Abstract: A membrane, suitable for use in a fuel cell, comprises: (a) a central region comprising an ion-conducting polymeric material; (b) a border region which creates a frame around the central region and which consists of one or more non-ion-conducting materials wherein at least one of the one or more non-ion-conducting materials forms a layer; wherein the non-ion-conducting material of the border region overlaps the ion-conducting polymeric material of the central region by 0 to 10 mm in an overlap region.
Type:
Application
Filed:
July 21, 2011
Publication date:
August 29, 2013
Applicant:
JOHNSON MATTHEY FUEL CELLS LIMITED
Inventors:
David Edward Barnwell, Peter Antony Trew, Thomas Robertson Ralph, Robert Jeffrey Coleman
Abstract: A functional layer material for a solid oxide fuel cell (SOFC) including a ceria ceramic oxide and a metal oxide including a metal, except for zirconium, having a Vegard's slope X represented by Equation 1 and having an absolute value |X| of the Vegard's slope X, wherein 27×105?|X|?45×105: X=(0.0220ri+0.00015zi) ??(1), wherein ri is an ionic radius difference between the metal and Ce4+, and zi is a charge difference between the metal and Ce4+.
Abstract: Polysulfone based polymer comprising a repeat unit represented by the following Chemical Formula 1 is provided: wherein, X, M1, M2, a, b, c, d, e, f, R1, R2, R3, R4 and n are as defined in the detailed description.
Type:
Grant
Filed:
April 9, 2010
Date of Patent:
August 27, 2013
Assignees:
Hyundai Motor Company, Dongjin Semichem Co., Ltd.
Inventors:
Ju Ho Lee, Dong II Kim, Jang-Bae Son, Hyung-Su Park, Inchul Hwang, Ki Yun Cho
Abstract: A proton-conducting structure that exhibits favorable proton conductivity in the temperature range of not lower than 100° C., and a method for manufacturing the same are provided. After a pyrophosphate salt containing Sn, Zr, Ti or Si is mixed with phosphoric acid, the mixture is maintained at a temperature of not less than 80° C. and not more than 150° C., and thereafter maintained at a temperature of not less than 200° C. and not more than 400° C. to manufacture a proton-conducting structure. The proton-conducting structure of the present invention has a core made of tin pyrophosphate, and a coating layer formed on the surface of the core, the coating layer containing Sn and O, and having a coordination number of O with respect to Sn of grater than 6.
Abstract: A method for making a ferritic stainless steel article having an oxidation resistant surface includes providing a ferritic stainless steel comprising aluminum, at least one rare earth metal and 16 to less than 30 weight percent chromium, wherein the total weight of rare earth metals is greater than 0.02 weight percent. At least one surface of the ferritic stainless steel is modified so that, when subjected to an oxidizing atmosphere at high temperature, the modified surface develops an electrically conductive, aluminum-rich, oxidation resistant oxide scale comprising chromium and iron and a having a hematite structure differing from Fe2O3, alpha Cr2O3 and alpha Al2O3. The modified surface may be provided, for example, by electrochemically modifying the surface, such as by electropolishing the surface.
Abstract: The plant (10) includes a molten metal anode (44) passing through a fuel cell (12) anode inlet (46) having a first interrupted flow generator (104), then into an anode flow field (42) of the fuel cell (12), and leaving the anode flow field (42) through an anode outlet (48) having a second interrupted flow generator (113). The molten anode (44) then flows into a reduction reactor (50) where the oxidized anode (44) is reduced by a reducing fuel (61). The molten anode (44) is then cycled back into the first interrupted flow generator (104) and anode flow field (42). Interrupting flow of the molten anode (44) prevents electrical continuity between the anode inlet (46) and the anode outlet (48) through the molten anode (44) within the anode flow field (42). This facilitates stacking the planar fuel cells in series within a fuel cell stack to build voltage.
Abstract: A hydrogen-oxygen fuel cell including an electrolyte sandwiched between two catalyst layers or sheets, each catalyst layer or sheet being in contact with a porous electrode, in which one or several catalyst layers or sheets and one or several electrode layers or sheets interpenetrate.
Abstract: A catalyst slurry, an electrode prepared by using the same, and a fuel cell including the electrode. The catalyst slurry includes: a catalyst material; a binder; and a solvent including a first liquid for dissolving the binder and a second liquid having a viscosity that is higher than that of the first liquid.
