Preparing Oxygen-containing Organic Compound Patents (Class 435/132)
  • Patent number: 10501920
    Abstract: An absorbent article is disclosed having a topsheet, a backsheet joined with the topsheet, an absorbent core disposed between the topsheet and the backsheet, and a synthetic superabsorbent polymer derived from a first renewable resource via at least one intermediate compound, wherein said superabsorbent polymer exhibits a defined Saline Flow Conductivity value and Absorption Against Pressure value. Alternately, an absorbent article is disclosed having a synthetic polyolefin derived from a first renewable resource via at least one intermediate compound. The synthetic polyolefin exhibits defined performance characteristics making the polyolefin particularly useful in certain components of the absorbent article. Methods for making the aforementioned absorbent articles are also disclosed.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: December 10, 2019
    Assignee: The Procter & Gamble Company
    Inventor: Bryn Hird
  • Patent number: 10174342
    Abstract: The invention relates to enzymatic methods for hydroxylation in position 2 or 3 of substituted or unsubstituted, linear or branched aliphatic hydrocarbons.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: January 8, 2019
    Assignee: Novozymes A/S
    Inventors: Martin Hofrichter, Katrin Scheibner, Rene Ullrich, Matthias Kinne, Sebastian Peter, Henrik Lund, Lisbeth Kalum
  • Patent number: 10166312
    Abstract: An absorbent article is disclosed having a topsheet, a backsheet joined with the topsheet, an absorbent core disposed between the topsheet and the backsheet, and a synthetic superabsorbent polymer derived from a first renewable resource via at least one intermediate compound, wherein said superabsorbent polymer exhibits a defined Saline Flow Conductivity value and Absorption Against Pressure value. Alternately, an absorbent article is disclosed having a synthetic polyolefin derived from a first renewable resource via at least one intermediate compound. The synthetic polyolefin exhibits defined performance characteristics making the polyolefin particularly useful in certain components of the absorbent article. Methods for making the aforementioned absorbent articles are also disclosed.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: January 1, 2019
    Assignee: The Procter & Gamble Company
    Inventor: Bryn Hird
  • Patent number: 10100289
    Abstract: The present invention provides improved P450-BM3 variants with improved activity. In some embodiments, the P450-BM3 variants exhibit improved activity over a wide range of substrates.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: October 16, 2018
    Assignee: Codexis, Inc.
    Inventors: Robert Osborne, Vesna Mitchell, Khin Yu Naing Htwe, Xiyun Zhang, Erika M. Milczek, Jeffrey C. Moore
  • Patent number: 10041095
    Abstract: The invention relates to a process for producing a microbial storage compound, in particular polyhydroxyalkanoate, using micro-organisms capable of accumulating such microbial storage compound, wherein such micro-organisms are selected and the microbial storage compound is accumulated by carrying out the so-called feast phase of the selection step and the accumulation of the microbial storage compound in selected micro-organisms in the same reactor and carrying out the so-called famine phase of the selection step in a separate, smaller, reactor.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: August 7, 2018
    Assignee: PAQUES I.P. B.V.
    Inventors: Hendrik Dijkman, Yang Jiang, Jelmer Tamis, Leonie Marang, Robbert Kleerebezem, Marinus Cornelis Maria Van Loosdrecht
  • Patent number: 10017790
    Abstract: The present invention relates to the area of producing aliphatic aldehydes with 5 to 31 carbon atoms, in particular by microbial conversion of corresponding aliphatic fatty acids with 6 to 32 carbon atoms. The invention also relates to enzymes for catalyzing a conversion reaction of this type and nucleic acids coding for this.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: July 10, 2018
    Assignee: SYMRISE AG
    Inventors: Fenja Sporleder, Markus Buchhaupt, Jens Schrader
  • Patent number: 10011821
    Abstract: The present invention relates to the production of hydroxylated protoilludenes and/or sesquiterpenoid protoilludene-type aryl esters using newly identified genes that can be employed. The present invention accordingly relates to a host microorganism that has been transformed with the newly identified nucleotide sequences and to methods employing the transformed microorganism.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: July 3, 2018
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forshung e. V.
