Zn-base Component Patents (Class 428/658)
  • Publication number: 20120009437
    Abstract: The invention provides a method for producing a corrosion-resistant article, where the article is conductive and subject to hydrogen uptake during electroplating of a coating. The method comprises electroplating a zinc/nickel coating on the article in an aqueous, basic plating solution containing zinc and nickel ions. The method uses an electrolyte in the form of a soluble hydroxide salt with the weight ratio of zinc ions to nickel ions in the solution being sufficient to provide the coating comprising from about 85% to about 95% by weight zinc, and about 5% to about 15% by weight nickel. The plating solution is substantially free of brightening agents which retard hydrogen bake-out.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Inventors: Luong (Louie) M. Tran, Matthias P. Schriever, John H. Jones
  • Patent number: 8012597
    Abstract: In a throttle body, a passive film and a corrosion-resistant film are stacked in that order on a substrate of aluminum. The passive film has a concave part on its corrosion-resistant film side. A metal layer is provided in the concave part. In shot blasting, upon collision of a blasting material against the corrosion-resistant film, a part of the blasting material is separated and adhered onto the resultant concaves to form the metal layer. For example, aluminum having a purity of not less than 98% is selected as the blasting material.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: September 6, 2011
    Assignee: Keihin Corporation
    Inventors: Botaro Watanabe, Takeshi Hirama
  • Publication number: 20110139858
    Abstract: Disclosed herein is a carrier for manufacturing a substrate, including: two insulation layers, each being provided on one side thereof with a first metal layer and on the other side thereof with a second metal layer; and a third metal layer having a lower melting point than the first metal layer and formed between the two first metal layers respectively formed on the two insulation layers such that the two first metal layers are attached to each other. The carrier is advantageous in that the carrier can be separated by heating the third metal layer, so that the size of a substrate does not change at the time of separating the carrier, thereby maintaining the compatibility between a substrate and manufacturing facilities.
    Type: Application
    Filed: March 10, 2010
    Publication date: June 16, 2011
    Inventors: Seong Min Cho, Keung Jin Sohn, Chang Gun Oh, Hyun Jung Hong, Tae Kyun Bae
  • Publication number: 20110138621
    Abstract: Disclosed herein is a carrier for manufacturing a substrate, including: an insulation layer including a first metal layer formed on one side or both sides thereof; a second metal layer formed on one side of the first metal layer; and a third metal layer formed on one side of the second metal layer, wherein the second metal layer has a lower melting point than the first metal layer or the third metal layer. The carrier is advantageous in that a build up layer can be separated from a carrier by heating, so that a routing process is not required, with the result that the size of a substrate does not change when the build up layer is separated from the carrier, thereby reusing the carrier and maintaining the compatibility between the substrate and manufacturing facilities.
    Type: Application
    Filed: March 9, 2010
    Publication date: June 16, 2011
    Inventors: Seong Min CHO, Keung Jin SOHN, Tae Kyun BAE, Hyun Jung HONG, Kyung Ah LEE, Chang Gun OH
  • Publication number: 20110111255
    Abstract: The invention relates to a process for manufacturing a metal strip having a metallic corrosion protection coating, comprising the steps consisting in: making the metal strip pass through a bath of molten metal comprising between 2 and 8 wt % aluminum, 0 to 5 wt % magnesium and up to 0.3 wt % addition elements, the balance being zinc and inevitable impurities, said bath being maintained at a temperature between 350 and 700° C.; then wiping the coated metal strip by means of nozzles spraying a gas on either side of the strip; and then cooling the coating in a controlled manner until it has completely solidified, said cooling being carried out at a rate less than 15° C./s between the temperature on leaving the wiping unit and the start of solidification and then at a rate greater than or equal to 15° C./s between the start and end of its solidification, and also to a metal strip that can be obtained by this process and to a metal part obtained by deformation of this strip.
    Type: Application
    Filed: May 14, 2009
    Publication date: May 12, 2011
    Applicant: Arcelormittal Investigacion Y Desarrollo SL
    Inventors: Luc Diez, Jean-Michel Mataigne
  • Publication number: 20110033729
    Abstract: The present invention is a method of manufacturing plated wire. The method includes drawing a feed stock to form drawn wire, tempering the drawn wire to form tempered wire and plating the tempered wire to form the plated wire. The plated wire exhibits a tensile strength that substantially meets ASTM A229-99.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 10, 2011
    Applicant: Industrial Door Co., Inc.
