Chemical Vapor Deposition (e.g., Electron Beam Or Heating Using Ir, Inductance, Resistance, Etc.) Patents (Class 427/585)
  • Patent number: 6921463
    Abstract: An electrode for a lithium secondary cell capable of attaining excellent charge/discharge characteristics with high discharge capacity is obtained by properly controlling a component of a collector diffusing into active material layers formed on both sides of the collector. Embodiments include forming a first active material layer consisting of a plurality of layers on a first surface of a collector, and forming a second active material layer consisting of a plurality of layers on a second surface of the collector. At least one layer constituting the second active material layer is formed before forming all layers constituting the first active material layer, thereby preventing heat for forming at least one of the layers constituting the second active material layer from being applied to all layers constituting the first active material layer.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: July 26, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Katsunobu Sayama, Hisaki Tarui
  • Patent number: 6918165
    Abstract: A multi-layer capacitor is highly downsized and increased in capacity. A method for manufacturing the multi-layer capacitor includes, in the same vacuum chamber, forming a dielectric layer, treating a surface of the dielectric layer, forming a pattern in a metal electrode, forming the metal electrode on the dielectric layer, and treating a surface of the metal electrode. In this method, etching of the dielectric layer flattens a recessed part generated by an electrical insulation part.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: July 19, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Koji Arai, Yuichiro Yamada
  • Patent number: 6919002
    Abstract: A nanopore system, and manufacturing method therefor, is provided with a substrate having a support material over the substrate. A nano-structure in the support material forms a nanopore.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 19, 2005
    Assignee: Agilent Technologies, Inc.
    Inventor: Nasreen G. Chopra
  • Patent number: 6916541
    Abstract: The present invention relates to a substrate for attachment of biomolecules. The substrate is coated with a multiamino organosilane. If desired, the substrate can be further modified prior to coating with a multiamino organosilane. Optional surface modifications include coating the substrate with SiO2 or leaching with acid to form a SiO2 rich layer. DNA, nucleic acids, or any bimolecules can be attached to the coated substrates of the invention. Although a variety of substrates are contemplated, the preferred substrate is a low self-fluorescent glass.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: July 12, 2005
    Assignee: Penn State Research Foundation
    Inventors: Carlo G. Pantano, Ezz Metwalli, Samuel Conzone, Dan Haines
  • Patent number: 6916512
    Abstract: The method for coating plural surfaces on multiple sides of a substrate, especially a lens, includes launching microwave outputs into a microwave reactor at respective microwave launch sites; selecting respective microwave outputs to be greater than or equal to thresholds at which corresponding plasmas having a reduced permeability to microwave radiation arise in the microwave reactor; setting distances between the plural surfaces and microwave launch sites greater than microwave penetrations depths in the plasmas; placing respective dielectric tuning elements in microwave fields formed from the microwave outputs at the launch sites; and adapting the shapes of the dielectric tuning elements to the plural surfaces to be coated, so that plasma inhomogeneities are corrected and coatings with a uniformity of ±1% are formed on the plural surfaces.
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: July 12, 2005
    Assignee: Schott Glas
    Inventors: Burkhard Danielzik, Markus Kuhr, Wolfgang Moehl
  • Patent number: 6908564
    Abstract: Patterning is performed to thermal oxide films 12a and 12b formed on both surface sides of a silicon substrate in which crystal orientation of a surface is (100) or (110), a liquid chamber pattern and a liquid supplying port pattern are formed, and a liquid chamber and a liquid supplying port are formed separately by anisotropically etching the silicon substrate from both surface sides at the same time. Then, a silicon nitride film is deposited with a low pressure chemical vapor deposition to both surface sides of the silicon substrate and all faces of the liquid chamber and the liquid supplying port which are formed by etching. As a result, when the silicon substrate is used for a top plate, stiffness of the top plate is improved, design freedom of the liquid chamber and the liquid supplying port is increased, misalignment is prevented in bonding to the substrate, degradation of ejecting performance is prevented, and a liquid discharge head having high preciseness and high reliability can be provided.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: June 21, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shuji Koyama, Toshio Kashino, Hiroaki Mihara
  • Patent number: 6900000
    Abstract: An improved method for applying organic antireflective coatings to substrate surfaces and the resulting precursor structures are provided. Broadly, the methods comprise chemical vapor depositing (CVD) an antireflective compound on the substrate surface. In one embodiment, the compound is highly strained (e.g., having a strain energy of at least about 10 kcal/mol) and comprises two cyclic moieties joined to one another via a linkage group. The most preferred monomers are [2.2](1,4)-naphthalenophane and [2.2](9,10)-anthracenophane. The CVD processes comprise heating the antireflective compound so as to vaporize it, and then pyrolizing the vaporized compound to form stable diradicals which are subsequently polymerized on a substrate surface in a deposition chamber. The inventive methods are useful for providing highly conformal antireflective coatings on large substrate surfaces having super submicron (0.25 ?m or smaller) features.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: May 31, 2005
    Assignee: Brewer Science Inc.