    Inventors: Stefan Jennewein, Benedikt Engels
  • Patent number: 10006064
    Abstract: This disclosure describes engineered biosynthetic pathways, recombinant cells, and methods relating to biosynthesis of esters. The recombinant cells may be modified to exhibit increased biosynthesis of an ester compared to a wild-type control. The recombinant cell may be incubated in medium that includes a carbon source under conditions effective for the recombinant cell to produce an ester. This disclosure also describes a method that generally includes introducing into a host cell a heterologous polynucleotide encoding at least one polypeptide that catalyzes a step in converting a carbon source to an ester, wherein the at least one polynucleotide is operably linked to a promoter so that the modified host cell catalyzes conversion of the carbon source to an ester.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 26, 2018
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Kechun Zhang, Mingyong Xiong, Yi-Shu Tai
  • Patent number: 9976159
    Abstract: Methods are disclosed for controlling the population of acetoclastic microorganisms in a process for the bioconversion of gas substrate comprising at least one of CO and a mixture of CO2 and hydrogen to at least one oxygenated organic compound by contact of said gas substrate under acidic, anaerobic fermentation conditions in a bioreactor containing an aqueous fermentation broth having a population of at least one acetogenic microorganism for bioconverting said gas substrate to at least one acetogenic oxygenated organic compound, said fermentation zone defining a head space, said methods comprising continuously or intermittently controlling the partial pressure of carbon dioxide in the head space to provide a desired population ratio of acetoclastic microorganisms to acetogenic microorganisms.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: May 22, 2018
    Assignee: Synata Bio, Inc.
    Inventor: Richard Tobey
  • Patent number: 9909147
    Abstract: The invention relates to enzymatic methods for hydroxylation in position 2 or 3 of substituted or unsubstituted, linear or branched aliphatic hydrocarbons.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: March 6, 2018
    Assignee: Novozymes A/S
    Inventors: Martin Hofrichter, Katrin Scheibner, Rene Ullrich, Matthias Kinne, Sebastian Peter, Henrik Lund, Lisbeth Kalum
  • Patent number: 9695426
    Abstract: Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: July 4, 2017
    Assignee: The Regents of the University of California
    Inventors: James C. Liao, Shota Atsumi, Anthony F. Cann
  • Patent number: 9688555
    Abstract: A method of biologically treating wastewater and, at the same time, incorporating processes that aim to increase the PHA accumulation potential of biomass used in the treatment of the wastewater. The method includes biologically treating the wastewater and enhancing PHA accumulation potential of the biomass by subjecting the biomass to a primary feast-famine process where the biomass is subjected to repeated cycles of feast and primary famine conditions. From time-to-time, the method entails deviating from the primary feast-famine process to a secondary famine process. The secondary famine process comprises subjecting the biomass to secondary famine conditions for a period of time that is substantially greater than the average time period of the primary famine conditions.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: June 27, 2017
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Alan Gideon Werker, Fernando Morgan-Sagastume, Simon Olof Harald Bengtsson, Maria da Graca Ejarque Albuquerque Cordeiro Pereira
  • Patent number: 9637746
    Abstract: The invention pertains to a method for preparing cells that can be used as biocatalysts by inducing in them a growth-decoupled state, in which interferase inhibits the expression of genes except the ones that code for the pathway enzymes of interest. mRNAs that code for interferase-resistant products are overexpressed in the background of a metabolically-frozen cell. Enzymes that compete for a substrate or product of the pathway of interest may be altered such that the enzyme is sensitive to a site-specific protease, which protease is inducible in the host cell.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: May 2, 2017
    Assignee: GreenLight Biosciences, Inc.
