted through the substrate and through the coating to strike the absorber material at the interface between coating and absorber. The absorber material absorbs optical energy from the laser beam causing the material to heat. Heat from the absorber propagates to the coating to heat a localized region, causing the coating material to anneal. If desired, the coating material can include a doping material that fuses into the coating during annealing.
    Type: Application
    Filed: April 23, 2012
    Publication date: October 24, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Jie Zhang
  • Publication number: 20130280547
    Abstract: A method for manufacturing a component having increased thermal conductivity through layer-by-layer construction. At least one section of the component is constructed by applying a layer section having predetermined dimensions of a composite material of a metal and/or a metal alloy and particles of a highly heat-conducting material, including diamond and/or cubic boron nitride, in a predetermined area on a base layer by melting the metal or the metal alloy a heat source, in such a way that the metal and/or metal alloy form(s) within the predetermined dimensions a cohesive matrix, in which particles of the highly heat-conducting material are embedded, and then cooling.
    Type: Application
    Filed: June 20, 2013
    Publication date: October 24, 2013
    Inventors: Erhard BRANDL, Joerg SANDER, Achim SCHOBERTH
  • Patent number: 8563094
    Abstract: In a method for producing a component (20) with a coating (24) containing nanoparticles (21), it is provided that, in order to introduce the nanoparticles (21) into the coating (24), a film (19) with the dispersely distributed nanoparticles (21) is applied to the surface (22) to be coated, which decomposes with incorporation of the nanoparticles (21) during the actual coating operation and is thereby not incorporated into the layer.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: October 22, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20130273260
    Abstract: The present invention relates to a method for manufacturing a graphene layer, comprising the following steps: providing a substrate; forming a metal layer on a first side of the substrate; forming a carbon source layer on the metal layer; providing a laser, which irradiates a second side of the substrate and passes through the substrate to form a graphene layer on an interface between the substrate and the metal layer; and providing an organic solvent and an acid solution to remove the carbon source layer and the metal layer respectively.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 17, 2013
    Inventors: Yu-Lun CHUEH, Ji-Jia DING, Hung-Chiao LIN, Yu-Hsiang HUANG
  • Publication number: 20130264572
    Abstract: A homogenous thin film layer is patterned into a transparent conductive portion and a non-conductive portion without use of etching through the thin film. Instead, conductive fine-wires which are convertible in one embodiment into non-conductive fine-wires are selectively converted into the non-conductive form. In an alternate embodiment, the homogenous thin film layer which includes conductive fine-wires is provided in a curable liquid form and selected portions of the liquid formed are cured into being affixed to substrate. Remaining portions can be washed away. In the case of display devices using transparent electrodes, a thin thin-film transistor array substrate is provided where the initially homogenous thin film which is and then converted into patterned conductive and non-conductive sections forms the pixel-electrodes and/or common electrode of the display device.
    Type: Application
    Filed: November 15, 2012
    Publication date: October 10, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Dae-Young LEE, Ki-Beom LEE, Kyu-Young KIM, Nam-Ok JUNG, Gug-Rae JO
  • Publication number: 20130266740
    Abstract: A data device may have at least a magnetic lamination with a thermal retention structure deposited on a substrate and configured to maintain a predetermined temperature for a predetermined amount of time. Such predetermined temperature and amount of time may allow for the growth of a magnetic layer with a predetermined magnetic anisotropy.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 10, 2013
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventor: Yukiko Kubota
  • Patent number: 8545945
    Abstract: Methods and devices for preparing microscale polymer relief structures from a thin polymer layer on an absorbing substrate are described. The described methods are ultrafast (about 8 nanoseconds) and allow formation of patterned microstructures having complex morphologies and narrow line widths that are an order of magnitude smaller than the masks used in the methods.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 1, 2013
    Assignees: Indian Institute of Technology Kanpur, Jawaharlal Nehru Centre for Advanced Scientific Research
    Inventors: Ashutosh Sharma, Ankur Verma, Giridhar U. Kulkarni
  • Patent number: 8541067
    Abstract: The method of laser treating Ti-6Al-4V to form surface compounds is a method of forming barrier layers on surfaces of Ti-6Al-4V workpieces. The Ti-6Al-4V workpiece is first cleaned and then a water-soluble phenolic resin is applied to at least one surface of the Ti-6Al-4V workpiece. The Ti-6Al-4V workpiece and the layer(s) of water soluble phenolic resin are then heated to carbonize the phenolic resin, thus forming a carbon film on the at least one surface. TiC particles are then inserted into the carbon film. Following the insertion of the TiC particles, a laser beam is scanned over the at least one surface of the Ti-6Al-4V workpiece. A stream of nitrogen gas is sprayed on the surface of the Ti-6Al-4V workpiece coaxially and simultaneously with the laser beam at a relatively high pressure, thus forming a barrier layer of TiCxN1-x, TiNx, Ti—C, and Ti2N compounds in the surface region.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: September 24, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Bekir Sami Yilbas, Syed Sohail Akhtar, Cihan Karatas, Abdul Aleem Bangalore Jabbar
