Chemical Vapor Deposition (e.g., Electron Beam Or Heating Using Ir, Inductance, Resistance, Etc.) Patents (Class 427/585)
  • Publication number: 20080102223
    Abstract: A method for forming a coating over a surface is disclosed. The method comprises depositing over a surface, a hybrid layer comprising a mixture of a polymeric material and a non-polymeric material. The hybrid layer may have a single phase or comprise multiple phases. The hybrid layer is formed by chemical vapor deposition using a single source of precursor material. The chemical vapor deposition process may be plasma-enhanced and may be performed using a reactant gas. The precursor material may be an organo-silicon compound, such as a siloxane. The hybrid layer may comprise various types of polymeric materials, such as silicone polymers, and various types of non-polymeric materials, such as silicon oxides. By varying the reaction conditions, the wt % ratio of polymeric material to non-polymeric material may be adjusted. The hybrid layer may have various characteristics suitable for use with organic light-emitting devices, such as optical transparency, impermeability, and/or flexibility.
    Type: Application
    Filed: April 9, 2007
    Publication date: May 1, 2008
    Inventors: Sigurd Wagner, Prashant Mandlik
  • Publication number: 20080098805
    Abstract: An atomic force microscopy (AFM) nanoprobe comprising a nanocone base and a nanoprobe tip wherein the length to base diameter aspect ratio is at least 3 or more. The AFM nanoprobe tip structure comprises an orientation-controlled (vertical or inclined), high-aspect-ratio nanocone structure without catalyst particles, with a tip radius of curvature of at most 20 nm.
    Type: Application
    Filed: September 29, 2005
    Publication date: May 1, 2008
    Inventors: Sungho Jin, Ratneshwar Lal
  • Patent number: 7361406
    Abstract: A combination of a thin-film ?c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of ?c-Si deposited the bottom metal layer; an i-layer of ?c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of ?c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: April 22, 2008
    Inventor: Qi Wang
  • Patent number: 7348042
    Abstract: The present invention relates to an enhanced sequential atomic layer deposition (ALD) technique suitable for deposition of barrier layers, adhesion layers, seed layers, low dielectric constant (low-k) films, high dielectric constant (high-k) films, and other conductive, semi-conductive, and non-conductive films. This is accomplished by 1) providing a non-thermal or non-pyrolytic means of triggering the deposition reaction; 2) providing a means of depositing a purer film of higher density at lower temperatures; and, 3) providing a faster and more efficient means of modulating the deposition sequence and hence the overall process rate resulting in an improved deposition method.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: March 25, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Tony P. Chiang, Karl F. Leeser
  • Publication number: 20080057224
    Abstract: A method of manufacturing a thin film includes providing a metal organic precursor onto a substrate where the metal organic precursor is heated to a temperature of about 60° C. to about 95° C. and has a saturated vapor pressure of about 1 Torr to about 5 Torr. An oxidizing agent including oxygen for oxidizing the metal organic precursor is provided onto the substrate. The metal organic precursor and the oxidizing agent are chemically reacted to form the thin film including metal oxide. The thin film is easily available in a gate insulation layer of a gate structure, a dielectric layer of a capacitor, and similar circuit components.
    Type: Application
    Filed: April 25, 2007
    Publication date: March 6, 2008
    Inventors: Youn-Joung Cho, Jung-Ho Lee, Jun-Hyun Cho, Seung-Min Ryu, Kyoo-Chul Cho, Jung-Sik Choi
  • Publication number: 20080057225
    Abstract: A low-resistivity, doped zinc oxide coated glass article is formed by providing a hot glass substrate having a surface on which a coating is to be deposited, the surface being at a temperature of at least 400° C. A zinc containing compound, an oxygen-containing compound and an aluminum- or gallium-containing compound are directed to the surface on which the coating is to be deposited. The zinc containing compound, oxygen-containing compound, and aluminum- or gallium-containing compound are mixed together for a sufficient time that an aluminum or gallium doped zinc oxide coating is formed on the surface at a deposition rate of greater than 5 nm/second.