    Inventor: Daniel Klein-Marcuschamer
  • Patent number: 9617563
    Abstract: To provide a series of techniques for obtaining ?-phellandrene with high purity and in a large quantity. Provided is a recombinant cell capable of producing ?-phellandrene, prepared by introducing at least one nucleic acid selected from the group consisting of a nucleic acid encoding geranyl pyrophosphate (GPP) synthase and a nucleic acid encoding neryl pyrophosphate (NPP) synthase, and a nucleic acid encoding ?-phellandrene synthase into a host cell in such a manner that these nucleic acids are expressed in the host cell. Also provided is a method for producing ?-phellandrene by culturing the recombinant cell to produce ?-phellandrene in the recombinant cell.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: April 11, 2017
    Assignees: TOHOKU UNIVERSITY, SEKISUI CHEMICAL CO., LTD.
    Inventors: Masahiro Furutani, Akihiro Uenishi, Koichiro Iwasa, Yasuyuki Kori, Seiji Takahashi, Takefumi Shimoyama
  • Patent number: 9388375
    Abstract: A method and system for achieving a gas-liquid mass transfer includes delivering into a compartment of a container a liquid, the liquid having an exposed top surface disposed within the compartment. A stream of a gas is passed over the top surface of the liquid so that the stream of gas produces turbulence on the top surface that is sufficient to achieve the gas-liquid mass transfer. In one embodiment the liquid is a culture that includes cells or microorganisms and the mass transfer functions to oxygenate the culture sufficient to sustain the cells or microorganisms.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 12, 2016
    Assignee: Life Technologies Corporation
    Inventors: Christopher D. Brau, Nephi D. Jones, Benjamin R. Madsen, Michael E. Goodwin
  • Publication number: 20150147780
    Abstract: Disclosed herein are embodiments for a novel method of producing an organic compound, including harvesting at least one organic compound from an organism or cell line genetically engineered with a gene for at least one proton-pump protein.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Eugene Dinescu, Vincent Dinescu
  • Patent number: 9040275
    Abstract: The present invention relates to a method for detoxification of feed products contaminated by the mycotoxin zearalenone.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: May 26, 2015
    Assignee: Novozymes A/S
    Inventors: Anders Vikso-Nielsen, Birthe Hauerbach Sorensen
  • Publication number: 20150132810
    Abstract: Integrated processes are provided for the bioconversion of syngas to oxygenated organic compound with the ability to recover essential compounds for the fermentation and recycle the compounds to the fermentation.
    Type: Application
    Filed: January 19, 2015
    Publication date: May 14, 2015
    Applicant: Coskata, Inc.
    Inventor: Robert Hickey
  • Patent number: 9029126
    Abstract: A method of hydrothermally treating stillage by heating stillage to 200 degrees F. to 350 degrees F., altering physicochemical properties of the stillage, enabling facile separation of the stillage, and creating unique product fractions. A method of performing ethanol fermentation by treating stillage to enable facile separation by heating the stillage to a temperature of 200 degrees F. to 350 degrees F., and separating the treated stillage to recover a high protein solids fraction, a stickwater fraction, and an oil fraction. A method of improving fermentation by heating stillage to a temperature of 200° F. to 350° F. resulting in hydrothermally treated stillage, using all or a portion of the hydrothermally treated stillage as a component of a media, and using the media for a process including fermentation and biomass production. Oil, stickwater, high protein solids fraction, high protein meal, metabolites, biomass, and media obtained from the methods above.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: May 12, 2015
    Assignee: Valicor, Inc.
    Inventors: James Robert Bleyer, Thomas J Czartoski, Puneet Chandra
  • Patent number: 8980578
    Abstract: The present invention provides fungal xylanase and/or beta-xylosidase enzymes suitable for use in saccharification reactions. The present application further provides genetically modified fungal organisms that produce xylanase and/or beta-xylosidases, as well as enzyme mixtures exhibiting enhanced hydrolysis of cellulosic material to fermentable sugars, enzyme mixtures produced by the genetically modified fungal organisms, and methods for producing fermentable sugars from cellulose using such enzyme mixtures.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Codexis, Inc.