Type:
Grant
Filed:
June 1, 2012
Date of Patent:
August 20, 2013
Assignees:
Samsung Electronics Co., Ltd., Industry-University Cooperation Foundation Hanyang University
Inventors:
Suk-gi Hong, Jung-ock Park, Un-gyu Paik, Ki-chun Kil, Ji-hoon Seo
Abstract: The present invention is a solid oxide fuel cell device (1), having a fuel cell module (2) furnished with a plurality of fuel cell units (16); fuel supply means (38) for supplying fuel; generating oxidant gas supply means (45) for supplying oxidant gas for generation; combustion section placed at one end portion of the solid oxide fuel cell units for combusting fuel; and control means for controlling the fuel supply means and generating oxidant gas supply means, and executing the startup mode operation for raising the solid oxide fuel cell units to a predetermined temperature, as well as the generating mode operation for outputting electrical power; whereby during the startup mode operation, the control means generates a weak power smaller than the generation startup power, raising the temperature of the solid oxide fuel cell units by the heat of generation.
Abstract: A composite including: a carbonaceous material; and a solid solution including a first metal and a cerium oxide, wherein the solid solution is disposed on the carbonaceous material.
Abstract: A method of fabricating a membrane electrode assembly includes the steps of depositing a catalyst ink directly onto a membrane to form a catalyst coated membrane and hot pressing the catalyst coated membrane. The catalyst coated membrane has a catalyst layer that includes a catalyst and an ionomer.
Type:
Application
Filed:
September 30, 2010
Publication date:
August 1, 2013
Inventors:
Shampa Kandoi, Robert Mason Darling, William J. Bajorek
Abstract: A polymer electrolyte membrane (PEM) for fuel cells is provided, as well as a method for manufacturing the PEM by direct casting on the fuel cells electrodes. The PEM, consisting of an ionic liquid entrapped within polysiloxane-RTV matrix, is stable at high temperatures, in acidic and basic environments, and exhibits a high conductivity, without the crossover of methanol.
Type:
Grant
Filed:
December 22, 2006
Date of Patent:
July 23, 2013
Assignee:
Ben Gurion University of the Negev Research & Development Authority
Abstract: A redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a catholyte solution comprising a modified ferrocene species being at least partially reduced at the cathode in operation of the cell, and at least partially re-generated by reaction with the oxidant after such reduction at the cathode.
Abstract: Powders of respective metal elements (Mn,Co) constituting a transition metal oxide (MnCo2O4) having a spinel type crystal structure are used as a starting material. A paste containing the mixture of the powders is interposed between an air electrode and an interconnector, and with this state, a sintering is performed, whereby a bonding agent according to the present invention can be obtained. This bonding agent has a “co-continuous structure”. In the “co-continuous structure”, a thickness of an arm portion that links many base portions to one another is 0.3 to 2.5 ?m. The bonding agent includes a spherical particle in which plural crystal faces are exposed to the surface, the particle having a side with a length of 1 ?m or more, among the plural sides constituting the outline of the crystal face. The diameter of the particle is 5 to 80 ?m.
Abstract: The present invention provides a method of forming a nanostructured surface (NSS) on a polymer electrolyte membrane (PEM) of a membrane electrode assembly (MEA) for a fuel cell, in which a nanostructured surface is suitably formed on a polymer electrolyte membrane by plasma treatment during plasma assisted etching in a plasma-assisted chemical vapor deposition (PACVD) chamber, where catalyst particles or a catalyst layer are directly deposited on the surface of the polymer electrolyte membrane having the nanostructured surface.
Type:
Grant
Filed:
June 1, 2009
Date of Patent:
July 16, 2013
Assignees:
Hyundai Motor Company, Kia Motors Corporation, Korea Institute of Science and Technology
Inventors:
Kwang Ryeol Lee, Myoung Woon Moon, Sae Hoon Kim, Byung Ki Ahn
Abstract: The present invention relates to a polymer blend proton exchange membrane comprising a soluble polymer and a sulfonated polymer, wherein the soluble polymer is at least one polymer selected from the group consisting of polysulfone, polyethersulfone and polyvinylidene fluoride, the sulfonated polymer is at least one polymer selected from the group consisting of sulfonated poly(ether-ether-ketone), sulfonated poly(ether-ketone-ether-ketone-ketone), sulfonated poly(phthalazinone ether ketone), sulfonated phenolphthalein poly (ether sulfone), sulfonated polyimides, sulfonated polyphosphazene and sulfonated polybenzimidazole, and wherein the degree of sulfonation of the sulfonated polymer is in the range of 96% to 118%. The present invention further relates to a method for manufacturing the polymer blend proton exchange membrane.
