Oxygen Is Ring Member Of The Hetero Ring Patents (Class 429/329)
  • Publication number: 20120276456
    Abstract: Electrolyte, comprising an aprotic solvent, a lithium salt as conducting salt, and an additive, characterized in that the additive is a compound which contains a protonable nitrogen atom and is hydrolysable by water.
    Type: Application
    Filed: August 27, 2010
    Publication date: November 1, 2012
    Applicant: LI-TEC BATTERY GMBH
    Inventors: Peter Pilgram, Rolf-Walter Terwonne, Denny Thiemig, Joerg Kaiser, Andreas Gutsch
  • Patent number: 8288039
    Abstract: The present invention provides an electrolyte solvent for batteries, which comprises fluoroethylene carbonate and linear ester solvent. Also, the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises fluoroethylene carbonate and linear ester solvent. The inventive electrolyte solvent can improve the battery safety without deteriorating the battery performance.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: October 16, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Keun Yung Im, Ki Young Lee, Joon Sung Bae, Young Taek An
  • Patent number: 8288040
    Abstract: A battery that includes a cathode, anode and an electrolytic solution containing an organic electrolyte solvent including a compound of the formula: R1—CO—NR2—OR3 wherein R1 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives and perfluorinated analogues; R2 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives; R3 is selected from alkanes, alkenes, alkynes, aryls and their substituted derivatives wherein the electrolyte is stable at voltages of greater than 4.0 volts.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: October 16, 2012
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., Toyota Motor Corporation, Synthonix Corporation
    Inventors: John Muldoon, Gary Allred, Scott Ankeney, Masaki Matsui, Anthony Dotse, Tsuyoshi Sugimoto
  • Patent number: 8273484
    Abstract: Nitrogen silylated compounds are useful as additives in a nonaqueous electrolytic solution. The electrolytic solution including such additives is suitable for use in electrochemical cells such as lithium and lithium ion batteries. Batteries using this electrolytic solution have long cycle life and high capacity retention.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: September 25, 2012
    Assignee: Novolyte Technologies, Inc.
    Inventors: Wu Xu, Zhongyi Deng, Pascal Bolomey
  • Publication number: 20120171577
    Abstract: An electrolytic solution including: a magnesium salt; a non-aqueous organic solvent; and an anion receptor, wherein the anion receptor comprises at least one compound selected from the group consisting of compounds represented by Formulae 1 and 2 below: where A, m, p1, P2, P3, q1, RA, Ra, R1 through R6, and Ry are the same as described in the detailed description section.
    Type: Application
    Filed: June 10, 2011
    Publication date: July 5, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Young-gyoon Ryu, Sang-ho Park, Myung-dong Cho, Young-min Choi, Seok-soo Lee
  • Publication number: 20120171578
    Abstract: The battery includes an electrolyte activating one or more cathodes and one or more anodes. The electrolyte includes one or more salts in a solvent. The solvent includes one or more organic solvents and one or more silanes and/or one or more siloxanes.
    Type: Application
    Filed: March 22, 2007
    Publication date: July 5, 2012
    Inventors: Zhengcheng Zhang, Phuong-Nghi Karen Lam, Mikito Nagata, Hisashi Tsukamoto
  • Patent number: 8211336
    Abstract: Disclosed is a nonaqueous electrolyte secondary battery which is suppressed in increase of internal resistance, while having high capacity retention rate and small battery swelling even after a long use. Specifically disclosed is a method for manufacturing a nonaqueous electrolyte secondary battery, which is characterized by using a positive electrode containing a positive electrode active material having an ?-NaFeO2 crystal structure and the following chemical composition: LixMnaNibCocOd (wherein 0<x<1.3, a+b+c=1, 1.7?d?2.3), while satisfying |a?b|<0.03 and 0.33?c<1, a negative electrode, and a nonaqueous electrolyte containing an unsaturated sultone and a sulfate ester compound.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: July 3, 2012
    Assignee: GS Yuasa International Ltd.