    Inventors: Ram W. Sabnis, Douglas J. Guerrero, Terry Brewer, Mary J. Spencer
  • Patent number: 6887595
    Abstract: A thermal barrier coatings for the underlying substrate of articles that operate at, or are exposed to, high temperatures. The thermal barrier coating includes a zirconia-containing upper layer wherein the zirconia is stabilized in the cubic crystalline phase to reduce the thermal conductivity of the coating. The thermal barrier coating further includes a zirconia-containing lower layer stabilized in the tetragonal crystalline phase that increases the adherence of the upper layer to the bond coat layer that overlies the substrate of the article to improve the resistance of the coating to spallation.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: May 3, 2005
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Irene Spitsberg, Brett Allen Boutwell, Mark Daniel Gorman, Robert William Bruce
  • Patent number: 6884719
    Abstract: A method for depositing a high-k dielectric coating onto a substrate, such as a semiconductor wafer, is provided. The substrate is subjected to one or more reaction cycles. For instance, in a typical reaction cycle, the substrate is heated to a certain deposition temperature. Thereafter, in one embodiment, one or more reactive organo-metallic gas precursors are supplied to the reactor vessel. An oxidizing gas is also supplied to the substrate at a certain oxidizing temperature to oxidize and/or densify the layers. As a result, a metal oxide coating is formed that has a thickness equal to at least about one monolayer, and in some instances, two or more monolayers. The dielectric constant of the resulting metal oxide coating is often greater than about 4, and in some instance, is from about 10 to about 80.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: April 26, 2005
    Assignees: Mattson Technology, Inc., The Regents of the University of California
    Inventors: Jane Chang, You-Sheng Lin, Avishai Kepten, Michael Sendler, Sagy Levy, Robin Bloom
  • Patent number: 6872649
    Abstract: A light emitting-layer is provided on a substrate. A p-type semiconductor layer is provided on the light-emitting layer. An upper electrode is provided on the p-type semiconductor layer. The upper electrode includes an Au thin film coming into contact with the p-type semiconductor layer and an n-type transparent conductor film formed thereon. The n-type transparent conductor film is formed by laser ablation. Particularly, the method involves placing a substrate in a vacuum chamber, placing a target of the film material in the chamber, introducing oxygen into the chamber, laser-irradiating the target to emit atoms or molecular ions by ablation, and then depositing and oxidizing the atoms or ions to grow the transparent conductor film.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: March 29, 2005
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takao Nakamura, Hideki Matsubara
  • Patent number: 6867149
    Abstract: The chemical composition of thin films is modulated during their growth. A computer code has been developed to design specific processes for producing a desired chemical composition for various deposition geometries. Good agreement between theoretical and experimental results was achieved.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: March 15, 2005
    Assignee: EUV Limited Liability Corporation
    Inventors: Sasa Bajt, Stephen P. Vernon
  • Patent number: 6863926
    Abstract: A method and apparatus are provided for protecting internal aluminum components of a plasma reactor from plasma-induced erosion. The components are coated, first with a dielectric layer, then with a thin layer of one or more metals selected from the group consisting of gold, chromium, platinum, silver and rhenium. The dielectric layer may either be grown or deposited. The metal layer is deposited, preferably using evaporative deposition.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: March 8, 2005
    Inventor: David Mark Lynn
  • Patent number: 6863961
    Abstract: A method of manufacturing an organic EL element according to the present invention comprises the steps of forming pixel electrodes (801), (802), (803) on a transparent substrate (804) and forming on the pixel electrodes by patterning luminescent layers (806), (807), (808) made of an organic compound by means of an ink-jet method. According to this method, it is possible to carry out a high precise patterning easily and in a short time, thereby enabling to carry out optimization for a film design and luminescent characteristic easily as well as making it easy to adjust a luminous efficiency.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: March 8, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Satoru Miyashita, Hiroshi Kiguchi, Tatsuya Shimoda, Sadao Kanbe