    Inventors: Steven Galloway, Karl Lundahl, Jeremy Sizer, Jodi Boldenow
  • Publication number: 20110012497
    Abstract: There is provided a plating structure obtained by heat-treating a silver-plated structure obtained by forming a tin-plated layer, an indium-plated layer, or a zinc-plated layer, having a thickness of 0.001 to 0.1 ?m, on a surface of the silver-plated layer formed on a surface of a plating base. There is also provided a coating method for obtaining the plating structure which comprises the step of melting a particle deposit spottedly deposited at 2×10?6 to 8×10?6 g/cm2 such that the spot-deposited particles have gaps therebetween as viewed above and the particles each having an average diameter of 20 to 80 nm do not pile up in a direction perpendicular to the surface of the silver layer to obtain a film.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 20, 2011
    Applicant: KYOWA ELECTRIC WIRE CO., LTD.
    Inventors: Yoshinori Sumiya, Kinya Sugie
  • Publication number: 20100304178
    Abstract: A carrier material to be used as a placeholder for structuring workpieces having at least one vacuity is disclosed, said carrier material comprising at least two metal powders Mel and Mell, the standard electrode potentials of which are different at room temperature, which can be produced by a method compacting the powders, as well as a method for producing same.
    Type: Application
    Filed: April 16, 2008
    Publication date: December 2, 2010
    Applicant: HERMLE MASCHINENBAU GMBH
    Inventor: Markus Dirscherl
  • Patent number: 7842397
    Abstract: A nickel plating solution preparation method has the steps of: dissolving in water 100 g/L or more and less than 200 g/L of nickel sulfate, and 10 g/L or more and less than 30 g/L of sodium citrate or 8 g/L or more and less than 25 g/L of citric acid, but adding no nickel chloride; and adjusting a pH of the resultant solution to 2 or more and less than 4. Another nickel plating solution preparation method has the steps of: dissolving in water 100 g/L or more and less than 200 g/L of nickel sulfate, and 10 g/L or more and less than 30 g/L of sodium citrate or 8 g/L or more and less than 25 g/L of citric acid, but adding no boric acid; and adjusting a pH of the resultant solution to 2 or more and less than 4.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: November 30, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Yasuyuki Ito, Katsuyuki Matsumoto, Koji Nukaga, Yasuhiro Kusano, Kenji Yokomizo, Shingo Watanabe, Hiroyuki Ogawara, Katsumi Nomura
  • Publication number: 20100297465
    Abstract: It is an object to provide a surface-treated steel sheet which contains no Cr, which is excellent in wet resin adhesion, and which can be used as an alternative to a conventional tin-free steel sheet and to provide a resin-coated steel sheet produced by coating the surface-treated steel sheet with resin. A surface-treated steel sheet including an adhesive layer which is disposed on at least one surface of the steel sheet and which contains Ti and at least one selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, the ratio of the total amount of Co, Fe, Ni, V, Cu, Mn, and Zn to the amount of Ti contained therein being 0.01 to ten on a mass basis, and a method for producing the surface-treated steel sheet.
    Type: Application
    Filed: October 30, 2008
    Publication date: November 25, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Yuka Nishihara, Takeshi Suzuki, Noriko Makiishi, Takumi Tanaka, Hiroki Iwasa, Norihiko Nakamura, Kaoru Sato, Takashi Kawano
  • Patent number: 7829201
    Abstract: A plain bearing is described having a bearing metal layer, supported by a support shell, made of an aluminum or copper alloy and having a lead-free running layer, possibly applied to the bearing metal layer over an intermediate layer, made of a zinc matrix having at least one further alloy element. To achieve good tribological properties, it is suggested that the zinc matrix of the running layer contains 1 to 49 wt.-% bismuth as an additional alloy element.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: November 9, 2010
    Assignees: Miba Gleitlager GmbH, KS Gleitlager GmbH
    Inventors: Jakob Zidar, Werner Schubert, Megjit Seremeti
  • Publication number: 20100266872
    Abstract: Coatings containing particulate metal alloy are disclosed. The coatings provide corrosion protection to a substrate, such as a metal substrate. The coatings contain zinc-metal-containing alloy in flake form, most particularly an alloy flake of zinc and aluminum. The coating can be from compositions that are water-based or solvent-based. The compositions for providing the coating may also contain a substituent such as a water-reducible organofunctional silane, or a hexavalent-chromium-providing substance, or a titanate polymer, or a silica substance constituent. the coating may desirably be topcoated.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Applicant: NOF METAL COATINGS NORTH AMERICA INC.
    Inventors: Etienne Georges Maze, Gilbert Louis Lelong, Terry E. Dorsett, Donald J. Guhde, Toshio Nishikawa
  • Patent number: 7811674
    Abstract: A galvanized iron article is provided which is formed by hot-dipping the iron article in a galvanizing bath that contains 0.005 to 0.2 mass % of Cu and 0.001 to 0.1 mass % of Al, with the balance being Zn and unavoidable impurities, to provide a galvanized layer thereon.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: October 12, 2010
    Assignee: CK Metals Co., Ltd.
