Electrical Discharge (e.g., Arcs, Sparks, Etc.) Patents (Class 427/580)
  • Patent number: 6432494
    Abstract: A method for depositing adherent metal oxide-based protective coatings on glass, metal, and plastic substrates by arc plasma deposition.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: August 13, 2002
    Assignee: General Electric Company
    Inventors: Barry Lee-Mean Yang, Steven Marc Gasworth
  • Patent number: 6428659
    Abstract: A process for coating super fine ion particles of multiple elements on the surface of a micro route substrate includes a coating step operated under low temperatures and vacuums. First, raw micro routers are cleaned by electron beams under atmospheric pressures and room temperatures, then the raw micro routers are transferred into a vacuum environment, and the temperature of the environment is increased to a range between 120° C. to 180° C. Next, the surface of the micro route is cleaned by ions, and then a coating process is started. An arc source is used to bombard cations from a target while a filtration net is used to pass small cation particles. An ion assistant device is operated to further refine the filtered particles so that only super fine ion particles are coated on the surface of the micro route substrates.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: August 6, 2002
    Assignee: Cosmos Vacuum Technology Corporation
    Inventors: Chung-Lin Chou, Chen-Chun Hsu
  • Patent number: 6426126
    Abstract: A method for preparing thin films of noble metals upon porous substrate surfaces including utilizing plasma polymerization wherein the noble metals are derived from a monomer or comonomer precursor of the noble metal and with the precursor being disposed within a plasma glow zone to convert the precursor to its dissociated form, thereby allowing the substrate to receive a deposit of a substantially continuous noble metal film thereon. A wide variety of noble metals and their alloys may be treated in this fashion, including such noble metals as platinum, ruthenium, gold and certain alloys thereof.
    Type: Grant
    Filed: October 21, 2000
    Date of Patent: July 30, 2002
    Assignee: AMT Holdings, Inc.
    Inventors: Stephen P. Conover, Ashok K. Sharma
  • Patent number: 6426125
    Abstract: According to an exemplary embodiment of the invention, a method of forming a plurality of layers on an article comprises steps of generating a plasma by forming an arc between a cathode and an anode; injecting a first material comprising an organic compound into the plasma to deposit a first layer on the article; injecting a second material comprising an organometallic material into the plasma to form a second layer on the first layer; and injecting a third material comprising a silicon containing organic compound into the plasma to deposit a third layer on the second layer. The invention also relates to an article of manufacture comprising a substrate; an interlayer disposed on the substrate; a second layer disposed on the interlayer, the second layer comprising an inorganic ultraviolet absorbing material; and a third layer disposed on the second layer, the third layer comprising an abrasion resistant material.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: July 30, 2002
    Assignee: General Electric Company
    Inventors: Barry Lee-Mean Yang, Charles Dominic Iacovangelo
  • Publication number: 20020090468
    Abstract: There is provided a method of manufacturing a carbon nanotube so as to be able to increase the yield of a web and to increase the amount of a carbon nanotube contained in the web. A high-energy heat source is caused to act on carbon in the presence of catalysts. The catalysts include a main catalyst made of at least one metal which is selected from the group consisting of an iron group element, a platinum group element, and a rare earth element, and an auxiliary catalyst made of a material which causes an exothermic reaction in a process of generating the web including the carbon nanotube. The auxiliary catalyst is made of a material for generating a carbide more stable in terms of thermal energy than a carbide generated by the main catalyst. The free formation energy of the carbide generated from the material is smaller than the free formation energy of the carbide generated by the main catalyst.
    Type: Application
    Filed: October 30, 2001
    Publication date: July 11, 2002
    Applicant: HONDA GIKEN KOGYO KABUSHIKI KAISHA
    Inventors: Hajime Goto, Terumi Furuta, Toshio Tokune, Yoshiya Fujiwara, Toshiyuki Ohashi
  • Patent number: 6395151
    Abstract: An apparatus for applying permanent markings onto products using a Vacuum Arc Vapor Deposition (VAVD) marker by accelerating atoms or molecules from a vaporization source onto a substrate to form human and/or machine-readable part identification marking that can be detected optically or via a sensing device like x-ray, thermal imagining, ultrasound, magneto-optic, micro-power impulse radar, capacitance, or other similar sensing means. The apparatus includes a housing with a nozzle having a marking end. A chamber having an electrode, a vacuum port and a charge is located within the housing. The charge is activated by the electrode in a vacuum environment and deposited onto a substrate at the marking end of the nozzle. The apparatus may be a hand-held device or be disconnected from the handle and mounted to a robot or fixed station.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: May 28, 2002
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Harry F. Schramm, Donald L. Roxby, Jack L. Weeks
  • Patent number: 6392138
    Abstract: An excellent low temperature heat sealing property is imparted to a surface of a non-perfluoro fluorine-containing resin molded article having F/C of not more than 1.8. A non-perfluoro fluorine-containing resin molded article having a surface layer portion having a low temperature heat sealing property on at least a part of the surface layer thereof; said surface layer portion having a low temperature heat-sealing property has a ratio F/C of the number of fluorine atoms to the number of carbon atoms of 0.2≦F/C≦0.9 and a ratio O/C of the number of oxygen atoms to the number of carbon atoms of 0.09≦O/C≦0.40, and a remaining portion of the surface layer has a ratio F/C of the number of fluorine atoms to the number of carbon atoms which is larger than that of the surface layer portion having a low temperature heat-sealing property and is 0.8≦F/C≦1.8.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: May 21, 2002
    Assignee: Daikin Industries, Ltd.