Abstract: A sulfonated poly(arylene ether) copolymer that has a crosslinking structure in a chain of a polymer, a sulfonated poly(arylene ether) copolymer that has a crosslinking structure in and at an end of a chain of a polymer, and a polymer electrolyte film that is formed by using them are disclosed. According to the polycondensation reaction of the sulfonated dihydroxy monomer (HO—SAr1-OH), the none sulfonated dihydroxy monomer (HO—Ar—OH), the crosslinkable dihalide monomer (X—CM-X) and the none sulfonated dihalide monomer (X—Ar—X), the poly(arylene ether) copolymer in which the sulfonic acid is included is synthesized. The formed poly(arylene ether) copolymer has the crosslinkable structure in the chain of the polymer. In addition, by carrying out the polycondensation reaction in respects to the crosslinkable monohydroxy monomer or the crosslinkable monohalide monomer, the crosslinking can be formed at the end of the polymer.
Type:
Grant
Filed:
October 6, 2008
Date of Patent:
July 16, 2013
Assignee:
Gwangju Institute of Science and Technology
Inventors:
Jae-Suk Lee, Myung-Hwan Jeong, Kwan-Soo Lee, Eun-Seon Park, Young-Mu Joe
Abstract: A sheet body includes an electrolyte layer, a fuel electrode layer formed on the upper surface of the electrolyte layer, and an air electrode layer formed on the lower surface of the electrolyte layer, wherein these layers are stacked and fired in such a manner that the electrolyte layer is sandwiched between the fuel electrode layer and the air electrode layer. The fuel electrode layer is a porous layer including a first layer on a side close to the electrolyte layer made of fine particles of Ni and YSZ, and a second layer on a side apart from the electrolyte layer made of fine particles of Ni, YSZ, and ZrSiO4. The zircon particles are uniformly distributed in the second layer in the plane direction and in the stacking direction.
Abstract: This invention relates in general to components of electrochemical devices, and to methods of preparing the components. The components and methods include the use of a composition comprising an ionically conductive polymer and at least one solvent, where the polymer and the solvent are selected based on the thermodynamics of the combination. In one embodiment, the invention relates to a component for an electrochemical device which is prepared from a composition comprising a true solution of an ionically conductive polymer and at least one solvent, the polymer and the at least one solvent being selected such that |? solvent?? solute|<1, where ? solvent is the Hildebrand solubility parameter of the at least one solvent and where ? solute is the Hildebrand solubility parameter of the polymer.
Type:
Grant
Filed:
February 24, 2012
Date of Patent:
July 9, 2013
Assignee:
Battelle Memorial Institute
Inventors:
Jay R. Sayre, Megan E. Sesslar, James L. White, John R. Stickel, Mark C. Stasik, Bhima R. Vijayendran
Abstract: A fuel cell is manufactured using a polymer electrolyte membrane (1). A catalyst layer (12) is formed at fixed intervals on the surface of the strip-form polymer electrolyte membrane (1) in the lengthwise direction thereof, and conveyance holes (10) are formed in series at fixed intervals on the two side portions thereof. By rotating a conveyance roller (32) comprising on its outer periphery projections which engage with the holes (10), the polymer electrolyte membrane (1) is fed from a reel (9). A GDL (6) and a separator (7) are adhered to the fed polymer electrolyte membrane (1) at a predetermined processing timing based on the rotation speed of the conveyance roller (32), and thus the fuel cell is manufactured efficiently while the GDL (6) and separator (7) are laminated onto the catalyst layer (12) accurately.
Abstract: The present invention relates to a poly(arylene ether) copolymer having a cation exchange group, a method for manufacturing the same, and use thereof. The poly(arylene ether) copolymer having the cation exchange group according to the present invention has excellent physical characteristics, ion exchanging capacity, metal ion adsorption capacity and a processability, and thus can be molded in various shapes and can be extensively applied to various fields such as recovering of organic metal, air purification, catalysts, water treatment, medical fields and separating of proteins.