    Type: Application
    Filed: May 3, 2007
    Publication date: March 6, 2008
    Inventors: Jeffery L. Stricker, Ryan C. Smith, Michael B. Abrams, Roman Y. Korotkov, Gary S. Silverman, Kevin David Sanderson, Liang Ye, Guillermo Benito Gutierrez
  • Publication number: 20080050538
    Abstract: A thin film formation method is used for forming a thin film by providing a conductance valve on an exhaust path connecting a depressurizable processing chamber and a vacuum pump, arranging a processing object substrate inside the processing chamber, performing once or plural times a cycle including a first step of supplying a first reactive gas and a second step of supplying a second reactive gas into the processing chamber during a film formation processing period to cause a chemical reaction between the first reactive gas and the second reactive gas, and using the chemical reaction to form the thin film on the substrate.
    Type: Application
    Filed: July 19, 2005
    Publication date: February 28, 2008
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Toshiharu Hirata
  • Publication number: 20080038486
    Abstract: A process for radical assisted film deposition simultaneously on multiple wafer substrates is provided. The multiple wafer substrates are loaded into a reactor that is heated to a desired film deposition temperature. A stable species source of oxide or nitride counter ion is introduced into the reactor. An in situ radical generating reactant is also introduced into the reactor along with a cationic ion deposition source. The cationic ion deposition source is introduced for a time sufficient to deposit a cationic ion-oxide or a cationic ion-nitride film simultaneously on multiple wafer substrates. Deposition temperature is below a conventional chemical vapor deposition temperature absent the in situ radical generating reactant.
    Type: Application
    Filed: August 2, 2007
    Publication date: February 14, 2008
    Inventors: Helmuth Treichel, Taiqing Qiu, Robert Jeffrey Bailey
  • Publication number: 20080038509
    Abstract: Disclosed are substrates with a first hydrophobic layer having a first contact angle and a second hydrophobic layer having a second contact angle, the first hydrophobic layer between the second hydrophobic layer and the substrate, the first contact angle being greater than the second contact angle.
    Type: Application
    Filed: August 6, 2007
    Publication date: February 14, 2008
    Applicant: INNOVATION CHEMICAL TECHNOLOGIES, LTD.
    Inventor: Pramod K. Arora
  • Publication number: 20080038485
    Abstract: A method for forming a silicon carbide film containing Si, C, O, H, and optionally N on a substrate placed in a reaction space, includes the steps of: introducing into the reaction space a precursor containing Si, C, O, and H and having at least one Si—O bond in its molecule; introducing into the reaction space an inert gas; applying RF power in the reaction space, wherein a ratio of a flow rate (sccm) of the inert gas to the RF power (W/cm2) is controlled at 30-850; and thereby depositing on the substrate a silicon carbide film containing Si, C, O, H, and optionally N.
    Type: Application
    Filed: August 8, 2006
    Publication date: February 14, 2008
    Applicant: ASM JAPAN K.K.
    Inventors: Atsuki FUKAZAWA, Manabu KATO, Nobuo MATSUKI
  • Publication number: 20080038511
    Abstract: The present invention provides a novel carbon-based material in which carbons different in property are combined in such a manner as to be applicable to a device. The carbon-based thin film provides a carbon-based thin film 10 including first phases 1 that contain amorphous carbon and extend in a film thickness direction, and a second phase 2 that contains a graphite structure and intervenes between the first phases 1. In the thin film, at least one selected from the group consisting of the following a) to e) is satisfied: a) the second phase contains more graphite structures per unit volume than the first phases; b) a density of the second phase is larger than that of the first phases; c) an electric resistivity of the second phase is lower than that of the first phases; d) an elastic modulus of the second phase is higher than that of the first phases; and e) in the second phase, a basal plane of the graphite structure is oriented along the film thickness direction.
    Type: Application
    Filed: February 25, 2005
    Publication date: February 14, 2008
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventor: Iwamura Eiji
  • Patent number: 7326445
    Abstract: A method is adopted for deposition technology using a focused ion beam device, characterized by enabling structures to be formed by using phenanthrene as a source gas and using ions of gallium or gold, silicon or beryllium etc. of energies of 5 to 100 keV from a liquid-metal ion source as ions so as to give a gas blowing density of five to ten times greater than the case of deposition in the related art, with directionality of the gas blowing being both isotropic and symmetrical.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: February 5, 2008
    Assignee: SII NanoTechnology Inc.