    Inventors: Shigeru Ichiba, Yutaka Nakata, Kazuhiko Shimada
  • Patent number: 6383573
    Abstract: A process is provided for producing coated synthetic bodies during which, before the coating, the surface to be coated is subjected to a pretreatment in an excited gas atmosphere. The surface is then coated. The gas atmosphere is predominantly formed of a noble gas and nitrogen and/or hydrogen, and the ionic energy in the gas atmosphere and in the are of the surface to be coated is not more than 50 eV. The ionic energy is selected to be not more than 20 eV, preferable not more than 10 eV. The gas atmosphere is excited by means of a plasma discharge or by means of UV radiation.
    Type: Grant
    Filed: May 17, 2000
    Date of Patent: May 7, 2002
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Eugen Beck, Jürgen Ramm, Heinrich Zimmermann
  • Publication number: 20020051851
    Abstract: To improve the machining and processing, respectively, as well as the tribologic properties of ferrous coatings for the working surfaces of combustion engine cylinder blocks applied by a plasma spraying operation, a ferrous coating having a content of bound oxygen in the amount of between 1 to 4% by weight is suggested. Such coatings can be realized, for example, by adding an amount of 200 to 1000 normalized liters air per minute during the plasma spraying operation.
    Type: Application
    Filed: October 23, 2001
    Publication date: May 2, 2002
    Applicant: Sulzer Metco AG
    Inventor: Gerard Barbezat
  • Publication number: 20020046941
    Abstract: An arc evaporator comprises: an anode; an evaporation source electrode as a cathode; and a current control unit for supplying an AC square wave arcing current across the anode and the evaporation source electrode.
    Type: Application
    Filed: September 26, 2001
    Publication date: April 25, 2002
    Inventors: Shirou Takigawa, Kouichi Nose, Yasuhiro Koizumi, Takanobu Hori, Yukio Miya
  • Patent number: 6365016
    Abstract: A method and apparatus for depositing a coating on a substrate. A method of coating a substrate comprises evaporating a first reactant; introducing the evaporated reactant into a plasma; and depositing the first reactant on a surface of the substrate. This method may be used to deposit an electrically conductive, ultraviolet filter coating at high rate on a glass or polycarbonate substrate, for example. An apparatus for depositing a UV filter coating on a polymeric substrate comprises a plasma generator having an anode and a cathode to form a plasma, and a first inlet for introducing a first reactant into the plasma, the first reactant comprising an evaporated material that is deposited on the substrate by the plasma. Optionally, a nozzle can be utilized to provide a controlled delivery of the first reactant into the plasma.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: April 2, 2002
    Assignee: General Electric Company
    Inventors: Charles Dominic Iacovangelo, Keith Milton Borst, Elihu Calvin Jerabek, Patrick Peter Marzano, Barry Lee-Mean Yang
  • Publication number: 20020037374
    Abstract: This method for surface treatment with a plasma at atmospheric pressure comprises the step of introducing a treatment gas into a treatment reactor (16), in which a surface (14) to be treated is placed between two exciting electrodes (22, 24), and applying a supply voltage to the two electrodes so as to cause the appearance of a discharge (12) in the treatment gas. The supply voltage is an AC voltage whose amplitude and frequency are adapted in order to maintain at least some of the components of the treatment gas in the excited state, and/or the presence of electrons, between two successive half-cycles of the supply voltage.