  • Patent number: 6861157
    Abstract: Articles for use in a high-temperature, oxidative environment, methods for manufacturing such articles, and a material system for protecting articles in such an environment are provided where, for example, one article comprises a substrate and a protective layer disposed over the substrate, the protective layer comprising at least about 60 atomic percent of a metal selected from the group consisting of platinum (Pt), palladium (Pd), rhodium (Rh), osmium (Os), iridium (Ir), and mixtures thereof.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: March 1, 2005
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson
  • Patent number: 6855376
    Abstract: Carbon nanotubes are directly grown on a substrate surface having three metal layers thereon by a thermal chemical vapor deposition at low-temperature, which can be used as an electron emission source for field emission displays. The three layers include a layer of an active metal catalyst sandwiched between a thick metal support layer formed on the substrate and a bonding metal layer. The active metal catalyst is iron, cobalt, nickel or an alloy thereof; the metal support and the bonding metal independently are Au, Ag, Cu, Pd, Pt or an alloy thereof; and they can be formed by sputtering, chemical vapor deposition, physical vapor deposition, screen printing or electroplating.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: February 15, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Chien-Liang Hwang, Jack Ting, Jih-Shun Chiang, Chuan Chuang
  • Patent number: 6846742
    Abstract: Embodiments of the present invention include a method of depositing an improved seasoning film. In one embodiment the method includes, prior to performing a substrate processing operation, forming a layer of silicon over an interior surface of the substrate processing chamber as opposed to a layer of silicon oxide. In certain embodiments, the layer of silicon comprises at least 70% atomic silicon, is deposited from a high density silane (SinH2n+2) process gas and/or is deposited from a plasma having a density of at least 1×1011 ions/cm3.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: January 25, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Kent Rossman
  • Patent number: 6841079
    Abstract: Silicon substrates having Si—H bonds are chemically modified using a fluorinated olefin having the formula: wherein m is an integer greater than or equal to 1; n is an integer greater than or equal to 0; Z is a divalent linking group; and Rf is a highly fluorinated organic group.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: January 11, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Timothy D. Dunbar, Lawrence A. Zazzera, Mark J. Pellerite, Larry D. Boardman, George G. Moore, Miguel A. Guerra, Cheryl L. Elsbernd
  • Publication number: 20040257719
    Abstract: In a magnetoresistive effect element using a ferromagnetic tunnel junction having a tunnel barrier layer sandwiched between at least a pair of ferromagnetic layers, a magnetization free layer comprising one of the ferromagnetic layers is composed of a single layer of a material having an amorphous or microcrystal structure or a material layer the main portion of which has an amorphous or microcrystal structure. The magnetoresistive effect element can produce excellent magnetic-resistance characteristics, and a magnetic memory element and a magnetic memory device using the magnetoresistive effect element as a memory element thereof can improve both of write and read characteristics at the same time.
    Type: Application
    Filed: April 9, 2004
    Publication date: December 23, 2004
    Inventors: Kazuhiro Ohba, Kazuhiko Hayashi, Hiroshi Kano, Kazuhiro Bessho, Tetsuya Mizuguchi, Yutaka Higo, Masanori Hosomi, Tetsuya Yamamoto, Hiroaki Narisawa, Takeyuki Sone, Keitaro Endo, Shinya Kubo
  • Publication number: 20040253167
    Abstract: A method of forming carbon nanotubes by plasma enhanced chemical vapour deposition using a carbon containing gas plasma, wherein the carbon nanotubes are not formed on a substrate at a temperature 300° C. or above.
