Containing A Carboxyl Group Patents (Class 435/136)
  • Patent number: 8921080
    Abstract: The invention relates to an isolated polypeptide having esterase activity comprising an amino acid sequence shown in any one of SEQ ID NO's 2, 4, 6, 8, 10, 12 or 14 or a homologue thereof, comprising an amino acid substitution or deletion of one or more amino acids as shown in said SEQ ID NO's and resulting in a mutant polypeptide having an increased concentration of the fraction of the mutant polypeptide being present as an active and soluble protein in cleared lysate of the mutant polypeptide expressed in E. coli relative to the concentration of the fraction of the polypeptide without the mutation being present as an active and soluble protein in cleared lysate of the polypeptide without the one or more deletion or substitution expressed in E. coli under the same conditions. The invention also relates to nucleic acid encoding the polypeptides according to the invention, and the use of the polypeptides.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: December 30, 2014
    Assignee: DSM IP Assets B.V.
    Inventors: Martin Kietzmann, Harald Pichler, Helmut Schwab, Amin El-Heliebi, Christine Winkler, Andreas Braun
  • Publication number: 20140377820
    Abstract: The invention provides a non-naturally occurring microbial organism having n-propanol and isopropanol pathways, 1,4-butanediol (14-BDO) and isopropanol pathways, 1,3-butanediol (13-BDO) and isopropanol pathways or methylacrylic acid (MAA) and isopropanol pathways. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in each of the respective n-propanol, 14-BDO, 13-BDO or MAA and isopropanol pathways. The invention additionally provides a method for co-producing n-propanol and isopropanol, 14-BDO and isopropanol, 13-BDO and isopropanol or MAA and isopropanol. The method can include culturing an n-propanol and an isopropanol co-producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an n-propanol, an isopropanol, a 14-BDO, a 13-BDO and/or a MAA pathway enzyme in a sufficient amount to produce each of the respective products, under conditions and for a sufficient period of time to produce each of the respective products.
    Type: Application
    Filed: January 29, 2014
    Publication date: December 25, 2014
    Applicant: Genomatica, Inc.
    Inventors: Priti PHARKYA, Anthony P. BURGARD, Robin E. OSTERHOUT, Mark J. BURK, Jun SUN
  • Publication number: 20140377814
    Abstract: The present invention relates to a method for biologically treating carbon dioxide using the sulfur-oxidizing chemolithoautotroph Sulfurovum lithotrophicum 42BKT. The method of the present invention may enable carbon dioxide to be fixed or converted in high-concentration and high-pressure conditions which do not allow the biological photosynthetic conversion of microalgae or the like, and may exhibit high efficiency in the fixation of carbon dioxide as compared to existing methods for biologically treating carbon dioxide using microalgae. Further, the method of the present invention may use a gas mixture without a process of separating nitrogen and other gases, thus simplifying the process of the fixation or conversion of carbon diode.
    Type: Application
    Filed: September 20, 2012
    Publication date: December 25, 2014
    Inventors: Chang Ha Lee, Ik Sung Ahn, Hyuk Sung Kwon, Jae Hyuk Lee
  • Publication number: 20140377818
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, methods are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce an intermediate or product, e.g., by fermentation.
    Type: Application
    Filed: September 11, 2014
    Publication date: December 25, 2014
    Inventors: Marshall Medoff, Thomas Craig Masterman, Seul-a Bae, Kelly Wallick
  • Patent number: 8916359
    Abstract: The present invention relates to isolated polypeptides having glucoamylase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: December 23, 2014
    Assignees: Novozymes A/S, Novozymes North America, Inc.
    Inventors: Sara Landvik, Marc Dominique Morant, Keiichi Ayabe, Guillermo Coward-Kelly
  • Patent number: 8916366
    Abstract: The invention relates to a multi-cellulase enzyme composition for the enzymatic hydrolysis of cellulosic biomass said composition comprising a cellobiohydrolase (CBH) enzyme, an endoglucanase (EG) enzyme and a ?-glucosidase (BG) enzyme.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: December 23, 2014
    Assignee: Codexis, Inc.