    Type: Application
    Filed: September 18, 2001
    Publication date: March 28, 2002
    Inventors: Nicolas Gherardi, Gamal Gouda, Francoise Massines, Alain Villermet, Eric Gat
  • Patent number: 6361663
    Abstract: The invention relates to a vacuum arc evaporator with which a wide variety of substrates can be provided with various coatings or to which various systems of layers can be applied. The invention is intended to achieve an improvement in the quality of the layer, with increased material utilization and higher coating rate. A vacuum arc evaporator with a cathode of electrically conducting material and an anode for generating a plasma arranged in an evacuable housing is used for this purpose. The plasma is generated by an evaporation of the cathode material by means of arc discharge. The anode is enclosed by an insulator and is otherwise surrounded by cathode material on all sides.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: March 26, 2002
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung e.V.
    Inventors: Jan Berthold, Thomas Witke, Peter Siemroth
  • Patent number: 6355312
    Abstract: A rod-like or thread-like material is subjected to a plasma treatment by passing the material coaxially through a plasma nozzle while generating plasma therein.
    Type: Grant
    Filed: October 15, 1999
    Date of Patent: March 12, 2002
    Assignee: Cottin Development, Inc.
    Inventors: Peter Förnsel, Christian Buske
  • Patent number: 6350497
    Abstract: For permitting increase in productivity and improvement in uniformity and reproducibility of characteristics of deposited films while maintaining good film characteristics, a plasma processing apparatus is constructed in such structure that a plurality of cylindrical substrates are set in a depressurizable reaction vessel and that a source gas supplied into the reaction vessel is decomposed by a high frequency power introduced from a high frequency power introducing means to generate a plasma to permit deposited film formation, etching, or surface modification on the cylindrical substrates, wherein the plurality of cylindrical substrates are placed at equal intervals on the same circumference and wherein the high frequency power introducing means is provided outside the placing circumference for the cylindrical substrates.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: February 26, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hitoshi Murayama, Toshiyasu Shirasuna, Ryuji Okamura, Kazuyoshi Akiyama, Takashi Ohtsuka, Kazuto Hosoi
  • Patent number: 6348668
    Abstract: A method having the steps of: securing a first electrode (120) to an indexing unit (121) which indexes the angle of the first electrode; modifying the first electrode (120) into a predetermined shape by a discharging operation of a second electrode (131) or a machining operation of a second tool connected and secured to a main shaft (112) which is moved in a vertical direction when the surface of the first electrode (120) is modified; changing the second electrode (131) or the second tool connected and secured to the main shaft (112) to a first tool (110) by an automatic tool changing unit; indexing the first electrode (120) to a predetermined angle of rotation by the indexing unit (121); causing discharge to occur while relatively moving the tip of the first tool (110) along the surface of the first electrode (120) such that the tip is made to be opposite to the surface of the first electrode (120) while a predetermined distance is being maintained; and forming a hard coating film on the tip of the first too
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: February 19, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Toshio Moro, Akihiro Goto
  • Publication number: 20020007796
    Abstract: An apparatus for the application of coatings in a vacuum comprising a plasma duct surrounded by a magnetic deflecting system communicating with a first plasma source and a coating chamber in which a substrate holder is arranged off of an optical axis of the plasma source, has at least one deflecting electrode mounted on one or more walls of the plasma duct. In one embodiment an isolated repelling or repelling electrode is positioned in the plasma duct downstream of the deflecting electrode where the tangential component of a deflecting magnetic field is strongest, connected to the positive pole of a current source which allows the isolated electrode current to be varied independently and increased above the level of the anode current. The deflecting electrode may serve as a getter pump to improve pumping efficiency and divert metal ions from the plasma flow.
    Type: Application
    Filed: April 6, 2001
    Publication date: January 24, 2002
    Inventor: Vladimir I. Gorokhovsky
  • Patent number: 6338882
    Abstract: A method for applying a light-blocking layer between a photoconducting layer and a mirror when making an optically addressable spatial light modulator (OASLM) using a chemical vapor deposition process. The light-blocking layer and the photoconducting layer are applied in a shared process step in which both the thickness and composition of the photoconducting layer to be applied to the transparent electrode, as well as the thickness and composition of the light-blocking layer to be applied to the photoconducting layer are determined by a time-related change of the variation of the gas composition during the deposition process. The structure of the OASLM can be optimally adapted to a desired purpose.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: January 15, 2002
    Assignee: Deutsche Telekom AG
    Inventors: Wolfgang Dultz, Wolfgang Haase, Leonid Beresnev, Elena Konshina, Arkadii Onokhov
  • Patent number: 6338778
    Abstract: The invention relates to a device, in particular for a laser-induced vacuum are discharge evaporator for depositing of multiple layers with a high level of purity and high deposition rates on large-area components. According to the invention, the material source for the coating material is in a source chamber which can be evacuated and can be separated in a vacuum-tight manner from the actual coating chamber in which the substrate to be coated is located. The evaporator can, in particular, be used for deposition of amorphous carbon layers which are hydrogen-free and superhard and/or which contain hydrogen, in conjunction with high-purity metal layers or for the reactive plasma-enhanced deposition of, for example, oxidic, carbide, nitride hard material layers of ceramic layers or a combination thereof. The corresponding plasma sources can be flange-mounted on any suitable coating chambers and, consequently, also combined with conventional coating processes, for example magnetron sputtering.