    Type: Application
    Filed: August 4, 2004
    Publication date: December 16, 2004
    Inventors: Sembukutiarachilage Ravi Silva, Sajad Haq, Bojan O. Boskovic
  • Patent number: 6830781
    Abstract: In a known method for producing an SiO2 blank, SiO2 particles are formed in a burner flame assigned to a deposition burner and are deposited under the effect of an electrical field on a deposition surface of a carrier rotating about its longitudinal axis, said at least one deposition burner being reciprocated in a predetermined sequence of movement along the developing blank between turn-around points. Starting from said method, in order to obtain blanks of a predetermined, in particular axially homogeneous, density and mass distribution, it is suggested according to the invention that the geometrical shape of the burner flame should be varied by the electrical field in dependence upon the position of the deposition burner during the sequence of movement.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: December 14, 2004
    Assignee: Heraeus Quarzglas GmbH & Co. KG
    Inventor: Heinz Fabian
  • Publication number: 20040245091
    Abstract: A gapfill process is provided using cycling of HDP-CVD deposition, etching, and deposition step. The fluent gas during the first deposition step includes an inert gas such as He, but includes H2 during the remainder deposition step. The higher average molecular weight of the fluent gas during the first deposition step provides some cusping over structures that define the gap to protect them during the etching step. The lower average molecular weight of the fluent gas during the remainder deposition step has reduced sputtering characteristics and is effective at filling the remainder of the gap.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Applicant: Applied Materials, Inc.
    Inventors: M Ziaul Karim, Bikram Kapoor, Anchuan Wang, DongQing Li, Katsunary Ozeki, Manoj Vellaikal, Zhuang Li
  • Publication number: 20040245089
    Abstract: The present invention presents a method of roughening one or more exposed surfaces on a processing element in order to improve the adhesion of materials on these surfaces during processing. The roughening procedure comprises the application of a belt sanding technique to these one or more exposed surfaces to produce an average surface roughness in excess of Ra=250 mil.
    Type: Application
    Filed: June 4, 2003
    Publication date: December 9, 2004
    Inventor: John Lawson
  • Publication number: 20040241342
    Abstract: Methods and systems are provided for depositing silicon oxide in a gap on a substrate. The silicon oxide is formed by flowing a process gas into a process chamber and forming a plasma having an overall ion density of at least 1011 ions/cm3. The process gas includes H2, a silicon source, and an oxidizing gas reactant, and deposition into the gap is achieved using a process that has simultaneous deposition and sputtering components. The probability of forming a void is reduced by ensuring that the plasma has a greater density of ions having a single oxygen atom than a density of ions having more than one oxygen atom.
    Type: Application
    Filed: May 27, 2003
    Publication date: December 2, 2004
    Applicant: Applied Materials, Inc.
    Inventors: M. Ziaul Karim, Farhad K. Moghadam, Siamak Salimian
  • Patent number: 6814837
    Abstract: According to one aspect of the disclosure, the present invention provides methods and arrangements for controlling supply process gas to a process chamber for use in the manufacturing industry. Methods include controlling the operation of a valve coupled to the supply process gas line in a way such that pressure bursts in the process chamber due to the operation of the valve are reduced, or even eliminated.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: November 9, 2004
    Assignee: Advance Micro Devices, Inc.
    Inventors: Kin-Sang Lam, Dennis C. Swartz, Roger Sorum
  • Patent number: 6809212
    Abstract: This invention relates to liquid cyclopentadienyltrimethylplatinum compounds selected from (isopropylcyclopentadienyl)trimethylplatinum and (tert-butylcyclopentadienyl)trimethylplatinum. This invention also relates to a process for producing a film, coating or powder by decomposing a cyclopentadienyltrimethylplatinum compound precursor selected from (isopropylcyclopentadienyl)trimethylplatinum and (tert-butylcyclopentadienyl)-trimethylplatinum, thereby producing the film, coating or powder. This invention further relates to a one pot method for producing an organometallic compound comprising reacting a metal source compound, an alkylating agent and a cyclopentadienyl compound under reaction conditions sufficient to produce said organometallic compound.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: October 26, 2004
    Assignee: Praxair Technology, Inc.