    Inventors: Hanako Miyasaka, Takaaki Iguchi, Junichi Kuratomi, Sumio Mori
  • Patent number: 8197964
    Abstract: A battery capable of improving the cycle characteristics even if the thickness of an anode active material layer is increased is provided. The battery includes a cathode, an anode and an electrolytic solution. The anode has an anode active material layer on an anode current collector, and the anode active material layer contains a carbon material and has a thickness of 30 ?m or more. The electrolytic solution contains a solvent and an electrolyte salt, and the solvent contains at least one of sulfone compounds such as a cyclic disulfonic acid anhydride.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: June 12, 2012
    Assignee: Sony Corporation
    Inventors: Shunsuke Saito, Masayuki Ihara, Atsumichi Kawashima
  • Patent number: 8192875
    Abstract: A method of manufacturing a lithium-ion secondary battery includes an electrolytic solution making step of making an electrolytic solution by mixing at least an organic solvent and an electrolytic salt together, an electrode insertion step of inserting an anode and a cathode into an outer case, and a liquid injection step of injecting the electrolytic solution into the outer case; wherein the electrolytic solution making step or the liquid injection step adds a compound having an alkyl group with a carbon number of 10 or greater and an epoxy, vinyl, or silanol group at a terminal to the electrolytic solution.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: June 5, 2012
    Assignee: TDK Corporation
    Inventor: Atsushi Sano
  • Patent number: 8163423
    Abstract: Gas generation of a non-aqueous electrolyte battery having a negative active material that intercalates/deintercalates lithium ions at a potential not lower than 1.2 V relative to the potential of lithium as negative electrode is suppressed. A non-aqueous electrolyte battery comprising a non-aqueous electrolyte containing an electrolyte salt and a non-aqueous solvent, a positive electrode and a negative electrode is characterized in that the main active material of said negative electrode is an active material that intercalates/deintercalates lithium ions at a potential not lower than 1.2 V relative to the potential of lithium and the auxiliary active material of said negative electrode is an active material that at least intercalates lithium ions at a potential lower than 1.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: April 24, 2012
    Assignee: GS Yuasa International Ltd.
    Inventors: Suguru Kozono, Ichiro Tanaka, Shigeki Yamate, Naohiro Tsumura, Yoshihiro Katayama, Toshiyuki Nukuda
  • Patent number: 8158285
    Abstract: The present invention provides an electrolyte solvent for batteries, which comprises fluoroethylene carbonate and linear ester solvent. Also, the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the electrolyte comprises fluoroethylene carbonate and linear ester solvent. The inventive electrolyte solvent can improve the battery safety without deteriorating the battery performance.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: April 17, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Keun Yung Im, Ki Young Lee, Joon Sung Bae, Young Taek An
  • Publication number: 20120088160
    Abstract: The present technology relates to stabilizing additives and electrolytes containing the same for use in electrochemical devices such as lithium ion batteries and capacitors. The stabilizing additives include triazinane triones and bicyclic compounds comprising succinic anhydride, such as compounds of Formulas I and II described herein.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Inventors: Lu Zhang, Zhengcheng Zhang, Khalil Amine
  • Publication number: 20120082901
    Abstract: Li-based anodes for use in an electric current producing cells having long life time and high capacity are provided. In certain embodiments, the Li-based anode comprises at least one anode active Li-containing compound and a composition comprising at least one polymer, at least one ionic liquid, and optionally at least one lithium salt. The composition may be located between the at least one Li-containing compound and the catholyte used in the electric current producing cell. In some embodiments, the at least one polymer may be incompatible with the catholyte. This configuration of components may lead to separation between the lithium active material of the anode and the catholyte. Processes for preparing the Li-based anode and to electric current producing cells comprising such an anode are also provided.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Applicants: BASF SE, Sion Power Corporation
    Inventors: Rudiger Schmidt, Daher Michael Badine, Helmut Moehwald, Igor Kovalev, Yuriy V. Mikhaylik
  • Patent number: 8148006
    Abstract: A battery capable of improving cycle characteristics is provided. A separator arranged between a cathode and an anode is impregnated with an electrolytic solution. The electrolytic solution includes: a solvent; and an electrolytic salt, in which the solvent includes a compound having a difluoroalkene structure. The content of the compound having a difluoroalkene structure in the solvent is within a range from 1 wt % to 5 wt % both inclusive.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: April 3, 2012
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Takashi Murakami, Tadahiko Kubota
  • Patent number: 8142918