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: January 15, 2002
    Assignees: Bayerische Motoren Werke Aktiengesellschaft, Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Daniela Giersch, Robert Schalausky, Goetz Mielsch, Hans-Joachim Scheibe
  • Patent number: 6336950
    Abstract: An aspect of this invention is an electrode rod for spark alloying, comprising a compact of a first powder of a first component which comprises a metal selected from a group of Fe, Co, Ni, metals of 4a, 5a and 6a of the periodic table and Si, and a second powder of a second component which is capable of self-propagating high temperature synthesis to form with said first component carbide, nitride, boride, silicide or intermetallic compound, said first and second powders being mixed intimately with each other and formed into an axial rod.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: January 8, 2002
    Assignees: The Ishizuka Research Institute Ltd., Moscow Steel and Alloys Institute, SHS-Center
    Inventors: Mitsue Koizumi, Manshi Ohyanagi, Satoru Hosomi, Evgeny Alexandrovich Levashov, Alexander Gennadievich Nikolaev, Alexander Evgenievich Kudryashov
  • Patent number: 6331332
    Abstract: In accordance with the present invention, there is provided a process for depositing diamond-like carbon (DLC) films by cathodic arc evaporation (CAE), wherein the high energy of CAE metal ions causes the cracking reaction of the hydrocarbon gases fed into the vacuum reaction chamber and then results in the deposition of DLC films having high hardness and lubrication. Due to the metallic constituents doped in the DLC films, the films also have good toughness. Moreover, prior to the feeding of hydrocarbon gases for the DLC deposition, the same metal arc source may deposits one or more interlayers of metal, metal nitride, or metal carbide on the substrate so as to further enhance the adhesion of the DLC films to be deposited.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: December 18, 2001
    Inventor: Da-Yung Wang
  • Patent number: 6329024
    Abstract: Devices, and their method of production, having coatings deposited by pulsed plasma polymerization of a macrocycle containing a heteroatom, wherein the heteroatom is oxygen, nitrogen, sulfur, or a mixture thereof. The coatings on contact lens are preferably deposited by gas phase polymerization of a cyclic ether, such as crown ether, which coatings are non-fouling and wettable, and the gas phase polymerization utilizes a pulsed discharge.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: December 11, 2001
    Assignee: Board of Regents, The University of Texas System
    Inventors: Richard B. Timmons, Yuliang Wu
  • Patent number: 6319369
    Abstract: A coating of positive ions is applied to a substrate by generating an arc at a cathode, directing a beam of ions emitted from the cathode to the substrate via a filter path to remove macroparticles, igniting the arc by moving an arc ignition from a retracted position to an ignition position in which cathode contact is made, and storing the position in which arc ignition occurred.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: November 20, 2001
    Assignee: Filplas Vacuum Technology PTE, Ltd.
    Inventors: David Ian Flynn, Xu Shi, Hong Siang Tan, Beng Kang Tay
  • Patent number: 6316044
    Abstract: Antimicrobial activity is imparted to the surface(s) of an apparatus or article by polymerizing tert-butylaminoethyl methacrylate in the presence of the apparatus or article by which adhesion of the polymer to the surface(s) is achieved. In a preferred embodiment of the invention the antimicrobial monomer is graft polymerized on the surface(s).