    Inventors: Ryan Fong, Xiyun Zhang, Chris Noriega, Nicholas Agard, Anupam Gohel, Derek Smith
  • Patent number: 8975048
    Abstract: Described herein are multimeric oxidoreductase complexes which function in the enzymatic conversion of a carbon substrate. The complexes comprise a dehydrogenase subunit and a cytochrome C subunit. Also described are polynucleotides coding for the multimeric complexes and methods of use thereof.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Danisco US Inc.
    Inventors: Robert M. Caldwell, M. Harunur Rashid, Fernando Valle
  • Patent number: 8956835
    Abstract: Methods are provided for producing biodegradable polyhydroxyalkanoates (PHAs) with desired geometry, molecular mass, mechanical and/or physical-chemical properties from glycerol, an inexpensive carbon source and byproduct of the biodiesel industry. Microorganisms capable of converting carbon to PHA can be used to convert biodiesel-glycerol to poly-3-hydroxybutyrate (PHB) or other monomer or copolymer PHAs via fermentation. The microorganisms are cultured in a medium comprising glycerol as a primary carbon source and one or more low molecular mass organic acids as a secondary carbon source. Biomass can be harvested from the culture medium and crude PHA extracted and purified, thereby recovering purified PHA with the desired property. After PHA isolation, a nucleating agent can be added to improve certain physical-chemical properties of the PHA, e.g., crystallization temperature, to enhance performance of the PHA during injection molding.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: February 17, 2015
    Assignee: Suny Research Foundation
    Inventors: James P. Nakas, Chengjun Zhu, Joseph A. Perrotta, Christopher T. Nomura
  • Patent number: 8956833
    Abstract: Genetically manipulated cells, lysates of such cells, systems, and methods of use thereof are provided, where one or more enzymes in a pathway of interest are genetically modified to incorporate a peptide sequence that provides for relocation of the protein, e.g., to the periplasm, so as to sequester the enzyme, and where the enzyme controls flux in the pathway of interest.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: February 17, 2015
    Assignees: GreenLight Biosciences, Inc., The Board of Trustees of the Leland Stanford Junior University
    Inventor: James R. Swartz
  • Patent number: 8921080
    Abstract: The invention relates to an isolated polypeptide having esterase activity comprising an amino acid sequence shown in any one of SEQ ID NO's 2, 4, 6, 8, 10, 12 or 14 or a homologue thereof, comprising an amino acid substitution or deletion of one or more amino acids as shown in said SEQ ID NO's and resulting in a mutant polypeptide having an increased concentration of the fraction of the mutant polypeptide being present as an active and soluble protein in cleared lysate of the mutant polypeptide expressed in E. coli relative to the concentration of the fraction of the polypeptide without the mutation being present as an active and soluble protein in cleared lysate of the polypeptide without the one or more deletion or substitution expressed in E. coli under the same conditions. The invention also relates to nucleic acid encoding the polypeptides according to the invention, and the use of the polypeptides.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: December 30, 2014
    Assignee: DSM IP Assets B.V.
    Inventors: Martin Kietzmann, Harald Pichler, Helmut Schwab, Amin El-Heliebi, Christine Winkler, Andreas Braun
  • Patent number: 8911965
    Abstract: Enhanced yields of photosynthetically fixed carbon produced by hypersaline photosynthetic algae are provided by co-culturing with a halophilic archaea. Further, methods are provided to control harvesting of desired metabolic products from hypersaline photosynthetic algae by controlling caspase activity.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 16, 2014
    Assignee: Institute for Systems Biology
    Inventors: Nitin S. Baliga, Monica V. Orellana, Kenia Whitehead, W. Lee Pang
  • Patent number: 8883475
    Abstract: The disclosure relates to engineered enone reductase polypeptides having improved properties, polynucleotides encoding the engineered polypeptides, related vectors, host cells, and methods for making the engineered enone reductase polypeptides. The disclosure also provides methods of using the engineered enone reductase polypeptides for chemical transformations.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: November 11, 2014
    Assignee: Codexis, Inc.