    Inventors: Kripa Rao, Ish Dhawan, Sally Postlethwaite, Jie Yang
  • Patent number: 8916364
    Abstract: The invention relates to a nitrilase having improved activity in the reaction of a nitrile to form the corresponding carboxylic acid, in particular with respect to reacting 2-methylglutaronitrile, 1-(cyanomethyl)cyclohexane-1-carbonitrile, and benzonitrile. The nitrilase according to the invention is related to nitrilase from acidovorax facilis.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: December 23, 2014
    Assignee: c-LEcta GmbH
    Inventors: Andreas Vogel, Daniel Schwarze, Thomas Greiner-Stoeffele
  • Publication number: 20140371418
    Abstract: The invention generally relates to biological engineering of microorganisms and production of chemical compounds therefrom. More particularly, the invention relates to novel genetically engineered microorganisms for the fermentative production of p-aminobenzoic acid and related compounds from fermentable carbon substrates. The biologically derived PABA and related compounds from fermentable carbon substrates can be used in a number of applications including as a food supplement or raw materials for the syntheses of other industrial chemicals or polymers.
    Type: Application
    Filed: January 4, 2013
    Publication date: December 18, 2014
    Applicant: pAromatics, LLC
    Inventors: Wing On Ng, Shingo Watanabe, Robert W.R. Humphreys, Steven C. Slater
  • Publication number: 20140370551
    Abstract: This disclosure provides a business method and system for generating sugars and recycling a non-biomass component from a waste stream. In some embodiments, a waste stream comprising cellulose and a non-biomass component is saccharified to produce glucose, followed by recovery of the glucose and non-biomass component, which may be recycled to another site associated with production of a cellulose-containing product that contains the non-biomass component. In certain scenarios, the waste stream is generated at a first location, cellulose pretreatment (if desired) and hydrolysis are conducted at a second location, and the non-biomass component is recycled to the first location or a third location. The non-biomass component may include metals, metal oxides, salts, organic compounds, inorganic compounds, oligomers, or polymers, for example.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 18, 2014
    Inventors: Theodora RETSINA, Kimberly NELSON
  • Publication number: 20140370559
    Abstract: The invention relates to the microbial fermentation of gaseous substrates to produce one or more products. The invention relates to the microbial fermentation of a gaseous substrate derived from the conversion of a biogas stream. The invention relates to the conversion of a biogas stream comprising methane to a gaseous substrate comprising CO or CO plus H2, and the production of one or more products from the microbial fermentation of said gaseous substrate.
    Type: Application
    Filed: March 14, 2014
    Publication date: December 18, 2014
    Applicant: LanzaTech New Zealand Limited
    Inventors: Simon David Oakley, Joss Anton Coombes, Sean Dennis Simpson, Bjorn Daniel Heijstra, Michael Anthony Schultz, Sean Molloy
  • Publication number: 20140370552
    Abstract: The present invention provides endoglucanase 1b (EG1b) variants suitable for use in saccharification reactions. The present application further provides genetically modified fungal organisms that produce EG1b variants, as well as enzyme mixtures exhibiting enhanced hydrolysis of cellulosic material to fermentable sugars, enzyme mixtures produced by the genetically modified fungal organisms, and methods for producing fermentable sugars from cellulose using such enzyme mixtures.
    Type: Application
    Filed: December 18, 2012
    Publication date: December 18, 2014
    Inventors: Ee Lui Ang, Ellen D. Eberhard, Xiyun Zhang, Wei Zhang, Jing Tian, Derek J. Smith, Vesna Mitchell
  • Patent number: 8911977
    Abstract: Acetyl xylan esterases and variants thereof having perhydrolytic activity are provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. Multi-component peracid generation systems comprising an enzyme catalyst having perhydrolytic activity are also provided, as are methods of using the present enzyme catalyst to produce peroxycarboxylic acids. The polypeptide having perhydrolytic activity may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, paper pulp processing, and personal care applications.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 16, 2014
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Scott Payne, Robert DiCosimo
  • Publication number: 20140363861
    Abstract: The technology relates, in certain aspects, to the use of novel extreme thermophile microorganisms, which are able to convert lignocellulosic biomass to carboxylic acids, in particular to lactic acid and/or acetic acid, salts or esters thereof.