Type:
Grant
Filed:
November 30, 2011
Date of Patent:
June 25, 2013
Assignee:
Hyundai Motor Company
Inventors:
Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee
Abstract: A solid polymer electrolyte material made of a copolymer comprising a repeating unit based on a fluoromonomer A which gives a polymer having an alicyclic structure in its main chain by radical polymerization, and a repeating unit based on a fluoromonomer B of the following formula (1): CF2?CF(Rf)jSO2X??(1) wherein j is 0 or 1, X is a fluorine atom, a chlorine atom or OM {wherein M is a hydrogen atom, an alkali metal atom or a group of NR1R2R3R4 (wherein each of R1, R2, R3 and R4 which may be the same or different, is a hydrogen atom or a monovalent organic group)}, and Rf is a C1-20 polyfluoroalkylene group having a straight chain or branched structure which may contain ether oxygen atoms.
Abstract: A bipolar plate and a fuel cell are provided. The bipolar plate for the fuel cell has a plurality of flow channels, and a rib is defined between neighboring two flow channels. A top surface of the rib may be a roughened surface or have a porous structure in order to improve performance of the fuel cell.
Type:
Application
Filed:
August 2, 2012
Publication date:
June 20, 2013
Applicant:
INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
Inventors:
Li-Duan Tsai, Jiunn-Nan Lin, Chien-Ming Lai, Cheng-Hong Wang
Abstract: A solid oxide fuel cell includes an anode layer, an electrolyte layer over a surface of the anode layer, and a cathode layer over a surface of the electrolyte layer. The cathode layer includes a cathode bulk layer, a porous cathode functional layer at an electrolyte, an intermediate cathode layer partitioning the cathode bulk layer and the porous cathode functional layer, the porous intermediate cathode layer having a porosity greater than that of the cathode bulk layer. The solid oxide fuel cells can be combined to form subassemblies that are bonded together to form solid oxide fuel cell assemblies.
Type:
Grant
Filed:
December 29, 2009
Date of Patent:
June 11, 2013
Assignee:
Saint-Gobain Ceramics & Plastics, Inc.
Inventors:
Christopher J. Reilly, Guangyong Lin, Yeshwanth Narendar
Abstract: The invention relates to a process for preparing mechanically stabilized polyazole polymers. The process includes the steps of: a) producing a film comprising polyazoles with at least one amino group in a repeat unit, b) treating the film from step a) with a solution comprising (i) at least one acid and (ii) at least one stabilizing reagent, and c) performing the stabilization reaction in the membrane obtained in step directly or in a subsequent membrane processing step by heating to a temperature greater than 60° C. The stabilizing reagent contains at least one compound which has at least one aldehyde group and at least one hydroxyl group; or at least one hemiacetal group; or at least one acetal group. These polyazole polymer membranes have a high conductivity and a good mechanical stability and are suitable for applications in fuel cells.
Type:
Grant
Filed:
March 23, 2012
Date of Patent:
June 11, 2013
Assignee:
BASF SE
Inventors:
Friederike Fleischhaker, Oliver Gronwald, Jörg Belack
Abstract: An anode component of a solid oxide fuel cell is formed by combining a relatively coarse yttria-stabilized-zirconium (YSZ) powder, that is substantially composed of elongated particles, with a relatively fine NiO/YSZ or NiO powder of reduced particle size, whereby, upon sintering the combined powders, the coarse YSZ powder forms a microstructural cage of open porosity wherein the fine powder is distributed through the open porosity of the cage. A method of forming a cathode component includes combining a coarse YSZ powder, that is substantially composed of elongated particles, with a fine lanthanum strontium manganite powder of reduced particle size, whereby, upon sintering the combined powders, the coarse YSZ powder forms a microstructural cage of open porosity, wherein the fine powder is distributed through the open porosity of the cage.
Abstract: A method of making a solid oxide fuel cell (SOFC) includes forming a first sublayer of a first electrode on a first side of a planar solid oxide electrolyte and drying the first sublayer of the first electrode. The method also includes forming a second sublayer of the first electrode on the dried first sublayer of the first electrode prior to firing the first sublayer of the first electrode, firing the first and second sublayers of the first electrode during the same first firing step, and forming a second electrode on a second side of the solid oxide electrolyte.