    Inventors: Christopher Savile, Vesna Mitchell, Xiyun Zhang, Gjalt Huisman
  • Patent number: 8871266
    Abstract: Probiotic microorganisms are micro encapsulated by dispersing the probiotic microorganism in an aqueous suspension of a film forming protein and a carbohydrate; in an oil in water emulsion of a film forming protein and a carbohydrate and a fat; or in an oil which is subsequently dispersed in a film forming protein and a carbohydrate. The emulsion or suspension may be dried to form a powder. The probiotic may be dispersed in oil and then emulsified with the aqueous suspension and then dried to produce an encapsulated oil be dried to produce a powder. Oil suspended probiotics may be preferred where the probiotic is water sensitive. The preferred protein is casein or whey protein and the carbohydrate may be a resistant starch or a saccharide with a reducing sugar group. Where the probiotic is oxygen sensitive the protein carbohydrate is heated to create Maillard reaction products in the encapsulating film.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 28, 2014
    Assignee: Commonwealth Scientific & Industrial Research Organisation
    Inventors: Ross Crittenden, Luz Sanguansri, Mary Ann Augustin
  • Patent number: 8859245
    Abstract: A lactic acid component (e.g., lactic acid or oligo (lactic acid)) can be obtained by extraction from a lactic acid fermentation liquor with a pH of 4.8 or less, using at least one solvent selected from the group consisting of toluene, xylene, mesitylene, ethylbenzene, methanol, ethanol, propanol, butanol, and mineral spirit. Furthermore, oligo (lactic acid) can be obtained, by heating a lactic acid fermentation liquor with a pH of 4.8 or less under reduced pressure, and washing, with water, the fermentation liquor containing a produced oligo (lactic acid). Hence, a method is provided for separating a lactic acid component from a lactic acid fermentation liquor, which is free from incorporation of impurities and which includes simple steps.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: October 14, 2014
    Assignees: Bio-Energy Corporation, Osaka University, Kansai Chemical Engineering Co., Ltd.
    Inventors: Hiroshi Uyama, Hideo Noda, Takahiko Terada
  • Patent number: 8845765
    Abstract: A method for recovering lipids from microbial biomass, the method including providing wet microbial biomass which contains lipids to extraction without disrupting the biomass cell walls, and subsequently, extracting the wet microbial biomass with a liquid extractant at elevated temperature of at least 170° C. and elevated pressure. The combination of the temperature and pressure is such that the lipids in the cells are contacted with the extractant. Subsequently the extracted lipids are recovered from or with the extractant.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: September 30, 2014
    Assignee: Neste Oil Oyj
    Inventors: Annika Malm, Reijo Tanner, Mervi Hujanen
  • Publication number: 20140287419
    Abstract: Compositions and methods comprising polynucleotides and polypeptides having dicamba decarboxylase activity are provided. Further provided are nucleic acid constructs, host cells, plants, plant cells, explants, seeds and grain having the dicamba decarboxylase sequences. Various methods of employing the dicamba decarboxylase sequences are provided. Such methods include, for example, methods for decarboxylating an auxin-analog, method for producing an auxin-analog tolerant plant, plant cell, explant or seed and methods of controlling weeds in a field containing a crop employing the plants and/or seeds disclosed herein. Methods are also provided to identify additional dicamba decarboxylase variants.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 25, 2014
    Inventors: Eric Althoff, Yih-En Andrew Ban, Linda A. Castle, Daniela Grabs, Jian Lu, Phillip A. Patten, Yumin Tao, Alexandre Zanghellini
  • Publication number: 20140273118
    Abstract: The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C4+ compounds useful as fuels and chemicals.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Virent, Inc.