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: November 13, 2001
    Assignee: Degussa-Huels Aktiengesellschaft
    Inventors: Peter Ottersbach, Frank Hill, Christine Anders
  • Patent number: 6316062
    Abstract: The present invention provides a method for manufacturing a magnetic recording medium comprising the steps of forming a carbon protective film onto a disc, the non-magnetic substrate of which is layered with a non-magnetic base film and magnetic film, using a reactant gas containing carbon atoms as a starting material, according to a plasma CVD method, wherein a mixed gas of hydrocarbon and hydrogen, in which the mixing ratio of hydrocarbon to hydrogen is in the range of 2 to 1˜1 to 100 by volume, is used as a reactant gas, during bias applying to said disc. In addition, the present invention provides a magnetic recording medium comprising a carbon protective film formed onto a disc, the non-magnetic substrate of which is layered with a non-magnetic base film and magnetic film, wherein said carbon protective film is formed according to a plasma CVD method, while applying bias.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: November 13, 2001
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Sakaguchi, Kazuo Kobayashi, Hiroshi Sakai, Mikio Suzuki, Kenichi Yoneyama, Kazunori Ohnami
  • Patent number: 6312767
    Abstract: A process for the surface treatment of a running substrate by an electrical discharge created between two roller electrodes, comprising a first roller electrode and a second roller electrode, in a gas mixture comprising the steps of passing the substrate in between the two roller electrodes by applying it against the first roller electrode; injecting the gas mixture between the rollers to apply a first surface treatment to the substrate; passing the substrate in between the two roller electrodes by applying it against a second roller electrode; and injecting the gas mixture between the rollers to apply a second surface treatment to the substrate.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: November 6, 2001
    Assignee: L'Air Liquide, Societe Anonyme pour l'Exploitation des Procedes Georges Claude
    Inventors: Alain Villermet, François Coeuret, Panayotis Cocolios, Bernd Martens, Eckhard Prinz, Jürgen Salge
  • Publication number: 20010023820
    Abstract: A system for a method of applying a coating to an insulative substrate. The method includes applying a coating material to the insulative substrate by physical vapor deposition to a predetermined thickness at a rate and for a predetermined time which does not cause thermal damage to the insulative substrate. Then, before thermal damage can occur, moving the partially coated substrate proximate and active cooling station device to drive the temperature of the insulative substrate substantially down. The deposition and cooling steps are then repeated until the desired coating thickness is obtained to avoid thermal damage to the substrate.
    Type: Application
    Filed: January 11, 2001
    Publication date: September 27, 2001
    Inventor: Donald G. Parent
  • Publication number: 20010022272
    Abstract: Apparatuses and methods for use in vacuum vapor deposition coating provide for simpler, economical and continuous operation. A system and method for continuously melting and evaporating a solid material for forming a coating vapor includes the use of a separate melting crucible and evaporating crucible. A system and method for energizing the evaporative solids to form a plasma which includes first and second electrodes and a device for selectively switching polarity between the first and second electrodes to avoid coating vapor deposition on the electrodes. Another a system and method for energizing the evaporative solids to form a plasma which includes an electric arc discharge apparatus with a cathodic and an anodic part. A continuously fed electrode is disclosed for continuous vaporization of electrode members in an electric arc discharge. An apparatus and method provides for measurement of the rate of evaporation from an evaporator and the degree of ionization in a vapor deposition coating system.
    Type: Application
    Filed: April 30, 2001
    Publication date: September 20, 2001
    Inventors: George Plester, Horst Ehrich
  • Patent number: 6277253
    Abstract: Embodiments include a method for depositing material onto a workpiece in a sputtering chamber. The method includes sputtering a target and a coil in said sputtering chamber. The coil may have a preformed multilayer structure formed outside of the sputtering chamber. The outer layer of the coil may act as a secondary source of deposition material. The multilayer structure may be formed with an inner region or a base metal and an outer layer of a sputtering metal. The outer layer may be formed using a process such as plasma spraying, arc spraying, flame spraying, ion plating, chemical vapor deposition and electroplating.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: August 21, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Murali Narasimhan, Xiangbing Li
  • Patent number: 6274837
    Abstract: The method of the present invention includes placing a solid dopant in or near the nozzle of a DC arc jet. According to one embodiment of the invention, the interior surface of an arc jet nozzle is coated with a layer of copper by brushing the surface with a copper brush. According to another embodiment of the invention, the interior surface of an arc jet nozzle is coated with a layer of copper by plating it with copper. According to another embodiment of the invention, a copper cylinder is placed inside an arc jet nozzle. Apparatus according to the invention include a DC arc jet with a solid dopant placed in or near the nozzle according to one of the methods described. Diamonds according to the invention are conductive diamonds formed by a plasma jet process where a solid dopant was placed in or near the nozzle according to one of the methods described.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: August 14, 2001
    Assignee: Saint-Gobain Industrial Ceramics, Inc.