    Abstract: This disclosure relates to methods of making a cathode for a lithium battery. The batteries include: (a) treating a cathode current collector with flame or corona; (b) coating a slurry containing iron disulfide, a first solvent, and a binder onto the cathode current collector obtained from step (a) to form a coated cathode current collector, in which the slurry contains about 73-75% by weight solids and the binder contains a polymer selected from the group consisting of linear di- and tri-block copolymers, linear tri-block copolymers cross-linked with melamine resin, ethylene-propylene copolymers, ethylene-propylene-diene terpolymers, tri-block fluorinated thermoplastics, hydrogenated nitrile rubbers, fluoro-ethylene-vinyl ether copolymers, thermoplastic polyurethanes, thermoplastic olefins, and polyvinylidene fluoride homopolymers; and (c) drying the coated cathode current collector obtained from step (b) to provide a cathode, in which the cathode contains no more than 0.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: March 27, 2012
    Assignee: The Gillette Company
    Inventors: Christopher Boczer, Frank M. Delnick, Rosario Del Rosauro, Minkoo Kang, Lucyna M. Pawlowska, Michael Pozin, Dharmendra Rana, Maya Stevanovic, John J. Weckesser
  • Patent number: 8142936
    Abstract: The present invention relates to a nonaqueous electrolyte solution containing new additives and a lithium secondary battery including the same. More particularly, the invention relates to a nonaqueous electrolyte solution containing a lithium salt, an electrolyte compound, a first additive compound with an oxidation initiation potential of more than 4.2 V, and a second additive compound with an oxidation initiation potential of more than 4.2 V, which is higher in oxidation initiation potential than the first additive, and deposits oxidative products or form a polymer film, in oxidation, as well as a lithium secondary battery including the same. The present invention can provide a lithium secondary battery excellent in both the battery performance and the battery safety in overcharge by the combined use of the first additive and the second battery as additives to the nonaqueous electrolyte solution.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: March 27, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Soon Ho Ahn, Jae Hyun Lee, Jeong Ju Cho, Ho Chun Lee, Mi Young Son, Hyeong Jin Kim, Han Ho Lee
  • Patent number: 8137849
    Abstract: The present invention relates to a phosphate-based acrylate crosslinking agent for polymer electrolyte and a polymer electrolyte composition comprising the phosphate-based acrylate crosslinking agent, and in particular to a phosphate-based acrylate crosslinking agent where a phosphate-based compound is introduced with a polyalkylene oxide group and an acrylate group and a polymer electrolyte composition comprising the phosphate-based acrylate crosslinking agent. The polymer electrolyte composition can be applied to electrolyte thin film and polymer electrolyte of small and large capacity lithium-polymer secondary battery due to its superior ionic conductivity and electrochemical and thermal stability, where the physical properties of electrolyte composition may be controlled by means of the length of polyalkylene oxide of the crosslinking agent.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: March 20, 2012
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Yongku Kang, Changjin Lee, Jun Kyoung Lee, Joung In Lee
  • Publication number: 20120064390
    Abstract: Electrolytes of lithium ion batteries of the present disclosure comprise: a lithium salt, a non-aqueous solvent, and an additive. The additive further comprises a first and second compound. The first compound is a 4 X1, 5 R1 [1,3]dioxolan-2-one, wherein X1 is selected from the group consisting of: F, Cl, and Br and R1 is selected from the group consisting of hydrogen and linear alkyl compounds having between 1 and 3 carbon atoms. The second compound has a molecular formula of: F(CF2CF2)x—CH2CH2—(CH2CH2O)yH, wherein x is any integer ranging from 1 to 7, and y is any integer ranging from 1 to 15.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 15, 2012
    Inventors: Huiying Wang, Guishu Zhou
  • Patent number: 8133617
    Abstract: A non-aqueous electrolyte battery includes a non-aqueous electrolyte containing an electrolytic salt and a non-aqueous solvent, a positive electrode, and a negative electrode having a negative active material that intercalates/deintercalates lithium ions at a potential not lower than 1.2 V relative to the potential of lithium, wherein a film coat having a carbonate structure and a thickness of not less than 10 nm exists on the surface of the negative electrode. A non-aqueous electrolyte battery is operated in a region of potential of the negative electrode higher than 0.8 V relative to the potential of lithium.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: March 13, 2012
    Assignee: GS Yuasa International Ltd.
    Inventors: Suguru Kozono, Ichiro Tanaka, Shigeki Yamate, Naohiro Tsumura, Yoshihiro Katayama, Toshiyuki Nukuda
  • Publication number: 20120058379
    Abstract: According to one embodiment, a nonaqueous electrolyte secondary battery includes a nonaqueous electrolytic solution, a positive electrode and a negative electrode is provided. The nonaqueous electrolytic solution comprises a nonaqueous solvent. The nonaqueous solvent comprises from 50 to 95% by volume of a sulfone-based compound represented by the following formula 1: wherein R1 and R2 are each an alkyl group having 1 to 6 carbon atoms and satisfy R1?R2. The positive electrode comprises a composite oxide represented by Li1-xMn1.5-yNi0.5-zMy+zO4. The negative electrode comprises a negative electrode active material being capable of absorbing and releasing lithium at 1 V or more based on a metallic lithium potential.