    Inventors: Andrew Held, Elizabeth Woods, Randy Cortright, Matthew Gray
  • Patent number: 8835156
    Abstract: The present disclosure provides a method for pre-treating non-wood lignocellulosic material containing less than 5 % (w/w) starch or sugar in a process for production of ethanol from lignocellulose, comprising the steps of: adding organic acid or organic acid-producing bacteria to the lignocellulosic material; storing the lignocellulosic material in the presence of the organic acid for a period of at least two weeks in an atmosphere of less than 5% oxygen to obtain organic acid-impregnated material; and heating the organic acid-impregnated material at a temperature of at least 160° C. to obtain pre-treated lignocellulosic material, wherein no, or substantially no, inorganic acid or base, including SO2, is added in the method.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: September 16, 2014
    Assignee: Sekab E-Technology AB
    Inventors: Lovisa Bjornsson, Sven-Erik Svensson, Sanam Monavari, Emma Kreuger, Guido Zacchi
  • Patent number: 8828691
    Abstract: The present disclosure provides a method for the stereospecific hydrolysis of racemic 1,1-dialkyloxycarbonylcyclopropanes.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: September 9, 2014
    Assignee: Bristol-Myers Squibb Company
    Inventors: Animesh Goswami, Zhiwei Guo, Yuping Qiu
  • Patent number: 8802401
    Abstract: The disclosure relates to engineered P450 polypeptides and use of such polypeptides in chemoenzymatic methods to construct selectively protected carbohydrates, which are useful as building blocks for preparation of carbohydrate derivatives and oligosaccharides
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 12, 2014
    Assignees: The California Institute of Technology, The Scripps Research Institute
    Inventors: Frances H. Arnold, Chi-Huey Wong, Yuuichi Mitsuda, Michael M. Chen, Clay Bennett, William Greenberg, Jared Crawford Lewis, Sabine Bastian
  • Patent number: 8802402
    Abstract: A substitution mutation that improves polymerization activity of a polyhydroxyalkanoic acid synthase is identified. At least 1 amino acid residue selected from the group consisting of a histidine residue at position 17, a proline residue at position 71, a valine residue at position 131, a methionine residue at position 205, a leucine residue at position 230, and a proline residue at position 239 of a polyhydroxyalkanoic acid synthase derived from Alcanivorax borkumensis is subjected to substitution mutation with another amino acid.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: August 12, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masayoshi Muramatsu, Hiromi Kambe, Masakazu Ito
  • Publication number: 20140220648
    Abstract: The invention relates to the production of aromatic molecules in prokaryotic and eukaryotic hosts such as E. coli, yeasts, filamentous fungi, algae, microalgae, other plant cells.
    Type: Application
    Filed: June 22, 2012
    Publication date: August 7, 2014
    Applicant: RHO Renewables
    Inventor: Philip J. Barr
  • Patent number: 8795995
    Abstract: A process for conversion of syngas to liquid products that serve as surface acting agents uses the gas stream at a relatively low pressure to eliminate the use of a compressor. The process uses a liquid stream as the primary energy input to a gas injector that intensely mixes gas and the liquid with reduced compression costs while the presence of the liquid product maintains the gas-liquid dispersion as it flows downward to build a static pressure head. The process lowers the required gas pressure by adjusting the elevation of the gas injector such that a conduit receives the gas-liquid dispersion from the outlet of the injector and confines it as it travels downward to enter the bottom of a column of liquid. The liquid product provides a surface acting agent that prolongs the creation and duration of microbubbles in the gas-liquid dispersion.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: August 5, 2014
    Assignee: Coskata, Inc.
    Inventors: Robert Hickey, Mark Neville
  • Patent number: 8778641
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 15, 2014
    Assignee: Novozymes Inc.
    Inventor: Nikolaj Spodsberg
  • Patent number: 8778640
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 15, 2014
    Assignee: Novozymes Inc.
    Inventor: Nikolaj Spodsberg
  • Patent number: 8778639
    Abstract: The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 15, 2014
    Assignee: Novozymes Inc.