    Inventor: Takashi Kaito
  • Patent number: 7326446
    Abstract: A process for producing a coated substrate or a product having a coated substrate is provided. The process includes coating at least one metallic surface with a glass, the substrate being coated with an evaporation-coating glass at least on the metallic surface.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: February 5, 2008
    Assignee: Schott AG
    Inventors: Dietrich Mund, Jürgen Leib
  • Publication number: 20080003377
    Abstract: A vacuum chamber has a housing within which a vacuum is sustained. Various processes may be performed and electronic circuits and elements may be supported in the vacuum chamber. The housing has walls with an interior surface that comprise crosslinked polystyrene. The vacuum chamber may have interior walls that have been machined, polished etched, chemically treated, thermally treated, electromagnetic energy treated. Circuitry, electrodes and electromagnetic processes can be performed within the vacuum chamber.
    Type: Application
    Filed: June 19, 2007
    Publication date: January 3, 2008
    Inventors: Robert A. Schill, Stanley R. Goldfarb, Richard A. Kant
  • Patent number: 7311938
    Abstract: A method is provided for coating optical lenses and other optical articles with anti-reflection (AR) coatings. The lenses have low reflectivity, provide a substantially white light reflection and have a low stress AR coating and are ideally suited for optical lenses made using a molding procedure which provides a low stress lens substrate. In one aspect the method uses special coating compositions with one being a high index of refraction composition and the other being a low index of refraction composition. In another aspect a method is also disclosed using an optical monitor in conjunction with a conventional vapor deposition apparatus whereby an optical reference lens is used and a particular light frequency of reflected light is measured and this measurement is then used to determine when the desired optical coating is achieved. In a still further aspect the method also preferably calculates the optical thickness of each layer using a specific ratio of blue to green to red colors in the reflected light.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: December 25, 2007
    Assignee: Optima, Inc.
    Inventors: Glen A Koenig, Nicholas G Niejelow
  • Patent number: 7291357
    Abstract: A thin film deposition method for producing an optical film with an optical characteristic on a deposition substrate in a vacuum chamber is provided. The method may include preparing in the vacuum chamber a deposition source which is a source of the film producing material; holding the deposition substrate with a substrate holding member; arranging the deposition substrate and the deposition source such that, given that a vertical distance from the center of the deposition substrate to the deposition source is defined as ZK and a horizontal distance between the deposition substrate and the deposition source as Xk, Xk/Zk is set to satisfy a following equation 0.48?Xk/Zk?0.78; rotating the deposition substrate on a rotational axis which is orthogonal to the deposition substrate; and evaporating the film producing material of the deposition source to perform deposition on the deposition substrate.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: November 6, 2007
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Hiraizumi, Koji Masuda, Hiroyuki Abe, Tetsuro Wada, Koichi Shintomi, Kazuyou Mizuno
  • Patent number: 7279078
    Abstract: A process for coating a non-uniform, thin-film, dichroic pattern to a wheel rim or motorcycle part. The thin-film coating adds a colored or iridescent pattern to the wheel rim or motorcycle part, while maintaining other characteristics, such as brilliance, shine, durability and general appearance. The coating is intentionally non-uniform. It may be varied, and may have different patterns and color among different articles, and even among different areas on the same article. The thin-film coating may be added by various techniques known in the art, but is preferably applied by sputtering a silicon or titanium target to obtain the thin-film on a chromed wheel rim.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: October 9, 2007
    Inventors: Micha Kapourchali, Nima Khalilian
  • Patent number: 7275305
    Abstract: A method of manufacturing a thin-film magnetic head, the thin-film magnetic head including a magnetoresistive element, first and second shield layers for shielding the magnetoresistive element, a first shield gap film provided between the magnetoresistive element and the first shield layer, and a second shield gap film provided between the magnetoresistive element and the second shield layer. The method includes the steps of forming the first shield layer, forming the first shield gap film on the first shield layer, forming the magnetoresistive element on the first shield gap film, forming the second shield gap film on the magnetoresistive element, and forming the second shield layer on the second shield gap film. At least one of the first and second shield gap films is formed by stacking a plurality of insulating films formed by chemical vapor deposition.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: October 2, 2007
    Assignee: TDK Corporation
    Inventors: Yoshitaka Sasaki, Tohru Inoue
  • Patent number: 7276266
    Abstract: Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target particles, such as atomic H or F, in a first chamber. The target particles are directed toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: October 2, 2007
    Assignee: United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Bishun N. Khare, Meyya Meyyappan
  • Publication number: 20070190235
    Abstract: An object of the present invention is to provide a film forming method for forming a film with reduced defect and to provide a film forming method for forming a film with a uniform quality. In addition, another object is to provide a manufacturing method of a light emitting element which can be driven with low voltage. Further, another object is to provide a manufacturing method of a light emitting element with high light emission efficiency. A film with reduced defect and a uniform quality can be formed by fixing a substrate to a substrate holding unit so that at least a part of a surface of the substrate is exposed, evaporating a vapor deposition material from an evaporation source filled with the vapor deposition material, irradiating the vapor deposition material which is evaporated with a laser beam, and depositing the vapor deposition material on the surface of the substrate.