    Inventors: Kazuyoshi Oohashi, Yoshiharu Kosaka
  • Publication number: 20100221574
    Abstract: A process for forming a zinc alloy coating on a metallic substrate is disclosed. The process includes the steps of (a) reacting a mixture including (i) a zinc powder and (ii) an oxide, a salt, or a combination thereof of an alloying metal more noble than zinc by heating the mixture at an elevated temperature for a time sufficient to form a zinc alloy powder including zinc and the alloying metal; and (b) mechanically depositing the zinc alloy powder on the metallic substrate, thereby forming the zinc alloy coating on the metallic substrate. The zinc alloy powder includes relatively high levels of the alloying metal, resulting in the ability to incorporate relatively high levels of the same into the zinc alloy coating during the mechanical deposition step.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 2, 2010
    Inventor: Thomas H. Rochester
  • Patent number: 7767314
    Abstract: Disclosed are a weld joint and a stainless steel-based weld metal composition for the weld joint. The composition and weld joint made therefrom are suitable for welding a zinc-based alloy coated steel sheet. The weld is excellent in corrosion resistance and liquid-metal embrittlement crack resistance. This is accomplished by inhibiting liquid-metal embrittlement cracks of the stainless-steel-based weld metal when the zinc-based alloy coating steel sheet is welded using the stainless-steel-based weld metal. The weld joint comprises a welded portion of weld metal made of stainless-steel-based components, the weld metal containing in mass percent (%): C: 0.01-0.1; Si: 0.1-1; Mn: 0.5-2.5; Ni: 5-11; and Cr: 17-25, and the balance being iron and residual impurities, wherein the following expression are met: ?0.81×Cr equivalent+23.2?Ni equivalent?0.95×Cr equivalent?8.1 . . . (1); Ni equivalent=Ni+30×C+0.5×Mn+30×N . . . (2); Cr equivalent=Cr+Mo+1.5×Si . . . (3).
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: August 3, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Shinji Kodama, Hideki Hamatani, Nobuo Mizuhashi, Kenichi Asai, Manabu Mizumoto
  • Patent number: 7745008
    Abstract: A processing solution for forming a hexavalent chromium free, corrosion resistant trivalent chromate conversion film on zinc or zinc alloy plating layers comprises: trivalent chromium and oxalic acid in a molar ratio ranging from 0.5/1 to 1.5/1, wherein the trivalent chromium is present in the form of a water-soluble complex with oxalic acid; and cobalt ions, which do not form a hardly soluble metal salt with oxalic acid and are stably present in the processing solution without causing any precipitation; wherein the solution reacts with zinc when bringing it into contact with the zinc or zinc alloy plating to form a hexavalent chromium free, corrosion resistant, trivalent chromate conversion film containing zinc, chromium, cobalt, oxalic acid and silicon on the plating.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: June 29, 2010
    Assignee: Dipsol Chemicals Co., Ltd.
    Inventors: Katsuhide Oshima, Shigemi Tanaka, Manabu Inoue, Tomitaka Yamamoto
  • Patent number: 7651783
    Abstract: A surface treated copper foil with improved adhesion to the insulating resin of a copper-clad laminate for higher frequency applications contains a copper foil provided with a heat-resistant layer and an olefin-based silane coupling agent layer sequentially on at least one side thereof. An anticorrosive treatment may be performed after the heat resistance treatment. The copper foil is preferably an electrolytic copper foil, and these layers can be provided on the S side and/or the M side thereof. The copper foil has an adequate adhesive strength, even without the roughening treatment that has been performed in the past. A film of zinc, zinc-tin, zinc-nickel, zinc-cobalt, copper-zinc, copper-nickel-cobalt, or nickel-cobalt can be used favorably as the heat-resistant layer, and a film that has undergone a zinc-chromate or a chromate treatment can be used favorably as the anticorrosive layer.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: January 26, 2010
    Assignee: Nikko Materials Co., Ltd.
    Inventors: Katsuyuki Tsuchida, Masashi Kumagai, Fumiaki Akase
  • Publication number: 20090246552
    Abstract: “Corrosion” performance of an optical filter is enhanced when a relatively thick zinc-based film functions as a seed layer for a subsequently formed silver-based film. At least two pairs of dielectric and metallic layers are included within the optical filter, where the zinc-based film is a second film of the dielectric layer and where the silver-based film is the metallic layer. The zinc-based film has a zinc content of at least 80 percent and has a thickness of at least 15 nm. In order to further improve the corrosion performance, gold may be incorporated into the silver-based film.