    Type: Application
    Filed: August 12, 2011
    Publication date: March 8, 2012
    Inventors: Takashi KISHI, Norio TAKAMI, Takuya IWASAKI, Hiroki INAGAKI
  • Patent number: 8119293
    Abstract: A non-aqueous electrolyte secondary cell can be charged at a high voltage of 4.3V or more and has excellent cycle characteristics and excellent high-temperature storage characteristics. The cell includes positive and negative electrodes capable of inserting and extracting lithium, and a non-aqueous electrolyte. The non-aqueous electrolyte contains a non-aqueous solvent, 1,3-dioxane and a dinitrile compound additives, and an electrolyte salt. The non-aqueous solvent contains ethylene carbonate in the range of 25% to 40% by volume under the conditions of 25° C. and 1 atm.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 21, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Masato Iwanaga, Noriko Yamashita
  • Patent number: 8119292
    Abstract: Disclosed is a lithium secondary battery comprising a cathode, an anode, an electrolyte and a separator, wherein the anode comprises an anode active material having a specific surface area of 3 m2/g or less, and the electrolyte comprises 0.1˜6 parts by weight of a propane sultone-based compound based on 100 parts by weight of the electrolyte. The lithium secondary battery solves the problem of performance degradation caused by the use of an increased amount of a propane sultone-based compound required to form a SEI film on the surface of an anode upon the first charge cycle. Also, the lithium secondary battery can provide improved cycle characteristics and high-temperature storage characteristics.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: February 21, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Ho Chun Lee, Tae Yoon Park, Yong Su Choi, Soo Jin Yoon, Hong Kyu Park, Hyun Min Jung, Jeong Ae Ahn
  • Patent number: 8119286
    Abstract: An electrochemical cell is described. The electrochemical cell includes an anode, a cathode, a separator between said anode and said cathode, and an electrolyte. The electrolyte includes a salt dissolved in an organic solvent. The separator in combination with the electrolyte has an area specific resistance less than 2 ohm-cm2.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 21, 2012
    Assignee: The Gillette Company
    Inventors: Nikolai Nikolaevich Issaev, Michael Pozin, Michael Dean Sliger, Eric Navok, Fred Joseph Berkowitz
  • Publication number: 20120034532
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery comprises a lithium salt and an organic solvent. The non-aqueous electrolyte solution further comprises a specific siloxane compound and a sulfonate compound. This non-aqueous electrolyte solution solves the capacity degradation phenomenon, which appears in a lithium secondary battery using a non-aqueous electrolyte solution containing only a specific siloxane compound when the lithium secondary battery is used for a long time, so this non-aqueous electrolyte solution is especially useful for high-capacity batteries.
    Type: Application
    Filed: April 29, 2010
    Publication date: February 9, 2012
    Applicant: LG Chem, Ltd.
    Inventors: Soo-Jin Kim, Jeong-Ju Cho, Su-Jin Yoon, Yong-Joon Ha, Chul-Haeng Lee, Jeong-Hwan Koh
  • Patent number: 8097367
    Abstract: A non-aqueous electrolyte secondary cell with superior cycle characteristics is provided. The non-aqueous electrolyte secondary cell has a positive electrode, a negative electrode, and a non-aqueous electrolyte containing a non-aqueous solvent and an electrolyte salt. The non-aqueous solvent contains ethylene carbonate and propylene carbonate. The ratio of the ethylene carbonate to the total mass of the ethylene carbonate and the propylene carbonate is from 0.40 to 0.78. The non-aqueous electrolyte contains a 1,3-dioxane compound at a mass % of from 0.1 to 5.0. The 1,3-dioxane compound is represented by Formula 1: where R1 to R4 independently denote a hydrogen atom, a methyl group, or an ethyl group.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: January 17, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventor: Kentaro Takahashi
  • Patent number: 8076029