    Inventors: Scott Houston Meiere, Cynthia A. Hoover
  • Patent number: 6808760
    Abstract: A method for preparing an &agr;-Al2O3 nanotemplate of fully crystalline &agr;-Al2O3 directly on the surface of a metal alloy is provided. Also provided is a related apparatus.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: October 26, 2004
    Assignee: Trustees of Stevens Institute of Technology
    Inventors: Woo Y. Lee, Yi-Feng Su, Limin He, Justin Daniel Meyer
  • Patent number: 6808816
    Abstract: A coating system and method for reducing the tendency for hydrocarbon fluids, such as fuels and oils, to form carbonaceous deposits that adhere to the walls of a containment article. Of particular concern are carbonaceous deposits that form at temperatures below about 650° F. (about 345° C.). The coating system combines an outermost layer of platinum with a ceramic barrier layer. The coating system has been shown to significantly reduce the formation of carbonaceous deposits at temperatures between about 220° F. and 650° F. (about 105° C. to about 345° C.), as well as reduce the adhesion of such deposits. The platinum outermost layer also serves as a radiation shield to reduce heat transfer from the containment article to the hydrocarbon fluid. The outermost layer is preferably deposited as an extremely thin film by chemical vapor deposition. The barrier layer is deposited to a thickness sufficient to prevent interdiffusion of the platinum outermost layer with the containment wall.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: October 26, 2004
    Assignee: General Electric Company
    Inventors: Alfred Albert Mancini, John Frederick Ackerman, Kevin Richard Leamy, William Randolph Stowell
  • Patent number: 6808605
    Abstract: A fabrication method of metallic nanowires includes the steps of: forming a layer of autocatalytic metal with a thickness of 30 nm-1000 nm on the surface of a substrate; and forming nanowires on the front surface of the layer of autocatalytic metal, wherein the substrate is put into an evaporator and the layer of autocatalytic metal is grown by autocatalytic reaction for 10˜5000 seconds. A large amount of nanowires can be grown on a substrate without a lithography process.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: October 26, 2004
    Assignee: Korea Institute of Science and Technology
    Inventors: Yun-Hi Lee, Byeong-Kwon Ju, Yoon-Taek Jang, Chang-Hoon Choi
  • Patent number: 6805966
    Abstract: A dual-sided stamper/imprinter for simultaneously forming magnetic transition patterns in spaced-apart first and second layers of magnetic material by contact printing comprises a mechanically hard, substantially rigid magnetic material having high saturation magnetization and high permeability and including first and second oppositely facing imprinting surfaces, wherein each of the imprinting surfaced has a topographical pattern formed therein comprising a patterned plurality of spaced-apart recesses with a plurality of non-recessed areas therebetween, each topographical pattern corresponding to a magnetic transition pattern to be formed in a respective layer of magnetic material. Also disclosed is a method for manufacturing dual-sided stampers/imprinters.
    Type: Grant
    Filed: February 11, 2003
    Date of Patent: October 19, 2004
    Assignee: Seagate Technology LLC
    Inventors: Christopher Formato, Jing Gui
  • Patent number: 6797332
    Abstract: A method for forming a carbon deposit inhibiting thermal barrier coating for an internal element or component of a gas turbine engine. Such coating includes a layer of thermal barrier material coated onto the surface of an engine component that will be exposed to the flow of burning engine gases. Such coating further includes a layer of carbon deposit inhibiting material coated on top of the layer of thermal barrier material.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: September 28, 2004
    Assignee: Honeywell International, Inc.