Type:
Grant
Filed:
August 17, 2011
Date of Patent:
May 28, 2013
Assignee:
Bloom Energy Corporation
Inventors:
Emad El Batawi, Patrick Munoz, Dien Nguyen
Abstract: An electrochemical or electric layer system, having at least two electrode layers and at least one ion-conducting layer disposed between two electrode layers. The ion-conducting layer has at least one ion-conducting solid electrolyte and at least one binder at grain boundaries of the at least one ion-conducting solid electrolyte for improving the ion conductivity over the grain boundaries and the adhesion of the layers.
Type:
Application
Filed:
May 16, 2011
Publication date:
May 16, 2013
Applicant:
CONTINENTAL AUTOMOTIVE GMBH
Inventors:
Peter Birke, Olaf Böse, Michael Keller, Michael Schiemann, Hans-Georg Schweiger
Abstract: Disclosed is a solid polymer electrolyte fuel cell membrane comprising an anion exchange membrane that contains a hydrocarbon-based anion exchange resin, wherein the water permeability at 25° C. is 1400 g m?2 hr?1 or greater, the anion exchange capacity is 0.2 to 5.0 mmol·g?1, the percentage of water content at 25° C. is 7% by weight or greater, and the thickness is 3 to 50 ?m. It is especially preferable as a solid polymer electrolyte fuel cell membrane when said anion exchange membrane is an ion exchange membrane with a 5 to 15 ?m-thick porous membrane substrate, wherein the voids in said porous membrane are filled with a hydrocarbon-based anion exchange resin.
Abstract: Product formed from a ceramic material, at least part of the said product not being formed from amorphous silica and including pores and satisfying the following criteria (a), (b) and (c): (a) at least 70% by number of the said pores are frustoconical tubular pores extending substantially parallel to each other in a longitudinal direction; (b) in at least one cross-section plane, the mean size of the cross sections of the said pores is greater than 0.15 ?m and less than 300 ?m; (c) in at least one cross-section plane, at least 50% by number of the pores have a convexity index Ic of greater than 87%, the convexity index of a pore being equal to the ratio Sp/Sc of the surfaces Sp and Sc delimited by the perimeter and by the convex envelope of the said pore, respectively.
Type:
Application
Filed:
April 1, 2011
Publication date:
May 2, 2013
Applicants:
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, SAINT-GOBAIN CENTRE DE RECHERCHES ET D'ETUDES EUROPEEN
Abstract: Edge designs, especially for ePTFE-reinforced membranes for proton exchange membrane (PEM) fuel cells, wherein the designs provide a proton barrier at the electrode edge of the PEM fuel cell membrane electrode assembly (MEA) to provide, among other things, resistance to membrane chemical degradation. A portion of the ePTFE layer is imbibed with a proton-impermeable polymer at the electrode edge. The polymer can include, without limitation, B-staged epoxides, B-staged phenolics, hot melt thermoplastics, and/or thermosets or thermoplastics cast from liquid dispersions.
Type:
Grant
Filed:
November 3, 2006
Date of Patent:
April 30, 2013
Assignee:
GM Global Technology Operations LLC
Inventors:
William H. Pettit, Michael K. Budinski, Wenbin Gu
Abstract: The ceramic product provided by the present invention is provided with at least two ceramic members bonded to each other, and the bond parts between these ceramic members bonded to each other are formed from glass having leucite crystals precipitated within the glass matrix.
Abstract: A hydrogen fuel cell comprising: an anode; a cathode; an electrolyte; means for supplying a hydrogen-containing fuel to the fuel cell; and means for supplying an oxidant to the fuel cell; wherein the anode and, optionally, the cathode includes a catalyst comprising an alloy of the formula (I): PdxBiyMz (I) wherein: M is one or more metals; x is 0.2 to 0.4; y is 0.6 to 0.8; z is not greater than 0.1; and x+y+z=1; is described. Catalysts and electrodes for hydrogen fuel cells comprising the alloy and electrochemical methods using the alloy catalysts are also described.
Type:
Application
Filed:
March 21, 2011
Publication date:
April 25, 2013
Inventors:
Alexandros Anastasopoulos, Brian Elliott Hayden
Abstract: Proton conductivity has been shown in acceptor-doped rare earth orthoniobates and tantalates (LnNbO4 and LnTaO4) at high temperatures and in a humid atmosphere. The use of the materials as an electrolyte in a laboratory-scale fuel cell and water vapor sensor has been demonstrated. Results for Ca-doped LaNbO4 are given as examples.