    Type: Application
    Filed: September 21, 2012
    Publication date: December 11, 2014
    Inventors: Simon Curvers, Vitaly Svetlichnyi
  • Publication number: 20140352706
    Abstract: The present invention relates to a mutant, non-naturally occurring or transgenic plant cell comprising: (i) at least one polynucleotide comprising, consisting or consisting essentially of a sequence encoding an isopropylmalate synthase and having at least 60% sequence identity to SEQ ID NO:1 or SEQ ID NO:10 or SEQ ID NO: 12 or SEQ ID NO:14; or (ii) a polypeptide encoded by said polynucleotide(s); or (iii) a polypeptide having at least 60% sequence identity to SEQ ID NO:2 or SEQ ID NO:11 or SEQ ID NO:13 or SEQ ID NO:15; or (iv) a construct, vector or expression vector comprising said polynucleotide sequence(s), optionally wherein said construct, vector or expression vector additionally comprises a promoter comprising, consisting or consisting essentially of the sequence set forth in SEQ ID NO:8 or a variant thereof with at least about 60% identity thereto or a trichome promoter.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 4, 2014
    Applicant: PHILIP MORRIS PRODUCTS S.A.
    Inventors: Nicholas Bakaher, Gregor Nicholas Bindler, Michel Philippe Blanc, Simon Goepfert, Florian Martin
  • Publication number: 20140356918
    Abstract: The subject of the present invention is a process for synthesizing bifunctional hydrocarbon-based compounds from biomass, comprising a step of fermentation of the biomass and a step of oxidation of the intermediate compounds resulting from the fermentation step.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 4, 2014
    Applicant: Arkema France
    Inventor: Jean-Luc Dubois
  • Publication number: 20140356915
    Abstract: Processes are described for fractionating lignocellulosic biomass into cellulose, hemicellulose, and lignin, comprising fractionating lignocellulosic biomass in the presence of a solvent for lignin (such as ethanol), a hydrolysis catalyst (such as sulfur dioxide), and water, to produce a liquor containing hemicellulose, cellulose-rich solids, and lignin; hydrolyzing the hemicellulose to produce hemicellulosic monomers; saccharifying the cellulose-rich solids to produce glucose; recovering the hemicellulosic monomers and the glucose, separately or in a combined stream, as fermentable sugars; and fermenting the fermentable sugars to a fermentation product having a higher normal boiling point than water. Process integration of mass and/or energy is disclosed in many specific embodiments. The fermentation product may include an organic acid, an alcohol, a diol, or combinations thereof.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 4, 2014
    Applicant: API Intellectual Property Holdings, LLC
    Inventors: Theodora RETSINA, Vesa PYLKKANEN, Ryan P. O'CONNOR
  • Patent number: 8900837
    Abstract: The invention provides a non-naturally occurring microbial organism having a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway. The invention additionally provides a method for producing 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid. The method can include culturing a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid producing microbial organism expressing at least one exogenous nucleic acid encoding a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway enzyme in a sufficient amount and culturing under conditions and for a sufficient period of time to produce 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: December 2, 2014
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Mark J. Burk, Robin E. Osterhout, Priti Pharkya
  • Publication number: 20140349348
    Abstract: The present invention relates to mutated and/or transformed microorganisms for the synthesis of various compounds. More specifically, the present invention discloses microorganisms mutated in the genes encoding for the regulators ArcA and IclR. The latter mutations result in a significant upregulation of the genes that are part of the colanic acid operon. Hence, said microorganisms are useful for the synthesis of any compound being part of the colanic acid pathway such as GDP-fucose, GDP-mannose and colanic acid, and/or, can be further used—starting form GDP-fucose as a precursor—to synthesize fucosylated oligosaccharides or—starting from GDP-mannose as a precursor—to synthesize mannosylated oligosaccharides. In addition, mutations in the genes coding for the transcriptional regulators ArcA and IclR lead to an acid resistance phenotype in the exponential growth phase allowing the synthesis of pH sensitive molecules or organic acids.