    Type: Application
    Filed: March 26, 2008
    Publication date: October 1, 2009
    Inventors: Chris H. Stoessel, Andrew Wahl, Roland Thielsch, Matthew Coda, Julius Kozak, Richard T. Wipfler, Lee Boman
  • Patent number: 7588836
    Abstract: Disclosed is a phosphated galvanized steel sheet comprising a steel sheet, a zinc-plating layer of ? single phase which is formed on at least one side of the steel sheet and contains Ni in an amount of not less than 10 ppm by mass and not more than the solubility limit thereof, and a phosphate layer which is formed on the zinc-plating layer and contains Mg in an amount of not less than 0.1 % by mass and less than 2.0 % by mass. Although this steel sheet is not subjected to sealing, it has corrosion resistance equivalent to or higher than those of conventional steel sheets which have been subjected to sealing, while having excellent blackening resistance.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: September 15, 2009
    Assignee: JFE Steel Corporation
    Inventors: Hiroki Nakamaru, Chiyoko Tada, Kazumi Yamashita, Hideo Sasaoka, Chiaki Kato
  • Patent number: 7585572
    Abstract: A ball stud having a ball at one end of a rod-shaped stud. The ball stud comprises: a metal plating film formed on the surface of the stud; and a trivalent chromate film continuously formed over both the surface of the metal plating film formed on the stud and the surface of the ball, whereby rust is inhibited in the boundary of the metal plating film. An externally threaded portion is also coated, if formed in the ball stud, on its surface with the metal plating film and the trivalent chromate film.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: September 8, 2009
    Assignee: Kyoritsu Seiki Co., Ltd.
    Inventor: Hirotaka Hattori
  • Publication number: 20090218228
    Abstract: An easily handleable composition for metal surface treatment is provided which achieves foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. A method for treating the surface of a metal material in which such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method, are also provided. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Application
    Filed: February 28, 2007
    Publication date: September 3, 2009
    Applicants: NIPPON PAINT CO., LTD., CHEMETALL GMBH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 7473476
    Abstract: It is possible to prevent deterioration of a soldering portion and improve strength of thermal fatigue resistance by providing barrier metal layers on at least one of lead and land to cover parent materials comprising Cu-containing materials, feeding a soldering material between the lead and the land and allowing to contact in a fused condition with barrier metal layers and solidify, and thus soldering together the lead and the land.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: January 6, 2009
    Assignee: Panasonic Corporation
    Inventors: Atsushi Yamaguchi, Kazuto Nishida, Masato Hirano
  • Patent number: 7451906
    Abstract: A brazing product for low temperature fluxless brazing comprises a filler metal-forming composition which melts in the range from about 380-575° C. The filler metal-forming composition comprises zinc optionally in combination with aluminum and/or silicon, and further comprises at least one braze promoter selected from nickel, cobalt, iron and palladium. The filler metal-forming composition may comprise a single layer or may comprise a number of distinct layers. The brazing product may take the form of a brazing preform or a brazing sheet or casting in which the filler metal-forming composition is deposited on a non-consumable substrate. The substrate may preferably comprise aluminum or an aluminum alloy, but may instead be comprised of one or more metals other than aluminum.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: November 18, 2008
    Assignee: Dana Canada Corporation
    Inventors: Stefanija Kisielius, legal representative, Brian E. Cheadle, Robert H. Krueger, Feng Liang, Mark S. Kozdras, Kostas F. Dockus
  • Patent number: 7344785
    Abstract: A copper foil 1 comprises a roughened plating layer 2, a Ni—Co alloy plating layer 3, a zinc galvanized (underlying) layer 4, a chromate treatment layer 5, and a silane coupling treatment layer 6 on a surface to be bonded with a base material for a printed circuit board, and the chromate treatment layer 5 is formed by using a trivalent chromium conversion treatment solution containing 70 mg/L or more and less than 500 mg/L of trivalent chromium ions converted into metal chromium and having a pH-value of 3.0 to 4.5. According to the present invention, a copper foil for a printed circuit board, a method for fabricating the same, and a trivalent chromium conversion treatment solution used for fabricating the same, which have an excellent controllability in Zn film forming amount and chromate film forming amount can be obtained.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: March 18, 2008
    Assignee: Hitachi Cable, Ltd.