  • Patent number: 8541066
    Abstract: In various exemplary embodiments, the present invention provides a system for the light-induced directed self-assembly (LIDSA) of periodic sub-wavelength nanostructures, including: a light source for delivering a beam of photons; a reaction chamber disposed adjacent to the light source; a gas including one or more precursor materials disposed within the reaction chamber; and a substrate disposed within the reaction chamber, wherein the substrate is positioned and configured to receive the beam of photons; wherein the beam of photons causes a periodic sub-wavelength nanostructure of one or more constituents of the one or more precursor materials to form on a surface of the substrate. In various exemplary embodiments, the present invention also provides an associated method.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: September 24, 2013
    Assignee: University of North Carolina at Charlotte
    Inventors: Tsing-Hua Her, Haitao Zhang, Mingzhen Tang
  • Patent number: 8541534
    Abstract: A resin composition for laser engraving, including: a compound (A) having at least one of a hydrolyzable silyl group or a silanol group; and a binder polymer (B) having a functional group capable of forming a crosslinked structure by reacting with at least one of a hydrolyzable silyl group or a silanol group.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: September 24, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Atsushi Sugasaki, Takashi Kawashima
  • Publication number: 20130243971
    Abstract: Provided are atomic layer deposition apparatus and methods including a gas distribution plate and at least one laser source emitting a laser beam adjacent the gas distribution plate to activate gaseous species from the gas distribution plate. Also provided are gas distribution plates with elongate gas injector ports where the at least one laser beam is directed along the length of the elongate gas injectors.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: Applied Materials, Inc.
    Inventors: David Thompson, Pravin K. Narwankar, Swaminathan Srinivasan, Sukti Chatterjee, Abhilash Mayur, Kashif Maqsood
  • Publication number: 20130243970
    Abstract: Providing a mold and a manufacturing method therefor wherein protrusions are easy to be pressed into a resin base material and the protrusions are easy to be pulled out from the resin base material. The present invention provides a mold comprising a stamping surface (1a) formed depending on a via pattern and a protruding portion (21, 22) formed in convex shape from the stamping surface (1a), wherein the protruding portion has a base portion (111, 121) merging into a main surface of the stamping surface (1a) to have a curvature and a slope portion (113, 123) progressively decreasing in outer diameter thereof from the base portion (111, 121) to a top portion (112, 122) of the protruding portion (21, 22).
    Type: Application
    Filed: April 30, 2013
    Publication date: September 19, 2013
    Applicant: FUJIKURA LTD.
    Inventor: Takaharu HONDO
  • Patent number: 8538569
    Abstract: One or methods for improving a component are provided. The method can include using a processor with data storage and computer instructions in the data storage to allow a user to select from: drawing a custom mark in full size and producing a graphic file of a custom mark, selecting a pattern from a library of patterns for the component in a graphic file, or changing a photograph of an existing mark and changing the photograph into a graphic file.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: September 17, 2013
    Assignee: Glasscraft Door Company
    Inventor: John B. Plummer
  • Patent number: 8529775
    Abstract: A painted surface is processed by a laser beam to remove at least one layer of paint. The surface that is exposed may be the raw substrate material, e.g., wood or wood laminate, or may be another painted surface. The laser may engrave a pattern, e.g. a wood grain pattern.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: September 10, 2013
    Assignee: Revolaze, LLC
    Inventors: Darryl J Costin, Darryl Costin, Jr., Richard C. Fishburn
  • Publication number: 20130230665
    Abstract: A method of preparing an organic light-emitting device including: forming an organic emission unit on a substrate; and forming a thin film encapsulation layer including at least one inorganic layer including a low temperature viscosity transition (LVT) inorganic material, the forming the thin film encapsulation layer including forming the at least one inorganic layer, and the forming the at least one inorganic layer including: forming a pre-inorganic layer including the LVT inorganic material on the organic emission unit by heating a source including the LVT inorganic material using plasma in a vacuum and depositing the LVT inorganic material or ions of the LVT inorganic material separated from the source on the organic emission unit; and applying a healing process to the pre-inorganic layer at a temperature greater than a viscosity transition temperature of the LVT inorganic material.