    Inventors: Thomas E. Strangman, Dave Narasimhan, Jeffrey P. Armstrong, Keith R. Karasek
  • Patent number: 6797340
    Abstract: A method for forming a tungsten layer on a substrate surface is provided. In one aspect, the method includes positioning the substrate surface in a processing chamber and exposing the substrate surface to a boride. A nucleation layer is then deposited on the substrate surface in the same processing chamber by alternately pulsing a tungsten-containing compound and a reducing gas selected from a group consisting of silane (SiH4), disilane (Si2H6), dichlorosilane (SiCl2H2), derivatives thereof, and combinations thereof. A tungsten bulk fill may then be deposited on the nucleation layer using cyclical deposition, chemical vapor deposition, or physical vapor deposition techniques.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: September 28, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Hongbin Fang, Hyung-Suk A. Yoon, Ken Kaung Lai, Chi Chung Young, James Horng, Ming XI, Michael X. Yang, Hua Chung
  • Patent number: 6797341
    Abstract: Thin films of conducting and superconducting materials are formed by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, in high purity with superconducting properties on substrates typically used in the semiconductor industry by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the substrate.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: September 28, 2004
    Assignee: Penn State Research Foundation
    Inventors: Xianghui Zeng, Alexej Pogrebnyakov, Xiaoxing Xi, Joan M. Redwing, Zi-Kui Liu, Darrell G. Schlom
  • Patent number: 6793779
    Abstract: A method of filling trenches or vias on a semiconductor workpiece surface with copper using sputtering techniques. A copper wetting layer and a copper fill layer may both be applied by sputtering techniques. The thin wetting layer of copper is applied at a substrate surface temperature ranging between about 20° C. to about 250° C., and subsequently the temperature of the substrate is increased, with the application of the sputtered copper fill layer beginning at above at least about 200° C. and continuing while the substrate temperature is increased to a temperature as high as about 600° C. Preferably the substrate temperature during application of the sputtered fill layer ranges between about 300° C. and about 500° C.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: September 21, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Peijun Ding, Tony Chiang, Barry L. Chin
  • Patent number: 6793849
    Abstract: An electrically conducting n-type ultrananocrystalline diamond (UNCD) having no less than 1019 atoms/cm3 of nitrogen is disclosed. A method of making the n-doped UNCD. A method for predictably controlling the conductivity is also disclosed.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: September 21, 2004
    Assignee: The University of Chicago
    Inventors: Dieter M. Gruen, Alan R. Krauss, Orlando H. Auciello, John A. Carlisle
  • Patent number: 6780476
    Abstract: An object of the present invention is to provide a liquid material for chemical vapor deposition (CVD), a method of forming a film by CVD and a CVD apparatus, capable of achieving film formation of a silicate compound of good quality. A liquid material for CVD includes an organometallic compound, a siloxane compound and an organic solvent for dissolving the organometallic compound and the siloxane compound. If the organometallic compound includes an alcoxyl group (e.g., tertialy-butoxyl group) having a larger number of carbon atoms than a propoxyl group or a &bgr;-diketone group (e.g., 2,2,6,6-tetramethyl-3,5-heptanedionate group), the stability in film formation is improved. As the organic solvent, diethyl ether, tetrahydrofuran, nor-octane, iso-octane and the like may be employed. As the siloxane compound, tri-metoxy-silane having a high degree of solubility in a nonsolar solvent and hexa-methyl-di-siloxane and octa-methyl-cycro-tetra-siloxane both having solubility in a polar solvent may be employed.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: August 24, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Tsuyoshi Horikawa
  • Patent number: 6780464
    Abstract: A method wherein a thermal gradient over a substrate enhances Chemical Vapor Deposition (CVD) at low pressures. An upper heat source is positioned above the substrate and a lower heat source is positioned below the substrate. The upper and lower heat sources are operated to raise the substrate temperature to 400-700° and cause a heat gradient of 100-200° C. between the upper and lower heat sources. This heat gradient causes an increase in the deposition rate for a given reactant gas flow rate and chamber pressure. The preferred parameters for implementation of the present invention for poly crystalline silicon deposition include the temperature of the upper heat source 100-200° C. above the lower heat source, a substrate temperature in the range of 400-700° C., a reactant gas pressure between 250 and 1000 mTorr, and a gas flow rate of 200-800 sccm. The substrate is rotated, with 5 RPM being a typical rate.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: August 24, 2004
    Assignee: Torrex Equipment
    Inventors: Robert C. Cook, Daniel L. Brors
  • Patent number: 6762149
    Abstract: The present invention includes a catalyst having a layered structure with, (1) a porous support, (2) a buffer layer, (3) an interfacial layer, and optionally (4) a catalyst layer. The invention also provides a process in which a reactant is converted to a product by passing through a reaction chamber containing the catalyst.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: July 13, 2004
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Yufei Gao
  • Patent number: 6756085
    Abstract: Low dielectric constant materials with improved elastic modulus and material hardness. The process of making such materials involves providing a dielectric material and ultraviolet (UV) curing the material to produce a UV cured dielectric material. UV curing yields a material with improved modulus and material hardness. The improvement is each typically greater than or about 50%. The UV cured dielectric material can optionally be post-UV treated. The post-UV treatment reduces the dielectric constant of the material while maintaining an improved elastic modulus and material hardness as compared to the UV cured dielectric material. UV cured dielectrics can additionally exhibit a lower total thermal budget for curing than for furnace curing processes.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: June 29, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: Carlo Waldfried, Qingyuan Han, Orlando Escorcia, Ivan L. Berry, III
  • Publication number: 20040118347
    Abstract: Plasma deposition apparatus (1) and method that allows metal or nonmetal vapor (6) to be generated by electron-beam evaporation, guides that vapor using a noble gas stream (containing reactive gases in cases of reactive evaporation), ionizes the dense directed gas and vapor stream at working pressures above about 0.0001 mbar using a hollow cathode plasma arc discharge (11), and conveys the ionized vapor and/or gas stream towards the substrate (4) for impact on the surface at energies varying from thermal levels (as low as about 0.05 eV) up to about 300 eV.