    Type: Application
    Filed: December 14, 2012
    Publication date: November 27, 2014
    Inventors: Joeri Beauprez, Gaspard Lequeux, Jo Maertens
  • Publication number: 20140349338
    Abstract: The present invention relates to novel bacteria and the uses thereof. The invention particularly relates to bacteria having a metabolic pathway ratio between Pentose phosphate and glycolysis greater than 0.5, and their uses in the chemical, pharmaceutical or agro-chemical industries, e.g., for producing compounds of industrial interest.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 27, 2014
    Applicant: DEINOVE
    Inventors: Jean-Paul Leonetti, Juha-Pekka Pitkanen, Paula Jouhten
  • Publication number: 20140342414
    Abstract: The present disclosure relates to biocatalytic methods or processes for the synthesis of acrylic acid and its derivatives, or other carboxylic acid compounds of the formula R—CO2H, wherein R is a carbon chain of 5 carbons or fewer, such as methacrylic acid or 3-hydroxypropionic acid. More specifically, the disclosure relates to methods of using an acyl-CoA hydrolase (such as a thioesterase) as a biocatalyst for the hydrolysis (and removal of the CoA moiety) of a substrate acyl-CoA compound to produce the corresponding carboxylic acid compound, such as acrylic acid. In some embodiments, the disclosure provides non-naturally occurring microorganisms that have been transformed with a heterologous acyl-CoA hydrolase, such as a thioesterase, that is capable of hydrolyzing an acyl-CoA produced in a pathway of the microorganism and produce the corresponding carboxylic acid compound, thereby allowing methods for the direct fermentative production of the compound.
    Type: Application
    Filed: September 21, 2012
    Publication date: November 20, 2014
    Applicant: Codexis, Inc.
    Inventors: Fernando Valle, Nicholas John Agard, Christopher Noriega
  • Publication number: 20140335575
    Abstract: An object of the present invention is to provide a means for producing an optically active tropic acid that is a compound useful as a synthetic raw material or an intermediate for pharmaceutical products and the like. The present invention provides a novel polypeptide having activity to (R)-selectively hydrolyze a racemic tropic acid amide, DNA encoding the polypeptide, a vector containing the DNA, a transformant prepared by transformation with the vector, and a method for producing an optically active carboxylic acid amide and an optically active carboxylic acid using them.
    Type: Application
    Filed: September 28, 2012
    Publication date: November 13, 2014
    Inventors: Masutoshi Nojiri, Hiroyuki Kanamaru, Akiko Nishi, Shigeru Kawano, Yoshihiko Yasohara
  • Publication number: 20140335570
    Abstract: The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Novozymes Inc.
    Inventor: Nikolaj Spodsberg
  • Patent number: 8883465
    Abstract: The present invention relates to a mini-emulsion which comprises at least one hydrolase, where the continuous phase of the mini-emulsion contains at least one oxidant, while the dispersed phase comprises at least one C6-60 carboxylic acid and optionally at least one reactant. Furthermore, the present invention relates to a method of preparing the mini-emulsion and to a process for the preparation of C6-60 percarboxylic acids and to a process for the preparation of an oxidized reactant, in each case using the abovementioned mini-emulsions.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 11, 2014
    Assignees: Henkel AG & Co. KGAA, Max-Planck-Gesellschaft zur Forderung der Foerderung der Wissenschaften E.V.
    Inventors: Andreas Taden, Melanie Hagenbucher, Katharina Landfester
  • Patent number: 8883464
    Abstract: This invention relates to metabolically engineered microorganism strains, such as bacterial strains, in which there is an increased utilization of malonyl-CoA for production of a chemical product, which includes 3-hydroxypropionic acid.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: November 11, 2014
    Assignees: OPX Biotechnologies, Inc., The Regents of the University of Colorado, a Body Corporate
    Inventors: Michael D. Lynch, Ryan T. Gill, Tanya E. W. Lipscomb
  • Patent number: 8877467
    Abstract: Biomass feedstocks (e.g., plant biomass, animal biomass, and municipal waste biomass) are processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce a product or intermediate, e.g., energy, a food, a fuel, or a material.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: November 4, 2014
    Assignee: Xyleco, Inc.
    Inventors: Marshall Medoff, Thomas Craig Masterman
  • Publication number: 20140322772
    Abstract: Methods and systems for producing and removing C6 and/or C8 carboxylates and/or methane from carbohydrate containing biomass, an alcohol, and mixtures of microorganisms under an anaerobic environment. The C6 and/or C8 carboxylates are removed continuously or in-line. Methanogenesis is not inhibited and very little input carbon is lost as carbon dioxide.