    Inventors: Muneo Kodaira, Shingo Watanabe, Gen Sasaki, Yasuyuki Ito, Katsumi Nomura
  • Patent number: 7341795
    Abstract: The invention provides a Fe—Cr alloy structure containing Cr of about 6% or more by mass but about 25% or less by mass, having a corrosion-resistant paint film containing metal powder having ionization tendencies greater than iron, with a content of the metal powder of about 20% or more by volume but about 60% or less by volume in a dry paint film, with a dry film thickness of about 5 ?m or more but about 100 ?m or less; and a manufacturing method thereof; whereby excellent corrosion resistance and excellent adhesion is provided.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: March 11, 2008
    Assignee: JFE Steel Corporation
    Inventors: Yoshihiro Yazawa, Osamu Furukimi, Yasushi Kato, Sadao Hasuno
  • Patent number: 7314671
    Abstract: A chromium(VI)-free, chromium(III)-containing and substantially coherent conversion layer on zinc or zinc alloys presenting, even in the absence of further components such as silicate, cerium, aluminum and borate, a corrosion protection of approx. 100 to 1000 h in the salt spray test according to DIN 50021 SS or ASTM B 117-73 until first attack according to DIN 50961 Chapter 10; being clear, transparent and substantially colorless and presenting multi-colored iridescence; having a layer thickness of approx. 100 nm to 1000 nm; and being hard, adhering well and being resistant to wiping.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: January 1, 2008
    Assignee: SurTec International GmbH
    Inventors: Patricia Preikschat, Rolf Jansen, Peter Hulser
  • Patent number: 7300706
    Abstract: A wire for external exposure, i.e. without chemical binding with a polymer or rubber matrix. The wire has a steel core, a nickel sub-coating and a zinc or zinc alloy top coating above the nickel sub-coating. The steel core has a carbon content exceeding 0.20%. The wire is in a work-hardened state by drawing or rolling. The wire has an excellent corrosion resistance and provides an excellent barrier against hydrogen. Preferable uses are wires in off-shore applications.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: November 27, 2007
    Assignee: NV Bekaert SA
    Inventors: Ludo Adriaensen, Paul Dambre, Danny Gonnissen, Gilbert Van Loo, Johan Vanbrabant
  • Patent number: 7273669
    Abstract: Method and arrangement for spray forming an article. The method includes spraying a plurality of metal streams upon a low-heat resistant model and thereby forming a spray formed article. Each of the plurality of metal streams is composed of moltenized droplets, and as between the plurality of metal streams, each is composed of different constituent elements. In the spray form process, conditions of the metal streams are controlled, particularly around the time that the droplets land, to prevent adverse affects such as melting or burning the master model. The spray conditions are controlled in such a manner that the individual metal droplets forming the metal streams remain substantially segregate. The segregated state is maintained through out solidification so that the resulting spray formed article is composed at least partially of psuedo-alloy.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: September 25, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Grigoriy Grinberg, Matthew M. Shade, David Robert Collins, Richard L. Allor
  • Patent number: 7220493
    Abstract: A solder not containing lead (a lead-free solder) contains zinc and tin, and also contains 5 weight percent or less nickel and 0.5 weight percent or less aluminum with a liquid phase temperature of 260 degrees C. or greater. In addition, a lead-free solder has a liquid phase temperature of 260 degrees C. or greater, and contains 30 to 70 weight percent zinc, 5 weight percent or less nickel, and the remaining weight percent tin. Moreover, a joint is manufactured using these lead-free solders. As a result, a lead-free solder and a lead-free joint having excellent electrical characteristics but not including harmful substances, can be provided.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: May 22, 2007
    Assignees: Koa Kabushiki Kaisha, Soldercoat Co., Ltd., Okabe Giken Co., Ltd.
    Inventors: Satoru Kobayashi, Kazuyuki Kato, Masahiro Sugiura, Saburo Okabe
  • Patent number: 7175882
    Abstract: A protective coating is formed on a metallic surface by contacting the surface with an aqueous solution of fluorometallate followed by an aqueous solution containing vanadate ions. The process does not require the use of any organic substances, but provides a corrosion resistant surface having good heat conductivity.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: February 13, 2007
    Assignee: Henkel Kommanditgesellschaft auf Aktien
    Inventors: Shawn E. Dolan, Lawrence R. Carlson
  • Patent number: 7172818
    Abstract: A copper foil for chip-on-film use, a plasma display panel, or a high-frequency printed circuit board obtained by rolling copper foil to smooth the surface to give a surface area of not more than 1.30 times an ideal smooth surface, the smoothed copper foil having deposited on it fine roughening particles of Cu or alloy particles of Cu and Mo or alloy particles comprising Cu and at least one element selected among a group of Ni, Co, Fe, and Cr or a mixture of this alloy particles and oxide of at least one element selected among a group of V, Mo, and W.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: February 6, 2007
    Assignee: Furukawa Circuit Foil Co., Ltd.