    Type: Application
    Filed: February 5, 2007
    Publication date: August 16, 2007
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Junichiro SAKATA, Yoshiaki YAMAMOTO, Miki KATAYAMA, Kohei YOKOYAMA, Rie MATSUBARA, Takahiro KAWAKAMI
  • Patent number: 7244475
    Abstract: A frequency control circuit (45) controls an oscillation frequency of a second high frequency power source 51 based on a phase difference between a voltage component and a current component measured by a phase difference sensor (41) and an input impedance to an impedance matching device (34) measured by an impedance sensor (42). An amplitude control circuit (44) controls a level of a high frequency electricity output by the second high frequency power source (51) based on an electricity (effective electricity) which is measured by a power sensor (40) and is to be supplied to the impedance matching device (34).
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: July 17, 2007
    Assignee: Tokyo Electron Limited
    Inventor: Tsutomu Higashiura
  • Patent number: 7223448
    Abstract: A method for providing uniformity in plasma-assisted material processes. A shielding plate is implemented within a plasma chamber above a substrate. The dimensions, geometry, and location of the shielding plate are optimized to generate a desired ion flux in a plasma-assisted material process conducted in a plasma chamber.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: May 29, 2007
    Assignee: Intel Corporation
    Inventors: Han-Ming Wu, He Long
  • Patent number: 7195797
    Abstract: A vacuum deposition system has been designed to produce thin film based demultiplexers with high throughput and production yields of greater than 25% for use in Dense Wavelength Division Multiplexer (DWDM) systems. The system employs a dense array of high yield fixtures and an ion assisted movable dual electron beam evaporation system. The fixture array increases acceptable yields of narrow band pass filters to 25–75% compared to less than 5% in conventional coating systems used for DWDM. The movable e-beam system allows critical symmetry to be maintained while eliminating significant delays resulting from deposition of two materials from a single electron gun. The vacuum deposition system will enable production of more than 15,000 50–200 GHZ filters which meet specifications for DWDM demultiplexers every 48 hours.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: March 27, 2007
    Assignee: Atomic Telecom
    Inventors: Gerald T. Mearini, Laszlo Takacs
  • Patent number: 7195801
    Abstract: A manufacturing system capable of enhancing reliability and luminance of a light emitting element is provided which uses an EL material of very high purity in evaporation. The system is also capable of using an EL material efficiently. Instead of a glass jar, a container (first container 11a) to be set in an evaporation apparatus is employed and a material maker (18) stores an EL material (12), or refines it by sublimation and stores, directly in the container. The container is then transferred to a light emitting device maker (19) for evaporation. With a manufacturing system as such, impurities are prevented from contaminating a highly pure EL material. This system also eliminates the trouble of transferring an EL material from a glass jar to a container. The container may be recovered by the material maker and the EL material remaining in the container may be collected for reuse by the manufacturing system.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: March 27, 2007
    Assignee: Semiconductor Energy laboratory Co., Ltd.