    Inventors: Henry Windischmann, John L. Yuscinsky
  • Patent number: 6261421
    Abstract: A method and apparatus for vacuum arc deposition of carbon on a substrate inhibits or eliminates emission of contaminating carbon particles in the ion plasma by maintaining an elevated local plasma pressure at the cathode or target surface, thereby minimizing the role of heat conduction in the creation of the particles and strongly increasing the electron emission cooling effects.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: July 17, 2001
    Assignee: McGill University
    Inventors: Jean-Luc Meunier, Munther Kandah
  • Patent number: 6251233
    Abstract: Apparatuses and methods for use in vacuum vapor deposition coating provide for simpler, economical and continuous operation. A system and method for continuously melting and evaporating a solid material for forming a coating vapor includes the use of a separate melting crucible and evaporating crucible. A system and method for energizing the evaporative solids to form a plasma which includes first and second electrodes and a device for selectively switching polarity between the first and second electrodes to avoid coating vapor deposition on the electrodes. Another a system and method for energizing the evaporative solids to form a plasma which includes an electric arc discharge apparatus with a cathodic and an anodic part. A continuously fed electrode is disclosed for continuous vaporization of electrode members in an electric arc discharge. An apparatus and method provides for measurement of the rate of evaporation from an evaporator and the degree of ionization in a vapor deposition coating system.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: June 26, 2001
    Assignee: The Coca-Cola Company
    Inventors: George Plester, Horst Ehrich
  • Patent number: 6248408
    Abstract: In the generalized method of the present invention a heat curable coating is first applied to an article of manufacture. Thereafter, an outer coating is applied to the article in a physical vapor deposition process, and the heat from the PVD process cures the first layer while the PVD coating is being deposited upon the article. In the preferred embodiments, the heat curable coating is a powder coating and the cathodic arc of the PVD process provides the heat that cures the powder coating. An infrared heat source within the PVD chamber may be utilized to preheat the powder coating which is typically composed of an epoxy-polymer compound. Articles of manufacture having the coating of the present invention formed thereon are manufactured with less energy and labor costs.
    Type: Grant
    Filed: March 3, 1999
    Date of Patent: June 19, 2001
    Assignee: Vacuum Plating Technology Corporation
    Inventor: Brent W. Lee
  • Patent number: 6241858
    Abstract: Methods and apparatus are provided for uniformly depositing a coating material from a vaporization source onto a powdered substrate material to form a thin coalescence film of the coating material that smoothly replicates the surface microstructure of the substrate material. The coating material is uniformly deposited on the substrate material to form optical interference pigment particles. The thin film enhances the hiding power and color gamut of the substrate material. Physical vapor deposition processes are used for depositing the film on the substrate material. The apparatus and systems employed in forming the coated particles utilize vibrating bed coaters, vibrating conveyor coaters, or coating towers. These allow the powdered substrate material to be uniformly exposed to the coating material vapor during the coating process.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: June 5, 2001
    Assignee: Flex Products, Inc.
    Inventors: Roger W. Phillips, Vladimir Raksha
  • Publication number: 20010002288
    Abstract: Device for the surface treatment of a substrate (3) by an electrical discharge between two electrodes in a gas mixture liable to generate by-products (powders, for example) which may be deposited on the electrodes, in which device one (9) of the electrodes is a roller against which the substrate may be applied, means being provided for rotating the roller and the substrate and for injecting the gas mixture between the electrodes, the device being noteworthy in that the second electrode is a roller electrode (11) against which the running substrate may also be applied, this roller (11) being placed parallel to the other roller (9) with a suitable gap. By virtue of this arrangement, the substrate (3) protects each electrode (11) and prevents it from being covered with powder during the treatment, as well as preventing the corresponding contamination, thereby allowing the device to operate continuously.
    Type: Application
    Filed: November 5, 1998
    Publication date: May 31, 2001
    Inventors: ALAIN VILLERMET, FRANCOIS COEURET, PANAYOTIS COCOLIOS, BERND MARTENS, ECKHARD PRINZ, JURGEN SALGE
  • Patent number: 6224972
    Abstract: The present invention discloses an HSS tool with a PVD coating and with at least one cutting edge. The cutting edge has a radius of 15-25 &mgr;m and the carbides in the HSS are in contact with the coating. The present invention also relates to a method of making an HSS tool provided with a PVD coating with improved wear resistance. The improvement is obtained by subjecting the tool prior to the deposition of the coating to an electropolishing treatment such that a cutting edge radius of 15-25 &mgr;m is obtained and that the carbides in the HSS are revealed.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: May 1, 2001
    Assignee: Sandvik AB
    Inventors: Anders Nordgren, Peter Littecke, Hans Johansson
  • Patent number: 6210544
    Abstract: Disclosed is a magnetic film forming method of forming a magnetic film on a substrate by preparing a material A formed of oxide of an element T of at least one kind of Fe, Co, and Ni and a material B formed of oxide of an element M of at least one kind selected from Ti, Zr, Hf, Nb, Ta, Cr, Mo, Si, P, C, W, B, Al, Ga, Ge, and rare earth elements and making a target by sintering the powders of the material A and the material B or preparing the material A formed of oxide of the element T of at least one kind of Fe, Co, and Ni, the material B formed of oxide of the element M of at least one kind selected from Ti, Zr, Hf, Nb, Ta, Cr, Mo, Si, P, C, W, B, Al, Ga, Ge, and rare earth elements and a material C formed of an element S of at least one kind of Fe, Co, and Ni and making a target by sintering the powders of the material A, the material B and the material C; disposing the target in a film forming apparatus so that the target confronts a substrate; and forming the magnetic film on the substrate.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: April 3, 2001
    Assignee: Alps Electric Co., Ltd.