    Type: Application
    Filed: August 8, 2012
    Publication date: October 30, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Largus T. Angenent, Matthew T. Agler
  • Publication number: 20140322753
    Abstract: The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 30, 2014
    Inventors: Paul Harris, Elena Vlasenko, Marcus Sakari Kauppinnen, Elizabeth Zaretsky, Sarah Teter, Kimberly Brown
  • Publication number: 20140322766
    Abstract: A process for production of C5 and C6 sugar enriched syrups from lignocellulosic biomass and fermentation products therefrom is described. A lignocellulosic biomass is treated with a C1-C2 acid (e.g., acetic acid) with washing thereof with a C1-C2 acid miscible organic solvent, (e.g., ethyl acetate). A soluble hemicellulose and lignin enriched fraction is obtained separately from a cellulose pulp enriched fraction and lignin is removed from the soluble hemicellulose fraction. These fractions contain acylated (e.g., acetylated) cellulose and hemicellulose, which are deacylated by treatment with an alkali and/or with an acetyl esterase enzyme. The deacylated fractions are then digested with suitable cellulolytic and/or hemicellulolytic enzymes, preferably in the presence of non-ionic detergent to yield the C5 and C6 enriched syrups.
    Type: Application
    Filed: May 16, 2014
    Publication date: October 30, 2014
    Applicant: ARCHER DANIELS MIDLAND COMPANY
    Inventors: Wuli Bao, Thomas Binder, Charles Abbas, Lucas Loveless
  • Patent number: 8871475
    Abstract: A method is provided for improving enzymatic hydrolysis in saccharification of a lignocellulosic material. The method is comprising pretreating the lignocellulosic material to obtain a slurry of pretreated lignocellulosic material; adding at least one reducing agent to the slurry of pretreated lignocellulosic material or the liquid fraction thereof to decrease the enzymatic hydrolysis inhibitory properties of slurry of the pretreated lignocellulosic material or the liquid fraction thereof; and subjecting the slurry of pretreated lignocellulosic material or the liquid fraction thereof to enzymatic hydrolysis in the presence of the at least one reducing agent.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: October 28, 2014
    Assignee: Sekab E-Technology AB
    Inventors: Bjorn Alriksson, Leif Jonsson, Venkata Prabhakar Soudham
  • Publication number: 20140315259
    Abstract: The present application provide methods for producing ethanol from a biomass. The methods combine sugars produced from a feedstock containing starch with sugars produced from a cellulosic biomass. The methods allow increased amounts of ethanol to be produced from a given solids concentration in the fermenters. The methods also encompass filtering the liquefied feedstock mash through a filter comprising biomass fibers. The biomass filter produces a post-filtered mash stream comprising a high concentration of sugars and a low concentration of non-fermentable solids. The methods provide numerous advantages described herein.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 23, 2014
    Inventors: Richard Root Woods, James Kacmar
  • Patent number: 8865439
    Abstract: The invention provides a non-naturally occurring microbial organism having a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway. The invention additionally provides a method for producing 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid. The method can include culturing a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid producing microbial organism expressing at least one exogenous nucleic acid encoding a 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid pathway enzyme in a sufficient amount and culturing under conditions and for a sufficient period of time to produce 2-hydroxyisobutyric acid, 3-hydroxyisobutyric acid or methacrylic acid.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Mark J. Burk, Robin E. Osterhout, Priti Pharkya
  • Patent number: 8865435
    Abstract: Acetyl xylan esterases and variants thereof having perhydrolytic activity are provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. Multi-component peracid generation systems comprising an enzyme catalyst having perhydrolytic activity are also provided, as are methods of using the present enzyme catalyst to produce peroxycarboxylic acids. The polypeptide having perhydrolytic activity may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, paper pulp processing, and personal care applications.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 21, 2014
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Scott Payne, Robert DiCosimo
  • Patent number: 8865437
    Abstract: Acetyl xylan esterases and variants thereof having perhydrolytic activity are provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. Multi-component peracid generation systems comprising an enzyme catalyst having perhydrolytic activity are also provided, as are methods of using the present enzyme catalyst to produce peroxycarboxylic acids. The polypeptide having perhydrolytic activity may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, paper pulp processing, and personal care applications.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 21, 2014
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Scott Payne, Robert DiCosimo
  • Patent number: 8865436
    Abstract: Acetyl xylan esterases and variants thereof having perhydrolytic activity are provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. Multi-component peracid generation systems comprising an enzyme catalyst having perhydrolytic activity are also provided, as are methods of using the present enzyme catalyst to produce peroxycarboxylic acids. The polypeptide having perhydrolytic activity may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, paper pulp processing, and personal care applications.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 21, 2014
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Mark Scott Payne, Robert DiCosimo
  • Publication number: 20140308701
    Abstract: The present invention relates to recombinant filamentous fungal host cells producing cellulolytic enzyme compositions and methods of producing and using the compositions.