    Inventors: Masakazu Murakami, Hisashi Ohtani, Shunpei Yamazaki, Hideaki Kuwabara
  • Patent number: 7189425
    Abstract: A superconducting magnesium diboride (MgB2) thin film having c-axial orientation and a method and apparatus for fabricating the same are provided. The fabrication method includes forming a boron thin film on a substrate and thermally processing the substrate on which the boron thin film is formed along with a magnesium source and cooling the resulting structure. The superconducting magnesium diboride thin film can be used in a variety of electronic devices employing superconducting thin films, such as precision medical diagnosis equipment using superconducting quantum interface devices (SQUIDs) capable of sensing weak magnetic fields, microwave communications equipment used for satellite communications, and Josephson devices. Computer systems with 100 times greater computing speed can be implemented with the superconducting magnesium diboride thin film.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: March 13, 2007
    Assignee: Pohang University of Science and Technology Foundation
    Inventors: Won nam Kang, Sung-ik Lee, Eun-mi Choi, Hyeong-jin Kim
  • Patent number: 7182976
    Abstract: A process for forming a thin film is described that enables automatic formation of thin films having constant optical properties reliably and in large quantities with excellent reproducibility suitable for mass production. An apparatus for performing the process is also described. Generally, a material for vapor deposition is vaporized by an electron gun and an antireflection film forms by vapor deposition on lenses held by a coat dome. The electric power applied to the electron gun is controlled so that the amount of transmitted or reflected light continuously measured by an optical film thickness meter during thin film formation is compared to a reference amount of measured light stored in a means for storing data until the measured and reference amounts of measured light are close to, or the same as, one another.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: February 27, 2007
    Assignee: Hoya Corporation
    Inventors: Yukihiro Takahashi, Takeshi Mitsuishi, Kenichi Shinde
  • Patent number: 7147932
    Abstract: A coated steel strip product with a dense and hard abrasion resistant coating on one side or both sides of said strip. The thickness of said coating is in total maximally 25 ?m, the hardness of said coating is at least 600 HV and the tensile strength of the steel strip substrate is at least 1200 MPa. The coating is preferably applied by electron beam evaporation and the coating may be, e.g., of Al2O3. The coated metal strip is useful for the manufacturing of doctor and coater blades for paper and printing industry.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 12, 2006
    Assignee: Sandvik Intellectual Property AB
    Inventors: Anna Hultin Stigenberg, Mikael Schuisky
  • Patent number: 7147931
    Abstract: A coated steel strip product with a dense and hard abrasion resistant coating on one side or both sides of said strip substrate is provided. The thickness of said coating is in total maximally 25 ?m, the hardness of said coating is at least 600 HV and the tensile strength of the steel strip substrate is at least 1200 MPa. The coating is preferably applied by electron beam evaporation and the coating may be, e.g., of Al2O3. The coated metal strip is suitable for shaving equipment, medical instruments, utility and industrial knives as well as saw applications.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 12, 2006
    Assignee: Sandvik Intellectual Property AB
    Inventors: Anna Hultin Stigenberg, Mikael Schuisky
  • Patent number: 7112353
    Abstract: A film deposition apparatus for forming a film on a substrate includes a chamber capable of maintaining a reduced-pressure atmosphere. The chamber includes a control electrode, a substrate holder opposite to the control electrode, the substrate holder holding the substrate, and a filament for emitting electrons disposed between the substrate holder and the control electrode. The film deposition apparatus further includes a unit for controlling the potential applied to the control electrode to be lower than the potential applied to the filament and a unit for controlling the potential applied to the substrate to be higher than the potential applied to the filament.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: September 26, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventor: Daisuke Sasaguri
  • Patent number: 7101593
    Abstract: A method for producing a disk-shaped substrate 10 used for producing an optical disk includes: (a) forming a protective layer 12a that is larger in area than the disk-shaped substrate 10 on a surface of a transparent plate 11a; and (b) cutting a portion of the plate 11a with the protective layer 12a formed thereon other than an outer edge portion of the protective layer 12a to form a disk shape. According to this producing method, a thin substrate can be prevented from being damaged by forming a protective layer. Furthermore, according to this producing method, a protective layer with a uniform thickness can be formed.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: September 5, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuhiro Hayashi, Kazuya Hisada, Eiji Ohno
  • Patent number: 7074340
    Abstract: A method of producing a device for simultaneously carrying out an electrochemical and a topographical near field microscopy is disclosed, which is characterized in that a probe suitable for topographic near field microscopy is covered by a conductive material, the conductive material is covered by an insulating layer, and the conductive material and the insulating layer are removed in the region of the immediate tip of the probe.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: July 11, 2006