    Type: Application
    Filed: September 11, 2012
    Publication date: September 5, 2013
    Inventor: Jin-Woo Park
  • Publication number: 20130230664
    Abstract: A method of preparing an organic light-emitting device includes forming an organic emission unit on a substrate, and forming a thin film encapsulation layer that contacts an environmental element, and that includes at least one inorganic layer including a low temperature viscosity transition (LVT) inorganic material, wherein the inorganic layer is formed using a process including forming a pre-inorganic layer including the LVT inorganic material by providing the LVT inorganic material onto the organic emission unit on which the environmental element is located, performing a first healing process on the pre-inorganic layer at a temperature greater than a viscosity transition temperature of the LVT inorganic material, and performing a second healing process on the pre-inorganic layer having undergone the first healing process to increase a binding force between the environmental element and the LVT inorganic material, and to increase a binding force among the LVT inorganic material.
    Type: Application
    Filed: September 7, 2012
    Publication date: September 5, 2013
    Inventor: Jin-Woo Park
  • Publication number: 20130220528
    Abstract: A manufacturing method of a bubble-type micro-pump is provided. At least a bubble-generating unit is provided on the bubble-generating section. Because of the varied surface energies on the top of the bubble-generating section, the varied backfilling velocities of the fluid of the front end and the rear end cause fluid moving when a bubble vanishes. The top surface of the bubble-generating section is subjected to a particular surface treatment to form a surface energy gradient. Examples of surface treatment include sputtering a thin film with varied densities or thickness, radiating one or multi-layer thin films by a laser beam, etc.
    Type: Application
    Filed: April 10, 2013
    Publication date: August 29, 2013
    Applicant: BENQ MATERIALS CORP.
    Inventor: BENQ MATERIALS CORP.
  • Publication number: 20130207519
    Abstract: The invention features methods for the manufacture of electrical components such as ultrasound transducers. In particular, the inventions provides methods of patterning electrodes, e.g., in the connection of an ultrasound transducer to an electrical circuit; methods of depositing metal on surfaces; and methods of making integrated matching layer for an ultrasound transducer. The invention also features ultrasound transducers produced by the methods described herein.
    Type: Application
    Filed: November 26, 2012
    Publication date: August 15, 2013
    Inventors: N. Christopher Chaggares, Eric Reider
  • Publication number: 20130202812
    Abstract: A method in which donor material is used in forming a light emitting layer by forming a transfer layer containing light emission material, irradiating a radiation ray to the transfer layer while the transfer layer and a substrate to be transferred face each other, and sublimating or vaporizing the transfer layer so that the transfer layer is transferred to the substrate to be transferred. The donor material includes: a base; a photothermal conversion layer arranged on the base; and a heat interfering layer arranged between the base and the photothermal conversion layer, and including two or more layers with refraction index different from each other.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 8, 2013
    Applicant: SONY CORPORATION
    Inventor: SONY CORPORATION
  • Patent number: 8496990
    Abstract: A method of locally repairing a coating (50) on a gas turbine engine nozzle guide vane (26) or a turbine blade (30,30B) comprises removing a damaged portion of the coating (50) from a portion (53) of the article. Any oxidized layer (54) is removed from the portion (53) of the surface of the article. Material is placed on the portion (53) of the article (26,30,30B) to form a patch coating (50B). The material is heated to form a patch coating (50B) on the portion (53) of the article (26,30,30B) and to bond the patch coating (50B) to the portion (53) of the article (26,30,30B) and to the coating surrounding the patch coating (50B). A high energy beam is impinged on the coating (50) and the high energy beam is moved from the periphery (60) of the patch coating (50B) to the periphery (62) of the coating (50) in a pattern (P) to uniformly heat the periphery (60) of the patch coating (50B) and the periphery (62) of the coating (50). The advantage is that a halo effect around the patch coating (50B) is obviated.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: July 30, 2013
    Assignee: Rolls-Royce PLC
    Inventors: Stephen J. Tuppen, Daniel Clark, Alan S. Wood
  • Patent number: 8491972