    Abstract: A primary cell having an anode comprising lithium and a cathode comprising iron disulfide (FeS2) and carbon particles. The electrolyte comprises a lithium salt dissolved in a solvent mixture which contains 1,3-dioxolane and isosorbide dimethyl ether. The solvent mixture may comprise 1,3-dioxolane, 1,2-dimethoxyethane and additive isosorbide dimethyl ether. The isosorbide dimethyl ether comprises typically between about 2 and 15 percent by weight of the solvent mixture and improves cell service life and performance. A cathode slurry is prepared comprising iron disulfide powder, carbon, binder, and a liquid solvent. The mixture is coated onto a conductive substrate and solvent evaporated leaving a dry cathode coating on the substrate. The anode and cathode can be spirally wound with separator therebetween and inserted into the cell casing with electrolyte then added.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: December 13, 2011
    Assignee: The Gillette Company
    Inventors: Michael Sliger, Nikolai N. Issaev, Eric Navok, Kenneth E. Yelm
  • Patent number: 8076028
    Abstract: A primary cell having an anode comprising lithium or lithium alloy and a cathode comprising iron disulfide (FeS2), iron sulfide (FeS) and carbon particles. The electrolyte comprises a lithium salt dissolved in a solvent mixture. A cathode slurry is prepared comprising iron disulfide (FeS2) powder, iron sulfide (FeS) powder, carbon, binder, and a liquid solvent. The mixture is coated onto a conductive substrate and solvent evaporated leaving a dry cathode coating on the substrate. The anode and cathode can be spirally wound with separator therebetween and inserted into the cell casing with electrolyte then added.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: December 13, 2011
    Assignee: The Gillette Company
    Inventors: Barry D. Josephs, Michael Pozin, Zhiping Jiang, Maya Stevanovic, Fred J. Berkowitz, Yelena Kouznetsova, Steven J. Specht
  • Patent number: 8062796
    Abstract: Organic electrolytic solutions are provided. One solution includes a lithium salt, an organic solvent including a first solvent having high permittivity and a second solvent having a low boiling point, and a phosphate compound. By using the phosphate based compound, the organic electrolytic solution and the lithium battery including the organic electrolytic solution are flame resistant and have excellent charge/discharge properties. As a result, the lithium battery is highly stable and reliable and has good charge/discharge efficiency.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: November 22, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-gu Yoon, Seok-gwang Doo, Seung-sik Hwang, Kyu-sung Park, Nina K. Gusarova, Boris A. Trofimov
  • Patent number: 8048573
    Abstract: Organic electrolytic solutions and lithium batteries using the organic electrolytic solutions are provided. One organic electrolytic solution includes a lithium salt, a mixed organic solvent consisting of a high-dielectric constant solvent and a low-boiling point solvent, and a compound represented by Formula 1 or 2 as an additive. The organic electrolytic solution and the lithium battery using the organic electrolytic solution may inhibit the reductive cleavage reaction of a polar solvent, thereby increasing capacity retention of the battery, and improving charge-discharge efficiency and battery lifetime.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: November 1, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seok-soo Lee, Young-gyoon Ryu, Han-su Kim
  • Publication number: 20110229770
    Abstract: An electrolyte solution for a rechargeable lithium battery, including a lithium salt, a non-aqueous organic solvent, and an additive including fluoroethylene carbonate, a vinyl-containing carbonate, a substituted or unsubstituted C2 to C10 cyclic sulfate, and a nitrile-based compound represented by the following Chemical Formula 1: wherein, in Chemical Formula 1, R may be a substituted or unsubstituted C1 to C20 alkylene group.
    Type: Application
    Filed: January 12, 2011
    Publication date: September 22, 2011
    Inventors: Hee-Sun Yun, Yong-Beom Lee, Kwang-Jo Cheong, Soo-Mi Eo
  • Patent number: 8007938
    Abstract: A non-aqueous electrolyte solution is provided that realizes a large capacity, exhibits high storage characteristics and cycle characteristics, and is capable of inhibiting gas generation.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: August 30, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Minoru Kotato, Asao Kominato
  • Publication number: 20110206997
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery includes a lithium salt and an organic solvent and further includes a solvent having a fluoro group and a specific siloxane compound. A lithium secondary battery having the above non-aqueous electrolyte solution exhibits greatly improved capacity recovery characteristics after high temperature storage and also reduces side effects such as swelling.