    Type: Application
    Filed: November 21, 2002
    Publication date: June 24, 2004
    Inventors: James F. Groves, Derek D. Hass, Haydn N.G. Wadley, Goesta Mattausch, Henry Morgner, Siegfried Schiller
  • Patent number: 6749905
    Abstract: A method for creating an optical structure includes forming a layer of chalcogenide material upon a substrate, and applying a patterned stamper to the layer of chalcogenide material, in the presence of heat, the patterned stamper causing the layer of chalcogenide material to reflow such that stamped features of the patterned stamper are transferred onto the layer of chalcogenide material. The stamped features onto the layer of chalcogenide material are used to form one of an optical waveguide, an optical mirror, digital video disk data, compact disk data and combinations comprising at least one of the foregoing.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: June 15, 2004
    Assignee: General Electric Company
    Inventors: Eric Breitung, John Reitz, George Dalakos
  • Patent number: 6746776
    Abstract: There is provided a laminated structure having a silicon carbide coating layer formed by sputtering on an alloy substrate, and the silicon carbide has a light transmittance of 70% or greater. It is preferable that the alloy substrate is a magnetic alloy or a phase-changing alloy, the impurity ratio on the surface of the silicon carbide coating layer is 1.0×1012 atoms/cm2 or less and the thickness of the silicon carbide coating layer is 10 to 100 nm. Since the laminated structure has a silicon carbide coating layer which is excellent in oxidation resistance, chlorine resistance, humidity resistance, and which has high refractive index, high light transmittance and the like, it is suitable for an optical disk recording medium such as a CD-RW, a DVD-RAM or the like.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: June 8, 2004
    Assignee: Bridgestone Corporation
    Inventors: Sho Kumagai, Masato Yoshikawa
  • Patent number: 6743934
    Abstract: This invention provides raw material compounds for use in CVD which contain organic ruthenium compounds as a main ingredient, the organic ruthenium compounds having two &bgr;-diketones plus one diene, one diamine or two organic ligands which are coordinated with ruthenium. In this invention, the vapor pressures of the organic ruthenium compounds are made preferable by specifying the number of the carbon atoms contained in the above &bgr;-diketones and the types of the above diene etc.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: June 1, 2004
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Masayuki Saito, Takeyuki Sagae
  • Patent number: 6743485
    Abstract: A method for treating a silicon substrate is described. The silicon substrate is placed into a sputtering equipment. A sputtering step is performed to simultaneously dry clean and amorphize the silicon substrate surface by using the sputtering equipment. A titanium film is deposited on the silicon substrate by the sputtering equipment.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: June 1, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Su-Chen Fan
  • Patent number: 6743340
    Abstract: A magnetic dipole ring assembly positioned inside a vacuum chamber and around a wafer being sputter deposited with a ferromagnetic material such as NiFe or other magnetic materials so that the material is deposited with a predetermined magnetization direction in the plane of the wafer. The magnetic dipole ring may include 8 or more arc-shaped magnet segments arranged in a circle with the respective magnetization directions precessing by 720° around the ring. The dipole ring is preferably encapsulated in a vacuum-tight stainless steel carrier and placed inside the vacuum chamber. The carrier may be detachably mounted on a cover ring, on the shield, or on the interior of the chamber sidewall. In another embodiment, the magnet is a magnetic disk placed under the wafer. Such auxiliary magnets allow the magnetron sputter deposition of aligned magnetic layers.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: June 1, 2004
    Assignee: Applied Materials, Inc.