    Type: Application
    Filed: August 23, 2012
    Publication date: October 16, 2014
    Inventors: Jeffrey Shasky, Amanda Fischer, Suchindra Maiyuran
  • Publication number: 20140308720
    Abstract: This invention provides processes to convert biomass, including wood and agricultural residues, to levulinic acid and co-products. Some variations treat feedstock with steam and/or hot water to produce an extract liquor containing hemicellulosic oligomers, lignin, and cellulose-rich solids, wherein the hemicellulosic oligomers comprise C5 hemicelluloses and C6 hemicelluloses; separate the cellulose-rich solids from the extract liquor, to produce dewatered solids containing cellulose and lignin; dehydrate the hemicellulosic oligomers to convert the C6 hemicelluloses directly to 5-hydroxymethylfurfural; and convert the 5-hydroxymethylfurfural to levulinic acid. Also, the cellulose may be dehydrated directly to 5-hydroxymethylfurfural, which may then be converted to additional levulinic acid. Various biorefinery embodiments are disclosed, in which C5 and C6 sugars are processed separately or in combination.
    Type: Application
    Filed: April 11, 2014
    Publication date: October 16, 2014
    Applicant: API Intellectual Property Holdings, LLC
    Inventors: Theodora RETSINA, Vesa PYLKKANEN, Ryan O'CONNOR
  • Publication number: 20140304859
    Abstract: Provided are isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: December 14, 2012
    Publication date: October 9, 2014
    Applicant: Novozymes Inc.
    Inventors: Ye Liu, Yu Zhang, Junxin Duan, Lan Tang
  • Publication number: 20140302574
    Abstract: Methods and materials related to producing 3-HP as well as other organic compounds are disclosed. Specifically, isolated nucleic acids, polypeptides, host cells, and methods and materials for producing 3-HP and other organic compounds are disclosed.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 9, 2014
    Applicant: Cargill, Incorporated
    Inventors: Ravi R. Gokarn, Olga V. Selifonova, Holly Jean Jessen, Steven John Gort, Thorsten Selmer, Wolfgang Buckel
  • Publication number: 20140302571
    Abstract: Carbon-containing materials, such as biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) or coal are processed to produce useful products, such as fuels. For example, systems are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 9, 2014
    Inventors: Marshall MEDOFF, Thomas Craig MASTERMAN
  • Patent number: 8852901
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, methods are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce an intermediate or product, e.g., by fermentation.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: October 7, 2014
    Assignee: Xyleco, Inc.
    Inventors: Marshall Medoff, Thomas Craig Masterman, Seul-a Bae, Kelly Wallick
  • Publication number: 20140289905
    Abstract: Provided are isolated polypeptides having xylanase activity, catalytic domains and cellulose binding domains, and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.
    Type: Application
    Filed: November 9, 2012
    Publication date: September 25, 2014
    Applicant: Novozymes Inc.
    Inventors: Yu Zhang, Junxin Duan, Ye Liu, Lan Tang
  • Publication number: 20140287465
    Abstract: The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.
    Type: Application
    Filed: December 18, 2012
    Publication date: September 25, 2014
    Inventors: Nikolaj Spodsberg, Tarana Shaghasi
  • Publication number: 20140287461
    Abstract: A method of producing a sugar liquid using a cellulose-containing biomass as a raw material includes (a) hydrolyzing a cellulose-containing biomass to produce an aqueous sugar solution and (b) filtering the obtained aqueous sugar solution through a reverse osmosis membrane to collect a purified sugar liquid from a feed side, while removing fermentation-inhibiting substances from a permeate side.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 25, 2014
    Applicant: Toray Industries, Inc.