    Type: Application
    Filed: December 17, 2008
    Publication date: August 25, 2011
    Applicant: LG Chem Ltd
    Inventors: Soo-Jin Kim, Jeong-Ju Cho, Su-Jin Yoon, Mi-Young Son, Jong-Ho Jeon
  • Publication number: 20110189547
    Abstract: Disclosed are an additive for improving charge/discharge characteristics of a lithium-ion cell, a nonaqueous electrolytic solution containing the additive, and a lithium-ion cell using the additive and/or the nonaqueous electrolytic solution. The additive serves as a solvent for a fluorine resin, such as poly(vinylidene fluoride), which is incorporated as an adhesive in a positive electrode containing a lithium-transition metal oxide capable of absorbing and releasing lithium and a negative electrode containing a carbon material capable of absorbing and releasing lithium. The additive comprises three compounds selected, respectively, from a 2-pyrrolidinone compound group, a cyclic alkyl compound group, and a cyclic pentanone compound group.
    Type: Application
    Filed: April 13, 2011
    Publication date: August 4, 2011
    Inventors: Xianming Wang, Yoshitsugu Sone, Saburo Kuwajima, Kenichi Kuwajima
  • Publication number: 20110177399
    Abstract: A battery capable of improving battery characteristics such as cycle characteristics and high temperature storage characteristics is provided. An anode includes an anode active material which includes Sn or Si as an element. A separator is impregnated with an electrolyte solution, and the electrolyte solution includes an acid anhydride such as succinic anhydride or a derivative thereof. Thereby, a coating is formed on the anode, and the decomposition of the electrolyte solution in the anode can be prevented. An electrolyte solution to which 4-fluoro-1,3-dioxolane-2-one is mixed is more preferably used.
    Type: Application
    Filed: March 29, 2011
    Publication date: July 21, 2011
    Applicant: SONY CORPORATION
    Inventors: Akira Yamaguchi, Kumiko Takagi, Yuzuru Fukushima, Satoshi Mizutani, Hiroshi Inoue, Atsumichi Kawashima
  • Patent number: 7981551
    Abstract: The present invention relates to an electrolyte for a lithium ion rechargeable battery and a lithium ion rechargeable battery including the same. The electrolyte includes a non-aqueous organic solvent, a lithium salt, and triphenyl phosphate. A lithium ion rechargeable battery including the electrolyte has improved overcharge stability and shows excellent chemical properties including reducing swelling, high-temperature storage stability, and cycle life characteristics.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: July 19, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Cheon Soo Kim, Hyung Bok Lee, Kwang Sup Kim, Sang Ho Lee, Joong Heon Kim, Tae Shik Earmme, Kwang Soo Yeo, Chan Hee Lee
  • Patent number: 7967875
    Abstract: This disclosure relates to methods of making a cathode for a lithium batter. The methods include: (a) treating a cathode current collector with flame or corona; (b) coating a slurry containing iron disulfide, a first solvent, and a binder onto the cathode current collector obtained from step (a) to form a coated cathode current collector, in which the slurry contains about 73-75% by weight solids and the binder contains a polymer selected from the group consisting of linear di- and tri-block copolymers, linear tri-block copolymers cross-linked with melamine resin, ethylene-propylene copolymers, ethylene-propylene-diene terpolymers, tri-block fluorinated thermoplastics, hydrogenated nitrile rubbers, fluoro-ethylene-vinyl ether copolymers, thermoplastic polyurethanes, thermoplastic olefins, and polyvinylidene fluoride homopolymers; and (c) drying the coated cathode current collector obtained from step (b) to provide a cathode, in which the cathode contains no more than 0.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: June 28, 2011
    Assignee: The Gillette Company
    Inventors: Christopher Boczer, Frank M. Delnick, Rosauro Del Rosario, Minkoo Kang, Lucyna M. Pawlowska, Michael Pozin, Dharmendra Rana, Maya Stevanovic, John J. Weckesser
  • Publication number: 20110117445
    Abstract: The present invention provides an electrolyte for lithium and lithium-ion batteries comprising a lithium salt such as LiF2BC2O4, LiPF6, LiBF4, and/or LiB(C2O4)2. In a liquid carrier comprising glycerol carbonate. Preferably, the electrolyte comprises a combination of glycerol carbonate with one or more other carbonate solvent (e.g., dimethylcarbonate, ethylene carbonate, and the like).
    Type: Application
    Filed: October 22, 2010
    Publication date: May 19, 2011
    Applicant: UChicago Argonne, LLC
    Inventor: Daniel P. ABRAHAM
  • Publication number: 20110081581
    Abstract: An organic electrolytic solution and a lithium battery employing the same are provided. The organic electrolytic solution includes a lithium salt, an organic solvent containing a first solvent having a high dielectric constant and a second solvent having a low boiling point, and a surfactant including a hydrophobic portion having an aromatic group. The organic electrolytic solution effectively prevents the electrolytic solution from contacting the anode, thereby suppressing side reactions on the anode surface and improving discharge capacity, charge/discharge efficiency, lifespan, and battery reliability.