    Assignee: Innovationsagentur Gesellschaft
    Inventors: Alois Lugstein, Emmerich Bertagnolli, Christine Kranz, Boris Mizaikoff
  • Patent number: 7070833
    Abstract: A method of passivating the surface of a substrate to protect the surface against corrosion, the surface effects on a vacuum environment, or both. The substrate surface is placed in a treatment environment and is first dehydrated and then the environment is evacuated. A silicon hydride gas is introduced into the treatment environment, which may be heated prior to the introduction of the gas. The substrate and silicon hydride gas contained therein are heated, if the treatment environment was not already heated prior to the introduction of the gas and pressurized to decompose the gas. A layer of silicon is deposited on the substrate surface. The duration of the silicon depositing step is controlled to prevent the formation of silicon dust in the treatment environment. The substrate is then cooled and held at a cooled temperature to optimize surface conditions for subsequent depositions, and the treatment environment is purged with an inert gas to remove the silicon hydride gas.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: July 4, 2006
    Assignee: Restek Corporation
    Inventors: David A. Smith, Gary A. Barone, Martin E. Higgins, Bruce R. F. Kendall, David J. Lavrich
  • Patent number: 7068433
    Abstract: Disclosed herein is a focusing screen master having a microlens array formed all over a flat substrate surface, the microlens array being constructed by arranging a plurality of types of microlenses that are different from each other in height, radius of curvature and surface configuration.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: June 27, 2006
    Assignee: Olympus Corporation
    Inventors: Hidetaka Hayashi, Satoshi Fujimori
  • Patent number: 7063981
    Abstract: A method and apparatus for determining changes in a supply system, designed to supply repeated pulses of a vapor phase reactant to a reaction chamber is disclosed. One embodiment involves providing the reactant source, and a gas conduit to connect the reactant source to the reaction chamber, a valve positioned in communication with the reactant source such that switching of the valve induces vapor phase reactant pulses from the reactant source to the reaction chamber and a sensor positioned in communication with the reactant source and configured to provide a signal indicative of a characteristic parameter of the reactant pulse as a function of time. A curve is derived from the signal and the shape of the curve is monitored to determine changes in the curve shape over time during subsequent pulses.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: June 20, 2006
    Assignee: ASM International N.V.
    Inventors: Niklas Bondestram, Menso Hendriks
  • Patent number: 7052552
    Abstract: A method and apparatus are disclosed for depositing a dielectric film in a gap having an aspect ratio at least as large as 6:1. By cycling the gas chemistry of a high-density-plasma chemical-vapor-deposition system between deposition and etching conditions, the gap may be substantially 100% filled. Such filling is achieved by adjusting the flow rates of the precursor gases such that the deposition to sputtering ratio during the deposition phases is within certain predetermined limits.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: May 30, 2006
    Assignee: Applied Materials
    Inventors: Michael Kwan, Eric Liu
  • Patent number: 7048802
    Abstract: The invention relates to a device for depositing especially crystalline layers on especially crystalline substrates by means of reaction gases fed to a heated process chamber. Said process chamber is formed by the cavity of an especially multi-part graphite tube arranged in a reactor housing that especially comprises quartz walls. Said reactor housing, in the area of the process chamber, is enclosed by a high-frequency coil and the space between the reactor housing wall and the graphite tube is filled with a graphite foam sleeve. In order to improve heat insulation, the graphite foam sleeve is fully slit. The slot is wider than the maximum thermal elongation of the graphite foam sleeve in the peripheral direction to be expected when the device is heated up to process temperature.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: May 23, 2006
    Assignee: Aixtron AG
    Inventors: Johannes Kaeppeler, Frank Wischmeyer, Rune Berge
  • Patent number: 7041342
    Abstract: There are now provided thin-film solar cells and method of making. The devices comprise a low-cost, low thermal stability substrate with a semiconductor body deposited thereon by a deposition gas. The deposited body is treated with a conversion gas to provide a microcrystalline silicon body. The deposition gas and the conversion gas are subjected to a pulsed electromagnetic radiation to effectuate deposition and conversion.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 9, 2006
    Assignee: Schott Glas
    Inventors: Manfred Lohmeyer, Stefan Bauer, Burkhard Danielzik, Wolfgang Möhl, Nina Freitag
  • Patent number: 7037834
    Abstract: A deposition member adapted for discharging a deposition material during a deposition process can acquire a coating during the deposition. Such an initial emissivity value is selected for the deposition member, before any of the coating became deposited, that the emissivity of the deposition member remains substantially unchanged during the deposition process. In a representative embodiment the deposition member is coated with an appropriate thin layer for achieving the selected emissivity value.