Type:
Grant
Filed:
December 22, 2005
Date of Patent:
April 23, 2013
Assignee:
Universitetet I Oslo
Inventors:
Truls Norby, Reidar Haugsrud, Stefan Marion, Mari-Ann Einarsrud, Kjell Wiik, Øystein Andersen, Ruth Astrid Strøm, Tor Grande
Abstract: A polymer electrolyte membrane comprises at least one layer of a perforated sheet having many through-holes formed substantially parallel to the thickness direction with an average cross-sectional area per hole ranging from 1×10?3 to 20 mm2, wherein the numerical aperture based on the through-holes ranges from 30 to 80%, and the through-holes are filled with an ion exchange resin.
Abstract: Disclosed herein is a polyarylene-based polymer, a preparation method for the same, and a polymer electrolyte membrane for fuel cell using the polymer. The polyarylene-based polymer, which is designed to have long side chains of a hydrophilic moiety and dense sulfonic acid groups, may improve the formation of ion channels when fabricating a polymer membrane and also ensures good chemical stability of the hydrophilic moiety and good dimensional stability against water. Further, the preparation method of the present invention simplifies production of the polymer, and polymer electrolyte membranes using the polymer exhibits improved properties as a polymer electrolyte membrane for a fuel cell, such as high proton conductivity, even under an atmosphere of low water uptake, and good dimensional stability against a long-term exposure to water.
Type:
Grant
Filed:
December 9, 2011
Date of Patent:
April 16, 2013
Assignee:
Hyundai Motor Company
Inventors:
Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee, Jang-Bae Son
Abstract: An electrolyte membrane (11) includes: a filler (20); and a polymer electrolyte (22). A thickness of the electrolyte membrane (11) is 1 micrometer to 500 micrometer, a moisture content thereof is 10 mass % or more, and a ratio of a swelling ratio in a membrane surface direction (xy) thereof and a swelling ratio in a membrane thickness direction (z) thereof satisfies following Expression 1: where Lambda z is the swelling ratio in the membrane thickness direction (z), and Lambda xy is the swelling ratio in the membrane surface direction (xy). ? ? ? xy ? ? ? z < 0.3 [ Math .
Abstract: A fuel cell system includes a plurality of solid oxide fuel cells arranged in a fuel cell stack, an integrated heat exchanger/reformer operable to partially reform an anode feed prior to entry into the fuel cell stack, an anode tailgas oxidizer, and an offgas flow path extending away from an anode side of the fuel cell stack and having a first branch to selectively combine offgas from the anode side of the fuel cell stack with fuel from a fuel source to comprise the anode feed to the fuel cell stack and a second branch to supply offgas from the anode side of the fuel cell stack to the anode tailgas oxidizer. The integrated heat exchanger/reformer transfers heat from the oxidized offgas from the anode tailgas oxidizer to the anode feed before the anode feed enters the anode side of the fuel cell stack. The offgas from the anode tailgas oxidizer provides the sole heat source for the anode feed traveling through the integrated heat exchanger/reformer.
Abstract: An ion conducting membrane for fuel cell applications includes an ion conducting polymer and a porphyrin-containing compound at least partially dispersed within the ion conducting polymer. The ion conducting membranes exhibit improved performance over membranes not incorporating such porphyrin-containing compounds.
Type:
Grant
Filed:
August 31, 2009
Date of Patent:
April 2, 2013
Assignee:
GM Global Technology Operations LLC
Inventors:
Michael R. Schoeneweiss, Timothy J. Fuller, Frank Coms, Sean M MacKinnon
Abstract: The present invention relates to a fuel cell system. A hot zone chamber has a wall thickness T and a heat source coupled thereto. An elongate fuel cell device is positioned with a first lengthwise portion within the hot zone chamber, a second lengthwise portion outside the hot zone chamber, and a third lengthwise portion of length T within the chamber wall. The third portion has a maximum dimension L in a plane transverse to the length where T?½L.
Abstract: A single cell for a solid oxide fuel cell having wave-like architecture and a stack composed of such single cells is described. The cell design provides high durability. The stack design provides uniform distribution of reagents along the surface of the electrodes and between the individual cells. In addition the stack design is non material intensive.
Abstract: A nano-composite, including: a plurality of secondary particles, each secondary particle including a mixture of nano-size primary particles, wherein the mixture of nano-size primary particles includes particles including a nickel oxide or a copper oxide, and particles including zirconia doped with a trivalent metal element or ceria doped with a trivalent metal element, and wherein the nano-size primary particles define a plurality of nano-pores.