    Inventor: Jianming Fu
  • Patent number: 6742362
    Abstract: The invention relates to a coating for tools that are used to process heat treated glass, e.g., molten glass or the like, to reduce the adhesion of said glass. The coating consists at least partially of a system of carbon-based layers and/or hard materials containing carbon.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: June 1, 2004
    Assignee: Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Rainer Gadow, Jochen Brand, Andreas Killinger
  • Patent number: 6740367
    Abstract: A plasma CVD film-forming device forms a film on a semiconductor substrate in such as way that the film quality and film thickness of a thin film becomes uniform. The plasma CVD film-forming device to form a thin film on a semiconductor substrate includes a vacuum chamber, a showerhead positioned within the vacuum chamber, and a susceptor positioned substantially in parallel to and facing the showerhead within the vacuum chamber and on which susceptor the object to be processed is loaded and the central part of the showerhead and/or the susceptor constitutes a concave surface electrode.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: May 25, 2004
    Assignee: ASM Japan K.K.
    Inventors: Nobuo Matsuki, Yoshinori Morisada
  • Patent number: 6737123
    Abstract: A silicon-based film is formed superimposing a direct-current potential on the high-frequency power to set the potential of the high-frequency power feed section to a potential which is lower by V1 than the ground potential; the V1 satisfying |V2|≦|V1|≦50×|V2|, where V2 is the potential difference from the ground potential, produced in the electrode in the state the plasma has taken place under the same conditions except that the direct-current potential is not superposed on the high-frequency power and the electrode is brought into a non-grounded state. This can provide a silicon-based film having superior characteristics at a high film formation rate, and a semiconductor device making use of this silicon-based film, having superior adherence, environmental resistance, and can enjoy a short tact time at the time of manufacture.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: May 18, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takaharu Kondo, Masafumi Sano, Akira Sakai, Tadashi Sawayama, Ryo Hayashi, Shuichiro Sugiyama, Hiroyuki Ozaki, Yoshinori Sugiura
  • Patent number: 6726813
    Abstract: The invention relates to a security device having at least one plastic layer and one specularly reflecting metal layer. An inorganic auxiliary layer is disposed between the plastic layer and the metal layer.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: April 27, 2004
    Assignee: Giesecke & Devrient GmbH
    Inventors: Wittich Kaule, Gregor Grauvogl, Jürgen Schützmann, Friedrich Kretschmar
  • Patent number: 6719884
    Abstract: A method of manufacturing an optical device, wherein the device body portion from which the device is to be made includes at least one Quantum Well, the method including the step of causing an impurity material including copper to intermix with the Quantum Well.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: April 13, 2004
    Assignee: Intense Photonics Limited
    Inventors: John Haig Marsh, Craig James Hamilton, Olek Peter Kowalski, Stuart Duncan McDougall, Xuefeng Liu, Bo-Cang Qui
  • Patent number: 6720260
    Abstract: Ion-induced, UV-induced, and electron-induced sequential chemical vapor deposition (CVD) processes are disclosed where an ion flux, a flux of ultra-violet radiation, or an electron flux, respectively, is used to induce the chemical reaction in the process. The process for depositing a thin film on a substrate includes introducing a flow of a first reactant gas in vapor phase into a process chamber where the gas forms an adsorbed saturated layer on the substrate and exposing the substrate to a flux of ions, a flux of ultra-violet radiation, or a flux of electrons for inducing a chemical reaction of the adsorbed layer of the first reactant gas to form the thin film. A second reactant gas can be used to form a compound thin film. The ion-induced, UV-induced, and electron-induced sequential CVD process of the present invention can be repeated to form a thin film of the desired thickness.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: April 13, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: James A. Fair, Nerissa Taylor