    Inventors: Tadao Nakaoka, Akitoshi Suzuki, Hideo Otsuka, Hisao Kimijima
  • Patent number: 7166364
    Abstract: I provide an aqueous coating composition to provide an outer protective coating for a metal selected from the group consisting of an aluminum, aluminum alloy, iron, iron alloy, zinc, zinc alloy, zinc coated iron, zinc coated iron alloy, and these metals and magnesium and magnesium alloys having a conversion coating thereon. The aqueous coating composition consists essentially of 60 to 90 parts by weight water, 0.5 to 10 parts by weight of a polyvinyl alcohol having a weight average molecular weight of at least 100,000 and being at least 95% hydrolyzed, 0.5 to 20 parts by weight of a polybasic acid or anhydride, and 0.0 to 3 parts by weight of a cross-linking agent or plasticizer to form a in-situ polyester conversion coating on the metal. The composition is applied directly to the metal or to the metal article which has a non-chromium conversion coating thereon and forms a thin film thereon. Then the metal with the film thereon is heated to between 300° to 550° F.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: January 23, 2007
    Assignee: Sanchem, Inc.
    Inventor: John W. Bibber
  • Patent number: 7160630
    Abstract: The disclosure relates to a corrosion resistant article comprising a metal body and a protective coating applied on at least one surface of said metal body, said protective coating comprising: (a) a zinc layer comprising metallic zinc; (b) a silicate layer comprising at least one silicate; and (c) a lubricant layer comprising at least one lubricant such as, for example, polyethylene wax. In particular, the disclosure relates to a corrosion resistant bolt and/or nut having a protective coating for use in motor vehicles. The protective coating is substantially free of chromates and phosphates and, hence, environmentally acceptable. The article has an excellent coefficient of friction, temperature resistance and anti-corrosion properties.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: January 9, 2007
    Assignee: Elisha Holding LLC
    Inventor: Klaus-Peter Klos
  • Patent number: 7150391
    Abstract: A material for welding 5 having a region 11 in which welding such as laser welding or arc welding is performed, the region including indentations 5a-1 which are produced by carrying out a first working step comprising embossing, V-bending, U-bending, L-bending, drawing, stepped drawing, or a combination of these to form a curved portion 5a in the material being worked, and a second working step which is press working which crushes the curved portion 5a which is formed by the first working step. The indentations 5a-1 have a protruded portion 11a which projects from a flat surface which forms the surface of the material being worked 5, and a recessed portion 11b which is formed on the inside of the protruded portion 11. Indentations 5a-1 are provided in the form of at least two separated dots so as to be generally parallel to the predicted welding position and are arranged on the expected welding position.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: December 19, 2006
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroki Fujimoto, Masahiro Nakata
  • Patent number: 7108923
    Abstract: A copper foil for a printed circuit board has a rust preventing layer formed by a trivalent chromium chemical conversion treatment on a surface of the copper foil that the copper foil is bonded to a base material for the printed circuit board. T copper foil is of copper or copper alloy, and the rust preventing layer contains 0.5 to 2.5 ?g/cm2 of chromium converted into metallic chromium.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: September 19, 2006
    Assignee: Hitachi Cable, Ltd.
    Inventors: Yasuyuki Ito, Katsuyuki Matsumoto, Kenji Yokomizo, Yasuhiro Kusano, Shinichiro Shimizu, Muneo Kodaira, Katsumi Nomura
  • Patent number: 7087315
    Abstract: A method for forming a plating film, comprising the steps of: applying a plating film onto an object to be plated at a first current density for a predetermined period in a plating bath having a cathode capable of varying current and an anode and; and maintaining the object to be plated at a second current density lower than the first current density. According to the present invention, it is possible to improve solderability of a plating film for conventional lead-free solder by a simple method, which allows the productivity to further enhanced, resulting in a plating film with reduced production costs.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: August 8, 2006
    Assignees: Sharp Kabushiki Kaisha, Kobe Leadmikk Co., Ltd.
    Inventors: Yoshihiko Matsuo, Ryukichi Ikeda, Kimihiko Yoshida, Fumio Okuda
  • Patent number: 7018721
    Abstract: A first conductor having an Au layer formed on the surface is connected with a second conductor at least the surface of which has conductivity through a solder containing Zn. The first conductor is, for example, a terminal pad (11a, 11b, 11c) constituting a part of a wiring pattern on a circuit board (1), and the second conductor is, for example, a terminal (20a, 21a) or a terminal board (22) of an electronic component (20 21). The first conductor is connected with the second conductor through an Au—Zn alloy layer formed through diffusion of Zn from the solder containing Zn into the Au layer of the first conductor.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: March 28, 2006
    Assignee: Rohm Co., Ltd.
    Inventor: Satoshi Nakamura
  • Patent number: 6994919
    Abstract: The invention relates to a brazing sheet product including a core sheet, on at least one side of the core sheet a clad layer of an aluminum alloy including silicon in an amount in the range of 4 to 14% by weight, and further including on at least one outersurface of the clad layer a plated layer of nickel-tin alloy, such that the clad layer and all layers exterior thereto form a metal filler for a brazing operation and have a composition with the proviso that the mol-ratio of Ni:Sn is in the range of 10:(0.5 to 9).