Abstract: An electrode for an electrochemical system, such as a fuel cell, is formed by an active layer including: pores; at least one catalyst; at least one ionomer; and electrically-conductive particles. The catalyst content per pore ranges between 30 and 500 mg/cm3 with respect to the pore volume.
Type:
Application
Filed:
March 28, 2011
Publication date:
March 21, 2013
Applicant:
Commissariat a L'Energie Atomique et aux Energies Alternatives
Abstract: In one embodiment, an electrical power storage system using hydrogen includes a power generation unit generating power using hydrogen and oxidant gas and an electrolysis unit electrolyzing steam. The electrical power storage system includes a hydrogen storage unit storing hydrogen generated by the electrolysis and supplying the hydrogen to the power generation unit during power generation, a high-temperature heat storage unit storing high temperature heat generated accompanying the power generation and supplying the heat to the electrolysis unit during the electrolysis, and a low-temperature heat storage unit storing low-temperature heat, which is exchanged in the high-temperature heat storage unit and generating with this heat the steam supplied to the electrolysis unit.
Abstract: A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Type:
Grant
Filed:
September 19, 2006
Date of Patent:
March 12, 2013
Assignee:
Hamilton Sundstrand Corporation
Inventors:
Mallika Gummalla, Jean Yamanis, Benoit Olsommer, Zissis Dardas, Robert Bayt, Hari Srinivasan, Arindam Dasgupta, Larry Hardin
Abstract: To obtain a nonwoven fabric which is excellent in the heat resistance and the chemical resistance, of which the fiber diameter is small, and which is excellent in the mechanical strength at a temperature at which it is used; and an electrolyte membrane which is excellent in the dimensional stability when it is swollen by water, and of which an increase in the resistance by a reinforcing material is suppressed. A nonwoven fabric 28 containing fibers 26 of an ethylene/tetrafluoroethylene copolymer having a storage elastic modulus E? at 25° C. of at least 8×108 Pa and a melt viscosity measured at 300° C. of higher than 60 Pa·s and at most 300 Pa·s, wherein the average fiber diameter of the fibers is from 0.01 to 3 ?m; and an electrolyte membrane reinforced by the nonwoven fabric 28.
Abstract: An electricity generator includes a membrane electrode assembly; a separator coupled to the membrane electrode assembly and including a first region and a second region; and a thermal conductor on one of the first region and the second region.
Type:
Application
Filed:
August 15, 2012
Publication date:
March 7, 2013
Inventors:
Jin-Hwa Lee, Tae-Yoon Kim, Geun-Seok Chai, Sung-Yong Cho, Hee-Tak Kim
Abstract: A fuel cell proton exchange membrane electrolyte is formed of a first layer (6) having its stronger tensile strength oriented in one direction, laminated to a second layer (7) having its stronger tensile strength oriented perpendicular to the stronger direction of the first layer.
Abstract: A method of manufacturing a fuel cell includes applying a sacrificial material periodically to a surface of an anode substrate, wherein at least some areas of the anode substrate have no sacrificial material. A first gas diffusion layer is applied to the sacrificial material, and a first catalyst material is applied to the first gas diffusion layer. An electrolyte material is applied to the anode substrate and the first gas diffusion layer, with the catalyst material, wherein a first surface of the electrolyte material is in operative association with the anode substrate, and the first gas diffusion layer. A second catalyst material is applied to the second surface of the electrolyte material. A second gas diffusion layer is applied to the electrolyte material on a second surface of the electrolyte material, with the catalyst material, wherein a first surface of the second gas diffusion layer is in contact with the second surface of the electrolyte material with the catalyst material.
Abstract: A combined subgasket and membrane support for a fuel cell is provided. The combined subgasket and membrane support includes a substantially fluid impermeable feed region circumscribing a porous membrane support region. The membrane support region is integrally formed with the feed region. At least one of the membrane support region and the feed region is at least partially formed by a radiation-cured structure. A method for fabricating the subgasket and membrane support for the fuel cell is also provided.
Type:
Grant
Filed:
December 22, 2008
Date of Patent:
March 5, 2013
Assignee:
GM Global Technology Operations
Inventors:
Gerald W. Fly, Yeh-Hung Lai, Jeffrey A. Rock, Keith E. Newman, Ping Liu, Alan J. Jacobsen, William B. Carter, Peter D. Brewer