    Abstract: Method and equipment to produce nanopowders of materials based on pure metals, their alloys and chemical compounds of these metals with elements taken from the row of B, C, O and Si, encapsulated into a salt shell selected from the group of NaCl, NaF, LiCl, and LiF or their mixtures, includes independent evaporation by means of electron beam and/or laser radiation sources of the material and alkali metal(s) halogenide and simultaneous deposition of a mixture of their vapor phases on a substrate in a closed pumped-down volume. To achieve the required ratio of vapor flows, a screen with variable cross-section diaphragms is placed between the substrate movable in parallel to the evaporators, and the evaporators, thus allowing an independent regulation of the intensity of the vapor flow coming to the substrate from each of the evaporators.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: July 23, 2013
    Assignee: E.O. Paton Electric Welding Institute of the National Academy of Sciences of Ukraine
    Inventors: Anatoliy I. Ustinov, Tatyana V. Melnychenko, Kyra V. Lyapina, Vasiliy I. Chaplyuk
  • Patent number: 8491955
    Abstract: A method of manufacturing an electronic apparatus including a plastic substrate, which can facilitate in separating the electronic apparatus including the plastic substrate from a stage, an electronic apparatus manufactured using the method, and an apparatus including the stage for use in the method. The method includes: preparing a stage on which a plurality of island-shaped separation lubricators are arranged; disposing the plastic substrate on the stage; forming a device on the plastic substrate; and separating the plastic substrate from the stage.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: July 23, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Woong Kim, Dong-Un Jin, Hyun-Joong Chung, Jae-Seob Lee, Yeon-Gon Mo
  • Patent number: 8486490
    Abstract: In a method for producing a three-dimensionally shaped object, a powder layer is formed by feeding a powdery material to a substrate and a solidified layer is formed by irradiating a light beam on a specified portion of the powder layer to sinter or melt the specified portion of the powder layer. A three-dimensionally shaped object having a plurality of solidified layers laminated one above another is obtained by repeating the powder layer formation and the solidified layer formation. In the method, a stress is preliminarily applied to the substrate to reduce the amount of deformation of the substrate after production of the shaped object prior to the powder layer forming step.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: July 16, 2013
    Assignee: Panasonic Corporation
    Inventors: Isao Fuwa, Norio Yoshida, Satoshi Abe
  • Publication number: 20130178040
    Abstract: A reprocessing method of a semiconductor device, the reprocessing method includes adjusting a resistance value of a first resistor by first trimming the first resistor, wherein the first resistor is electrically connected between a first pad and a second pad, forming a second resistor on the first trimmed first resistor, and adjusting a resistance value of the second resistor by second trimming the second resistor.
    Type: Application
    Filed: September 4, 2012
    Publication date: July 11, 2013
    Inventor: Jin-San Jung
  • Publication number: 20130174980
    Abstract: A method of using a high-strength bonding and coating mixture is disclosed. The mixture includes a silicon compound having a polycarbosilane backbone and a powder having a plurality of individual powder grains. Each of the powder grains has a diameter substantially between 0.05 micrometers and 50 micrometers. The mixture is applied to one or more work pieces and the work piece(s) is (are) heated in either an inert or reduction environment to a temperature sufficient to decompose the silicon compound into gaseous atoms and radicals of silicon and carbon.
    Type: Application
    Filed: July 13, 2012
    Publication date: July 11, 2013
    Applicant: FERROTEC (USA) CORPORATION
    Inventor: Sang In Lee
  • Patent number: 8481128
    Abstract: A method for growing an array of carbon nanotubes includes the steps of: (a) providing a substrate having a first substrate surface and a second substrate surface opposite to the first substrate surface; (b) forming a catalyst film on the first substrate surface; (c) flowing a mixture of a carrier gas and a first carbon source gas over the catalyst film on the first substrate surface; (d) focusing a laser beam on the second substrate surface to locally heat the substrate to a predetermined reaction temperature; and (e) growing an array of the carbon nanotubes on the first substrate surface via the catalyst film.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: July 9, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Zhuo Chen, Chun-Xiang Luo, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20130171424
    Abstract: A housing includes a transparent substrate, a first metallic layer formed on a first surface of the substrate, a transparent color layer formed on a second surface of the substrate opposite to the first metallic layer, and a second metallic layer formed on the color layer. The first metallic layer is defined a plurality of notches therein. A method for making the housing is also described.
    Type: Application
    Filed: April 19, 2012
    Publication date: July 4, 2013
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventor: XU LIU