    Type: Grant
    Filed: May 22, 2004
    Date of Patent: May 2, 2006
    Assignee: International Business Machines Corporation
    Inventors: Fenton Read McFeely, John Jacob Yurkas, Sandra Malhotra, Andrew Simon
  • Patent number: 7033647
    Abstract: Method of synthesizing carbon nano tubes (CNTs) on a catalyst layer formed on a support member, by catalytic deposition of carbon from a gaseous phase, whereby an ion beam is used prior to, during, and/or after formation of the carbon nano tubes for modifying the physical, chemical, and/or conductive properties of the carbon nanotubes.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: April 25, 2006
    Assignees: Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H., IMS-Ionen Mikrofabrikationas Systeme
    Inventors: Xinhe Tang, Klaus Mauthner, Ernst Hammel, Hans Löschner, Elmar Platzgummer, Gerhard Stengl
  • Patent number: 7022545
    Abstract: The present invention has its object to obtain an SiC monitor wafer which can flatten the surface until particle detection is possible. SiC of a crystal system 3C is deposited on a substrate by a CVD (Chemical Vapor Deposition) method, and the SiC is detached from a substrate. After the SiC surface is flattened by using mechanical polishing alone or in combination with CMP (Chemo Mechanical Polishing), GCIB (Gas Cluster Ion Beam) is irradiated to the surface until the surface roughness becomes Ra=0.5 nm or less and the impurity density of the wafer surface becomes 1*1011 atoms/cm2 or less to produce the SiC monitor wafer.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: April 4, 2006
    Assignee: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Isao Yamada, Jiro Matsuo, Noriaki Toyoda, Kazutoshi Murata, Naomasa Miyatake
  • Patent number: 7022864
    Abstract: An organosilicon precursor for vapor deposition, e.g., low pressure (<100 Torr), plasma-enhanced chemical vapor deposition (PECVD) of a low k, high strength dielectric film, wherein the precursor includes at least one of: (i) silicon-pendant oxiranyl functionality; and (ii) a disilyl moiety of the formula wherein x is an integer having a value of from 0 to 4 inclusive. These precursors are useful for the formation of dielectric films having dielectric constants on the order of ˜3 and less, and a hardness exceeding ˜1 GigaPascals.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: April 4, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Alexander S. Borovik, Chongying Xu, Thomas H. Baum, Steven Bilodeau, Jeffrey F. Roeder, Abigail Ebbing, Daniel Vestyck
  • Patent number: 7020537
    Abstract: A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a numerical of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the numerical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: March 28, 2006
    Assignee: Semitool, Inc.
    Inventors: Gregory J. Wilson, Paul R. McHugh, Robert A. Weaver, Thomas L. Ritzdorf
  • Patent number: 6977138
    Abstract: A method for coating of variable substrates with highly reactive polymers. Its combination with microcontact printing is used for generating several devices such as patterned arrays of ligands for high throughput screening.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: December 20, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Jörg Lahann, Robert Langer, Klavs F. Jensen
  • Patent number: 6962732
    Abstract: Processes for controlling thickness uniformity of thin organosilicate films as they are deposited on a substrate, and as they finally result. During deposition of the film, which may be accomplished by CVD, PECVD, rapid thermal processing or the like, the substrate temperature is controlled to establish a temperature profile particularly suited to the extreme temperature sensitivities of the deposition rates of organosilicate films such as those deposited from TEOS as a source material.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: November 8, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Tae Kyung Won, Takako Takehara, William R. Harshbarger
  • Patent number: 6960395
    Abstract: Ceramic compositions comprising at least about 91 mole % zirconia and up to about 9 mole % of a stabilizer component comprising a first metal oxide having selected from the group consisting of yttria, calcia, ceria, scandia, magnesia, india and mixtures thereof. This stabilizer component further comprises a second metal oxide of a trivalent metal atom selected from the group consisting of lanthana, gadolinia, neodymia, samaria, dysprosium, and mixtures thereof and a third metal oxide of a trivalent metal atom selected from the group consisting of erbia, ytterbia and mixtures thereof. These ceramic compositions are useful in preparing thermal barrier coatings having reduced thermal conductivity for the metal substrate of articles that operate at, or are exposed to, high temperatures.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: November 1, 2005
    Assignee: General Electric Company
    Inventors: Irene Spitsberg, Venkat Subramanian Venkataramani, Brett Allen Boutwell, Mark Daniel Gorman
  • Patent number: 6953618
    Abstract: Composite film structures exhibit a predetermined finished color tone comprised of a transparent film layer which exhibits a color deficiency as compared to the finished color tone, and a pigment which is visually associated with, and satisfies the color deficiency of, the film layer. Most preferably, the pigment is provided as a homogenous dispersion in a transparent color-matching layer positioned adjacent to the film layer. Thus, when the film and color-matching layers are viewed collectively as a unit, the perceived color tone will be that of the finished predetermined color tone. That is, the color-matching layer provides visually an additive effect on the perceived color of the composite film structure.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: October 11, 2005
    Assignee: CPFilms, Inc.