    Type: Application
    Filed: November 8, 2010
    Publication date: April 7, 2011
    Inventors: Young-gyoon Ryu, Jae-young Choi, Eun-sung Lee, Seok-soo Lee, Do-yun Kim, Sang-hoon Song
  • Patent number: 7910249
    Abstract: Disclosed is an electrolyte for a battery, which comprises: (a) an electrolyte salt; (b) a solvent for electrolyte; and (c) a compound represented by the following formula 1: wherein R is a halogen atom, or a halogen-substituted or non-substituted C1˜C10 alkyl group or alkenyl group. An electrode comprising a passivation layer partially or totally formed on a surface thereof, wherein the passivation layer comprises a compound represented by the following Formula 1 or a chemical reaction product thereof, and a secondary battery using the electrolyte and/or the electrode are also disclosed. The compound can improve the initial charge/discharge efficiency and cycle life characteristics of a secondary battery, and can inhibit a battery from swelling under high-temperature storage conditions.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: March 22, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Ho Chun Lee, Tae Yoon Park, Yong Su Choi, Hong Kyu Park
  • Publication number: 20110045358
    Abstract: A non-aqueous electrolyte for a lithium battery includes a non-aqueous organic solvent, the organic solvent including one or more of a carbonate-based solvent, an ester-based solvent, an ether-based solvent, and/or a ketone-based solvent, a lithium salt, and a hexafluoroacetylacetone in an amount of about 0.02 parts by weight to about 10 parts by weight, based on 100 parts by weight of the non-aqueous organic solvent.
    Type: Application
    Filed: October 19, 2010
    Publication date: February 24, 2011
    Applicant: PANAX ETEC CO., LTD
    Inventors: Jung Kang OH, Young Jai CHO, Ho Seok YANG, Kab Youl LEE
  • Patent number: 7879499
    Abstract: An electrolyte for a lithium ion secondary battery includes a non-aqueous organic solvent; lithium salt; and difluoro oxalato borate and fluoro ethylene carbonate (FEC). The capacity retention property and durability of a lithium ion secondary battery including the electrolyte is excellent even when the battery is left at a high temperature.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: February 1, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jinsung Kim, Narae Park, Jinhyunk Lim, Suhee Han, Jinbum Kim, Jungkang Oh
  • Patent number: 7875201
    Abstract: An electrolyte solution used for an electrochemical device including an electrolyte and at least one of fluoro-containing compounds represented by the general formula (1): where, R1, R2 each represent a hydrogen atom, a fluorine atom, or an alkyl group of 1 to 10 carbon atoms in which R1 and R2 may be identical or different with each other, or a cyclic structure may be formed by providing bonding between the carbon atoms contained in R1 and R2.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: January 25, 2011
    Assignee: Panasonic Corporation
    Inventor: Hiroyuki Maeshima
  • Publication number: 20110008681
    Abstract: There is provided an electrolytic solution causing no phase separation even at low temperatures, being excellent in flame retardancy and noncombustibility, assuring high solubility of an electrolyte salt, having a high discharge capacity, being excellent in charge-discharge cycle characteristics and being suitable for electrochemical devices such as lithium ion secondary batteries.