    Inventor: Yoshito Sasaki
  • Patent number: 6194036
    Abstract: Deposition of coatings using an atmospheric pressure plasma jet. The use of a nonthermal source which is capable of operation at 760 torr is demonstrated. As an example of the application of the present invention, a helium/oxygen gas mixture is introduced into the annular region between two coaxial electrodes driven by a 13.56 MHz radio frequency (rf) source at between 40 and 500 W to produce a stable plasma jet. Silicon dioxide films are deposited by introducing tetraethoxysilane (TEOS) into the effluent stream. A deposition rate of 3020±250 Å/min. is achieved with an rf power of 400 W, 0.2 torr of TEOS, 11.1 torr of oxygen, 748.7 torr of helium, and a total gas flow rate of 41 L/min. The deposition rate depends on the oxygen partial pressure, the TEOS partial pressure, and the rf power to the 0.28, 0.47, and 1.41 powers, respectively. However, increasing the temperature decreases the deposition rate. The observed dielectric constants of the films decrease from 5.0±0.2 to 3.81±0.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: February 27, 2001
    Assignee: The Regents of the University of California
    Inventors: Steve E. Babayan, Gary S. Selwyn, Robert F. Hicks
  • Patent number: 6183820
    Abstract: A method of coating an inner face of a metal tube with an electrically conducting coating material includes the steps of positioning a wire, made of the coating material, generally axially in an interior of the tube, along the inner face thereof; and passing an electric current pulse of sufficient intensity through the wire to cause an explosive vaporization thereof, whereby particles of the vaporized material impinge on the inner face of the metal tube and form a layer thereon.
    Type: Grant
    Filed: August 20, 1998
    Date of Patent: February 6, 2001
    Assignees: Rheinmetall Industrie AG, TZN Forschungs - und Entwicklungszentrum Unterlüss GmbH
    Inventors: Helmut Neff, Thomas Weise, Alexei Voronov, Gert Schlenkert
  • Patent number: 6171454
    Abstract: Described is a method for coating surfaces using a facility having sputtering electrodes, which has at least two electrodes that are spaced apart from one another and arranged inside a process chamber, and an inlet for a process gas. The two sputtering electrodes are acted upon by a bipolarly pulsed voltage in such a way that they are alternately operated as cathodes and as anodes. In addition, the frequency of the voltage is set between 1 kHz and 1 MHz. Furthermore, and that the operating parameters are selected in such a way that in operation, the electrodes are at least partially covered by a coating material.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: January 9, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Weber, Johannes Voigt, Susanne Lucas
  • Patent number: 6165567
    Abstract: A film is formed over a substrate using a physical vapor deposition method. When using ionized metal plasma physical vapor deposition, the deposition chamber configuration or operating parameters are adjusted to achieve the desired film characteristics. If the film is to be substantially uniform in thickness across a substrate, the deposition species density is made higher at locations away from the center of the substrate.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: December 26, 2000
    Assignee: Motorola, Inc.
    Inventors: Peter Lowell George Ventzek, Daniel G. Coronell, Michael J. Hartig, John C. Arnold
  • Patent number: 6159560
    Abstract: A process is provided for depositing a silver coating on a metallic component of a feedthrough assembly to displace surface oxide and to deposit a conductive finish suitable for making an electrical connection. The feedthrough assembly includes a ferrule, an insulator mounted within the ferrule, and at least one tantalum terminal pin extending through the insulator. An inert gas dispensing hood is positioned over the terminal pin to create an argon gas environment around the terminal pin to prevent oxidation. A ground electrode of an electric circuit is connected to the feedthrough assembly. The electric circuit includes a direct current power source electrically connected to a resistor and a high energy storage capacitor. An active electrode of the electrical circuit is attached to a silver anode.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: December 12, 2000
    Inventors: Robert A. Stevenson, Theo C. M. Rijsdijk
  • Patent number: 6143142
    Abstract: The invention describes composite coatings, in particular comprising carbon and another metallic element such as silicon or aluminium. These coatings have improved properties compared with pure tetrahedral amorphous carbon coatings, in that they have reduced stress levels and can be deposited at higher thicknesses, whilst retaining acceptable hardness and other useful mechanical properties. Also described are methods of making composite coatings, materials for making the coatings and substrates coated therewith. Specifically, a method of applying a coating to a substrate using a cathode arc source, comprises generating an arc between a cathode target and an anode of the source and depositing positive target ions on the substrate to form the coating, wherein the coating is a composite of at least first and second elements and the target comprises said at least first and second elements.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: November 7, 2000
    Assignee: Nanyang Technological University
    Inventors: Xu Shi, Hong Siang Tan, Beng Kang Tay
  • Patent number: 6143378
    Abstract: A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: November 7, 2000
    Assignee: Sandia Corporation
    Inventors: Lane D. Harwell, Michelle L. Griffith, Donald L. Greene, Gary A. Pressly
  • Patent number: 6136389
    Abstract: A method for preparing thin films of noble metals upon porous substrate surfaces including utilizing plasma polymerization wherein the noble metals are derived from a monomer or comonomer precursor of the noble metal and with the precursor being disposed within a plasma glow zone to convert the precursor to its dissociated form, thereby allowing the substrate to receive a deposit of a substantially continuous noble metal film thereon. A wide variety of noble metals and their alloys may be treated in this fashion, including such noble metals as platinum, ruthenium, gold and certain alloys thereof.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: October 24, 2000
    Assignee: AMT Holdings, Inc.