    Inventors: Hiroyuki Kurihara, Atsushi Minamino, Masateru Ito, Hideki Sawai, Masayuki Hanakawa, Shin-ichi Minegishi, Katsushige Yamada
  • Publication number: 20140287466
    Abstract: The invention relates to a process for the conversion of lignocellulose into an organic acid including an alkaline pretreatment step and a fermentation step, wherein liquid phase obtained in the fermentation step is recycled to the alkaline pretreatment step and/or the fermentation step. Organic acid is recovered as its magnesium of calcium salt from solid phase obtained in the fermentation step.
    Type: Application
    Filed: October 23, 2012
    Publication date: September 25, 2014
    Applicant: PURAC BIOCHEM B.V.
    Inventors: Johan Pieter Marinus Sanders, Robert Reurd Christophor Bakker
  • Publication number: 20140288254
    Abstract: Provided herein is a non-naturally occurring microbial organism having a methanol metabolic pathway that can enhance the availability of reducing equivalents in the presence of methanol. Such reducing equivalents can be used to increase the product yield of organic compounds produced by the microbial organism, such as 3-hydroxyisobutyrate or MAA. Also provided herein are methods for using such an organism to produce 3-hydroxyisobutyrate or MAA.
    Type: Application
    Filed: November 4, 2013
    Publication date: September 25, 2014
    Applicant: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Cara Ann Tracewell, Priti Pharkya, Stefan Andrae
  • Patent number: 8841098
    Abstract: Acetyl xylan esterases and variants thereof having perhydrolytic activity are provided for producing peroxycarboxylic acids from carboxylic acid esters and a source of peroxygen. Multi-component peracid generation systems comprising an enzyme catalyst having perhydrolytic activity are also provided, as are methods of using the present enzyme catalyst to produce peroxycarboxylic acids. The polypeptide having perhydrolytic activity may be used to produce peroxycarboxylic acids suitable for use in a variety of applications such as cleaning, disinfecting, sanitizing, bleaching, wood pulp processing, paper pulp processing, and personal care applications.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 23, 2014
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Mark Scott Payne, Robert DiCosimo
  • Publication number: 20140273108
    Abstract: A method of producing hydrolysate from cellulosic material by adding hydrothermally treated stillage or a fraction thereof to cellulosic material, treating the mixture of hydrothermally treated stillage and cellulosic material with at least one hydrolyzing enzyme, and hydrolyzing and converting complex carbohydrates in the cellulosic material. The hydrolysate produced by the method. Ethanol, organic acids, and organism metabolites produced by the method. Biomass produced by the method. A method of increasing sugar production rate and yield of sugars from cellulosic material by adding hydrothermally treated stillage or a fraction thereof to cellulosic material, treating the mixture of hydrothermally treated stillage and cellulosic material with at least one hydrolyzing enzyme, and hydrolyzing complex carbohydrates in the cellulosic material and forming sugars.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Valicor, Inc
    Inventor: James Robert Bleyer
  • Publication number: 20140273117
    Abstract: The present invention comprises a process to produce organic products from a single-carbon substrate; microbial compositions used in the process; and a process to isolate microorganisms for the process.
    Type: Application
    Filed: March 16, 2014
    Publication date: September 18, 2014
    Inventor: Richard Allen Kohn
  • Publication number: 20140273105
    Abstract: Lignocellulosic biomass pretreated with ammonia where the concentration of the biomass in the reaction mixture is reduced over time was found to produce more sugars following saccharification, as compared to equivalent biomass pretreated at constant concentration. The concentration of biomass is a solids concentration, which is the percent of dry biomass relative to the total pretreatment reaction mixture on a weight to weight basis.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: PATRICIA CHEUNG, BRADLEY CURT FOX, MING WOEI LAU, JOSEPH MICHAEL SELBY, GREGORY PAUL SHANKWITZ, STUART M THOMAS, RYAN ERIC WARNER
  • Publication number: 20140273119
    Abstract: Provided are isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: November 30, 2012
    Publication date: September 18, 2014
    Inventors: Ye Liu, Lan Tang, Yu Zhang, Junxin Duan