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: February 7, 2006
    Assignees: Corus Aluminium Walzprodukte GmbH, Corus Technology BV
    Inventors: Jacques Hubert Olga Joseph Wijenberg, Adrianus Jacobus Wittebrood, Joop Nicolaas Mooij
  • Patent number: 6989199
    Abstract: The object is to provide a copper foil excellent in the property of selective etching between a resistor layer and a copper layer required in production of a printed-wiring board, and also excellent in UL heat resistance. For this purpose, a copper foil for printed-wiring board comprising a nodular treatment side on one side, wherein a nickel-zinc alloy layer is formed on the nodular treatment side is used for applications of printed-wiring boards. At the same time, a production method suitable for production of the copper foil is provided.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: January 24, 2006
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Takuya Yamamoto, Masaru Takahashi, Masamichi Yamada
  • Patent number: 6984456
    Abstract: There is provided a flexible printed wiring board including an insulating layer having a high optical transmittance, a high adhesion strength and a high migration resistance, and suitable for a chip on film (hereafter referred to as COF). In a flexible printed wiring board for COF, having an insulating layer on which a conductive layer of an electrodeposited copper foil is laminated, and an optical transmittance of 50% or more of the insulating layer in the etched region when a circuit is formed by etching said conductive layer, electrodeposited copper foil was made to have a rust-proofing layer of a nickel-zinc alloy on the adhering surface to be adhered to the insulating layer; the surface roughness (Rz) of the adhering surface was made to be 0.05 to 1.5 ?m, and the specular gloss was made to be 250 or more when the incident angle is 60°.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: January 10, 2006
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kazuyuki Okada, Yasuji Hara, Akira Uchiyama, Masaru Takahashi
  • Patent number: 6969557
    Abstract: The invention provides a surface-treated copper foil which can sufficiently ensure adhesive strength with a low-dielectric substrate used in forming a printed wiring board for high-frequency applications and can minimize transmission losses. There is provided a surface-treated copper foil for a low-dielectric substrate which is used in bonded relationship to a low-dielectric substrate, which is characterized in that a nodular-treated layer constituted by bump-like copper particles is formed on a surface of the copper foil and that ultrafine copper particles are caused to precipitate on the whole surface of the nodular-treated layer and adhere thereto and the roughness value Rz of the surface is 1.0 to 6.5 ?m. The surface color of the surface-treated copper foil has L* of not more than 50, a* of not more than 20 and b* of not more than 15.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: November 29, 2005
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Mitsuyoshi Matsuda, Takashi Kataoka
  • Patent number: 6949300
    Abstract: The present invention is directed to a process for preparing aluminum and aluminum alloy surfaces in heat exchangers for brazing by depositing thereon a kinetic sprayed brazing composition. The process simultaneously deposits monolith or composite coatings that can include all braze materials and corrosion protection materials used in the brazing of aluminum fins to plates and tubes in a single stage.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: September 27, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Bryan A. Gillispie, Zhibo Zhao, John Robert Smith, Thomas Hubert Van Steenkiste, Alaa A. Elmoursi, Yang Luo, Hartley F. Hutchins
  • Patent number: 6946201
    Abstract: A chromium(VI)-free, chromium(III)-containing and substantially coherent conversion layer on zinc or zinc alloys presenting, even in the absence of further components such as silicate, cerium, aluminum and borate, a corrosion protection of approx. 100 to 1000 h in the salt spray test according to DIN 50021 SS or ASTM B 117-73 until first attack according to DIN 50961 Chapter 10; being clear, transparent and substantially colorless and presenting multi colored iridescence; having a layer thickness of approx. 100 nm to 1000 nm; and being hard, adhering well and being resistant to wiping.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 20, 2005
    Assignee: SurTec International GmbH
    Inventors: Patricia Preikschat, Rolf Jansen, Peter Hulser
  • Patent number: 6938552
    Abstract: Structure incorporating lead is fabricated from specially prepared components such that mobility of the lead is impeded when the structure is exposed to an unprotected environment such as weathering outdoors or saltwater. In a preferred embodiment, a bullet or bullet core is swaged from a number of bunched electroplated fine lead or lead-alloy wires placed in a die. The lead or lead-alloy wires may be fabricated from lead or lead-alloy wool. The lead alloy may comprise zinc and antimony. The electroplating process plates zinc on the fine wires and may plate a zinc alloy such as zinc-aluminum. The plated surface may be coated with a corrosion resistant coating such as molybdenum phosphate. In addition to bullets and bullet cores, fishing weights, lead shielding, counterweights, ballast, and other lead containing structure may be fabricated or treated using methods and materials of the present invention.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: September 6, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Joe G. Tom, Philip G. Malone, Charles A. Weiss, Jr., Steven L. Larson
  • Patent number: 6936354
    Abstract: The invention teaches a system suitable for use in a water-sensitive electronic device which comprises two superimposed layers, the first material of which is formed of a material capable of sorbing hydrogen, the second material formed of a material capable of converting water into hydrogen; a screen of the type with light-emitting organic diodes comprising the system according to the invention.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: August 30, 2005
    Assignee: SAES Getters S.p.A.