    Inventors: Stephen P. Conover, Ashok K. Sharma
  • Patent number: 6127003
    Abstract: In a method of coating a first surface of a web, a second surface of the web reverse to the first surface is charged, wherein a surface specific resistance of the second surface is 10.sup.12 .OMEGA..multidot.cm or less.
    Type: Grant
    Filed: October 27, 1998
    Date of Patent: October 3, 2000
    Assignee: Konica Corporation
    Inventors: Kazuhiro Fukuda, Yuichiro Maehara
  • Patent number: 6110330
    Abstract: This invention relates to a process for forming a lubricant layer of differing thickness on distinct zones of a maonetic disk of a hard disk drive without heating, inert gas plasma and UV-radiation or E-beam exposition. According to the present invention. an overcoat layer with distinct zones of differing thickness is first sputtered on the disk surface by using distinct masks under different sputtering conditions. A lubricant layer is then uniformly coated on the overcoat layer. Since a part of lubricant is bonded to the overcoat to form a bonded lubricant layer and the thickness of the bonded lubricant layer relates to the overcoat layer's property, a free lubricant layer with zoned thickness is consequently formed, which the free lubricant layer consists of the leftover lubricant. The zoned lubricant layer of the invention hence decreases the flying stiction.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: August 29, 2000
    Assignee: Trace Storage Technology Corp
    Inventors: Moon-Sun Lin, Lem-San Young, Che-Hsien Lin, Hung-Huei Liang
  • Patent number: 6110544
    Abstract: A method for depositing adherent metal oxide-based protective coatings on glass, metal, and plastic substrates by arc plasma deposition.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: August 29, 2000
    Assignee: General Electric Company
    Inventors: Barry Lee-Mean Yang, Steven Marc Gasworth
  • Patent number: 6099915
    Abstract: In a method of coating easily oxidisable materials by plasma powder build-up welding of additive materials in powder form using alternating current or direct current with superimposed alternating current to produce a plasma transferred arc for powder build-up welding in accordance with patent application No 196 26 941.5 a CuNi-alloy is used as an additive welding material with additions (in % by weight) of:______________________________________ Fe below about 10; Cr below about 5; B below about 4; Si below about 4; C with about 1.5; ______________________________________with a degree of mixing of more than 40% by volume.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: August 8, 2000
    Assignee: Castolin S.A.
    Inventor: Michael Dvorak
  • Patent number: 6096391
    Abstract: A method for improving the electrical conductivity of a substrate of metal, metal alloy or metal oxide comprising depositing a small or minor amount of metal or metals from Group VIIIA metals (Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt) or from Group IA metals (Cu, Ag, Au) on a substrate of metal, metal alloys and/or metal oxide from Group IVA metals (Ti, Zr, Hf), Group VA metals (V, Nb, Ta), Group VIA metals (Cr, Mo, W) and Al, Mn, Ni and Cu. The native oxide layer of the substrate is changed from electrically insulating to electrically conductive. The step of depositing is carried out by a low temperature arc vapor deposition process. The deposition may be performed on either treated or untreated substrate. The substrate with native oxide layer made electrically conductive is useable in the manufacture of electrodes for devices such as capacitors and batteries.
    Type: Grant
    Filed: October 16, 1998
    Date of Patent: August 1, 2000
    Assignee: Wilson Greatbatch Ltd.
    Inventors: Barry C. Muffoletto, Ashish Shah