    Inventors: James P. Enniss, Steven A. Barth, Mary E. Lawless, Anthony B. Port, Elizabeth J. Packer
  • Patent number: 6949170
    Abstract: A method and apparatus for processing a thin film on a substrate. The method involves locating the substrate in a first rotational position a location opposed to a process station. The process station has a first axis and is arranged for processing the substrate about that axis. The substrate location is symmetrical about a second axis parallel to but offset from the first axis. The substrate is rotated about an axis generally orthogonal and passing through the wafer location to a second rotational position after an initial process and further processing takes place when the substrate is in the second rotational position.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: September 27, 2005
    Assignee: Trikon Holdings Limited
    Inventor: Paul Rich
  • Patent number: 6936405
    Abstract: An improved method for applying organic antireflective coatings to substrate surfaces and the resulting precursor structures are provided. Broadly, the methods comprise chemical vapor depositing (CVD) an antireflective compound on the substrate surface. In one embodiment, the compound is highly strained (e.g., having a strain energy of at least about 10 kcal/mol) and comprises two cyclic moieties joined to one another via a linkage group. The most preferred monomers are [2.2](1,4)-naphthalenophane and [2.2](9,10)-anthracenophane. The CVD processes comprise heating the antireflective compound so as to vaporize it, and then pyrolizing the vaporized compound to form stable diradicals which are subsequently polymerized on a substrate surface in a deposition chamber. The inventive methods are useful for providing highly conformal antireflective coatings on large substrate surfaces having super submicron (0.25 ?m or smaller) features.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: August 30, 2005
    Assignee: Brewer Science Inc.
    Inventors: Ram W. Sabnis, Douglas J. Guerrero, Terry Brewer, Mary J. Spencer
  • Patent number: 6933066
    Abstract: A thermal barrier coating for an underlying metal substrate of articles that operate at, or are exposed to, high temperatures, as well as being exposed to environmental contaminant compositions. This coating includes an inner layer nearest to the underlying metal substrate comprising a ceramic thermal barrier coating material, as well as an outer layer having an exposed surface and comprising tantalum oxide in an amount sufficient to protect the thermal barrier coating at least partially against environmental contaminants that become deposited on the exposed surface and optionally an intermediate layer between the inner and outer layers comprising alumina. This coating can be used to provide a thermally protected article having a metal substrate and optionally a bond coat layer adjacent to and overlaying the metal substrate.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: August 23, 2005
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, John Frederick Ackerman, William Randolph Stowell, Ching-Pang Lee
  • Patent number: 6926935
    Abstract: The present invention provides methods for achieving substantially damage-free material deposition using charged particle (e.g., ion, electron) or light beams for generating secondary electrons to induce deposition in a gas deposition material. Among other things, some of the methods can be used to deposit, with satisfactory throughput, a protective layer over a semiconductor feature without significantly altering the feature thereby preserving it for accurate measurement. In one embodiment, the beam is directed onto an electron-source surface next to the target surface but not within it. The beam is scanned on the electron-source surface causing secondary electrons to be emitted from the electron-source surface and enter the region over the target surface to interact with deposition gas for depositing a desired amount of material onto the target surface.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: August 9, 2005
    Assignee: FEI Company
    Inventors: Jason Harrison Arjavac, Liang Hong, Henri Lezec, Craig Matthew Henry, John Anthony Notte, IV