    Inventors: Bruno Ferrario, Stefano Tominetti, Alessandro Gallitognotta
  • Patent number: 6905782
    Abstract: The present invention is directed to a coated substrate, comprising: an antitarnish layer deposited on a substrate in an amount effective to prevent tarnishing of said coated substrate; and an outer layer deposited onto said antitarnish layer, said outer layer comprising tin or tin alloys having at least 50% by weight tin. The present invention is also directed to coated substrates having a concentration gradient of antitarnish agent diffused into the coating, as well as methods of forming such coated substrates.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: June 14, 2005
    Assignee: Olin Corporation
    Inventors: Christopher P. Laurello, Derek E. Tyler, Szuchain Chen, Julius C. Fister
  • Patent number: 6893738
    Abstract: An electrodeposited copper foil to be laminated on an insulation substrate for a printed circuit board, comprising a barrier layer of ternary alloy of Zn—Co—As formed on the copper foil, is provided. Further, a surface treatment method of an electrodeposited copper foil for a printed circuit board, comprising electrolytically treating the copper foil in an electrolytic solution containing pyrophosphoric acid potassium of about 10 g/l to about 200 g/l, Zn of about 0.1 g/l to about 20 g/l, Co of about 0.1 g/l to about 20 g/l and As of about 0.05 g/l to about 5 g/l, is provided. Further, the electrolytic solution remains at the temperature of about 20° C. to about 50° C. and a pH of about 9 to about 13. The copper foil is electrolytically treated for about 2 seconds to about 20 seconds at a cathode current density of about 0.5 A/dm2 to about 20 A/dm2.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: May 17, 2005
    Assignee: LG Cable Ltd.
    Inventors: Sang-Kyum Kim, Chang-Hee Choi
  • Patent number: 6884511
    Abstract: Ceramic-containing bodies can be bonded to other ceramic-containing bodies, or to metals or metal-containing bodies, by way of an aluminum-silicon brazing alloy. Such alloys feature high thermal conductivity and a melting range intermediate to Cu—Sil and Au—Si. By depositing a layer of silicon or aluminum, e.g., by vapor deposition, onto a surface of the ceramic-containing body, the formation of deleterious intermetallic phases at the brazing interface is avoided. This technique is particularly useful for joining reaction-bonded silicon carbide (RBSC) composite bodies, and particularly such composite bodies that contain appreciable amounts of aluminum as a metallurgical modification of the residual silicon phase. When the RBSC body contains minor amounts of the aluminum alloying constituent, or none, the metallization layer is not required. The resulting bonded structures have utility as mirrors, as packaging for electronics, and in semiconductor lithography equipment, e.g.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: April 26, 2005
    Assignee: M Cubed Technologies, Inc.
    Inventors: Barry R. Rossing, Prashant G. Karandikar
  • Patent number: 6869690
    Abstract: The present invention relates to a zinc-diffused nickel alloy coating for corrosion and heat protection and to a method for forming such a coating. The coating method broadly comprises the steps of forming a plain nickel or nickel alloy coating layer on a substrate, applying a layer of zinc over the nickel or nickel alloy coating layer, and thermally diffusing the zinc into the nickel alloy coating layer. The coating method may further comprise immersing the coated substrate in a phosphated trivalent chromium conversion solution either before or after the diffusing step. The substrate may be a component used in a gas turbine engine, which component is formed from a steel material.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: March 22, 2005
    Assignee: United Technologies Corporation
    Inventors: Henry M. Hodgens, Thomas R. Hanlon
  • Patent number: RE39884
    Abstract: A coated milling insert particularly useful for milling in low and medium alloyed steels with or without raw surface zones during wet or dry conditions. The insert is characterized by a WC-Co cemented carbide with a low content of cubic carbides and a highly W alloyed binder phase and a coating including an inner layer of TiCxNyOz with columnar grains, a layer of ?-Al2O3 and, preferably, a top layer of TiN. The layers are deposited by using CVD methods.
    Type: Grant
    Filed: November 29, 1996
    Date of Patent: October 16, 2007
    Assignee: Sandvik Intellectual Property AB
    Inventors: {dot over (A)}ke Östlund, Jeanette Persson, Björn Ljungberg