    Type: Application
    Filed: September 12, 2008
    Publication date: January 13, 2011
    Inventors: Meiten Koh, Hitomi Nakazawa, Hideo Sakata, Michiru Tanaka, Akiyoshi Yamauchi, Aoi Nakazono
  • Patent number: 7833661
    Abstract: The present invention relates to additives for electrolytes of lithium ion secondary batteries that include one or more of the following: 1,3-propane sultone, succinic anhydride; ethenyl sulfonyl benzene, and halobenzene. It can also include biphenyl, cyclohexylbenzene; and vinylene carbonate. The weight of said 1,3-propane sultone is between 0.5 wt. % and 96.4 wt. %, said succinic anhydride is between 0.5 wt. % and 96.4 wt. %; said ethenyl sulfonyl benzene is between 0.5 wt. % and 95.2 wt. %; and said halobenzene is between 0.5 wt. % and 95.2 wt. % of the weight of the additive. Batteries with electrolytes containing said additives have improved over-charge characteristics and low temperature properties, and reduced gas generation during charging and discharging.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 16, 2010
    Assignee: BYD Company Limited
    Inventors: Feng Xiao, Mingxia Wang
  • Patent number: 7824810
    Abstract: An electrolytic solution capable of inhibiting self-discharge even under the high temperatures and a battery using the electrolytic solution are provided. A spirally wound electrode body in which a cathode and an anode are wound with a separator in between and spirally wound is included inside the battery can. An electrolytic solution is impregnated in the separator. The electrolytic solution contains ethylene sulfite, vinylene carbonate, LiPF6, and a light metal salt such as lithium difluoro[oxalato-O,O?]borate in a given range. Thereby, the self-discharge can be inhibited even under the high temperatures.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: November 2, 2010
    Assignee: Sony Corporation
    Inventors: Shinsaku Ugawa, Yoshikatsu Yamamoto
  • Patent number: 7816039
    Abstract: A non-aqueous electrolyte for a lithium battery includes a non-aqueous organic solvent, the organic solvent including one or more of a carbonate-based solvent, an ester-based solvent, an ether-based solvent, and/or a ketone-based solvent, a lithium salt, and a hexafluoroacetylacetone in an amount of about 0.02 parts by weight to about 10 parts by weight, based on 100 parts by weight of the non-aqueous organic solvent.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 19, 2010
    Assignee: Panax Etec Co., Ltd
    Inventors: Jung Kang Oh, Young Jai Cho, Ho Seok Yang, Kab Youl Lee
  • Patent number: 7799469
    Abstract: A nonaqueous electrolyte solution in which an electrolyte salt is dissolved in an organic solvent includes, includes at least one or more compounds selected from the silicon compounds represented by general formula (1), (2), or (3) below: (In the formulae, each of R1, R2, and R3 independently represents a C1-8 alkyl, C2-8 alkenyl, C2-8 alkynyl, or C6-8 aryl group; R4 represents a C1-8 alkylene, C2-8 alkenylene, C2-8 alkynylene, or C6-8 arylene group; and n represents 1 or 2. When n is 1, X represents a fluorine atom, trifluoromethyl group, C1-8 alkoxy group, C2-8 alkenyloxy group, C6-8 aryloxy group, or C2-8 acyloxy group, C1-8 sulfonyloxy group, isocyanato group, isothiocyanato group, or cyano group. When n is 2, X represents a C1-8 alkylene group, C1-8 alkylenedioxy group, C2-8 alkenylene group, C2-8 alkenylenedioxy group, C2-8 alkynylene group, C2-8 alkynylenedioxy group, C6-8 arylene group, C6-8 arylenedioxy group, C2-8 diacyloxy group, oxygen atom, or direct bond.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: September 21, 2010
    Assignees: Denso Corporation, Adeka Corporation
    Inventors: Kouhei Yamamoto, Satoru Suzuki, Manabu Yamada, Takayuki Taki, Atsuo Tomita, Hiroto Asano
  • Patent number: 7776476
    Abstract: A battery capable of improving cycle characteristics is provided. A spirally wound electrode body in which a cathode and an anode are wound with a separator in between is included. An electrolytic solution in which an electrolyte salt is dissolved in a solvent is impregnated in the separator. The electrolytic solution contains a cyclic ester carbonate derivative having halogen atom such as 4-fluoro-1,3-dioxolan-2-one and a light metal salt such as difluoro[oxolate-O,O?]lithium borate, tetrafluoro[oxolate-O,O?]lithium phosphate, and difluoro bis[oxolate-O,O?]lithium phosphate.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: August 17, 2010
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Hiroyuki Yamaguchi, Hiroshi Horiuchi, Tadahiko Kubota
  • Patent number: 7745052
    Abstract: The present invention provides a paste electrolyte comprising an organic solvent of not high dielectric constant, soluble lithium salts, and clays, with the clays being swollen by the solvent, and rechargeable lithium batteries containing the paste electrolyte. The paste electrolyte according to the present invention can improve the electrochemical properties and cycling stability of rechargeable lithium batteries by limiting the anionic transport between anode and cathode without significantly decreasing the lithium transport rate, particularly during fast charge and discharge.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: June 29, 2010
    Assignee: LG Chem, Ltd.
    Inventor: Jens M. Paulsen
  • Patent number: 7722988
    Abstract: A lithium electrochemical cell design incorporating a low molality electrolyte including LiI is disclosed. The resulting cell delivers excellent performance under a wide range of temperatures, conditions and drain rates.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: May 25, 2010
    Assignee: Eveready Battery Company, Inc.
    Inventor: Andrew Webber