    Inventor: Nikolaj Spodsberg
  • Patent number: 8771999
    Abstract: Bioconversion processes are disclosed that enable high conversion efficiencies of gas substrate containing both carbon monoxide and hydrogen to oxygenated organic compounds via the carbon monoxide and hydrogen pathways using anaerobic, deep, bubble column fermentation in a cost effective manner. The high conversion efficiency processes of this invention comprise the combination of using at least two deep, bubble column reactors in flow series and using certain feed gas compositions and microbubbles while avoiding carbon monoxide inhibition.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 8, 2014
    Assignee: Coskata, Inc.
    Inventors: Robert Hickey, Richard E. Tobey
  • Patent number: 8771994
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 8, 2014
    Assignee: Novozymes Inc.
    Inventor: Nikolaj Spodsberg
  • Patent number: 8771993
    Abstract: The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 8, 2014
    Assignees: Novozymes A/S, Novozymes Inc.
    Inventor: Nikolaj Spodsberg
  • Publication number: 20140186909
    Abstract: The present invention provides a photobioreactor for a phototrophic microorganism, and culture medium therefor, comprising a capsule, the capsule comprising an elongated body comprised of a first, flexible polymer film that is at least partially transparent to light of a wavelength that is photosynthetically active in a phototrophic microorganism and divided width wise into a plurality of adjacent channels, each channel having a major cross-sectional dimension that is not more than about one-third of the length of the elongated body, when the elongated body is inflated; and a fluid distribution structure coupled to the elongated body adapted for fluid communication with the plurality of adjacent channels that distributes a flow of culture medium amongst the plurality of channels, wherein the fluid distribution structure is comprised of a second, flexible polymer film.
    Type: Application
    Filed: August 1, 2012
    Publication date: July 3, 2014
    Inventors: Kevin J. Calzia, Max Brett Tuttman, John E. Longan, Thomas A. Urbanik
  • Patent number: 8765403
    Abstract: The present invention provides methods of producing a product or product precursor of a biosynthetic pathway in a genetically modified host cell. The present invention also provides genetically modified host cells comprising nucleic acids encoding a scaffold polypeptide and nucleic acids comprising nucleotide sequences encoding two or more enzymes in a biosynthetic pathway. The present invention further provides nucleic acids comprising nucleotide sequences encoding scaffold polypeptides, for use in a subject method.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: July 1, 2014
    Assignee: The Regents of the University of California
    Inventors: John E. Dueber, Jay D. Keasling, Gabriel C. Wu, Ghulam Reza Khan Malmirchegini
  • Patent number: 8759041
    Abstract: The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: June 24, 2014
    Assignee: Novozymes Inc.
    Inventor: Nikolaj Spodsberg
  • Patent number: 8759040
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: June 24, 2014
    Assignee: Novozymes Inc.
    Inventor: Nikolaj Spodsberg
  • Publication number: 20140170720
    Abstract: The present invention relates to a method for producing retinoid from a microorganism, and more specifically, to a method for effectively obtaining retinoid, which lacks stability, from a microorganism by cultivating the microorganism capable of producing retinoid in a medium containing a lipophilic substance, and separating retinoid from the lipophilic substance.
    Type: Application
    Filed: July 30, 2012
    Publication date: June 19, 2014
    Applicant: INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY
    Inventors: Seon Won Kim, Hui Jeong Jang, Sang Hwal Yoon, Bo Kyung Ha, Hee Kyung Ryu
  • Patent number: 8753860
    Abstract: The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: June 17, 2014
    Assignee: Novozymes A/S
    Inventors: Marc D. Morant, Paul Harris
  • Patent number: 8748138
    Abstract: A method or process for producing polyhydroxyalkanoates (PHAs) in biomass. The process entails feeding an organic carbon containing substrate to biomass enriched in PHA accumulating bacteria. Particularly the process entails intermittently supplying the substrate to the biomass at least three separate times over a selected period. The object of the process is to produce PHA having a relatively high molecular weight, at least 400,000 g/mole. By controlling the frequency at which the substrate is supplied to the biomass and by feeding a sufficient amount of the substrate to the biomass, the method or process produces the PHA having the relatively high molecular weight.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 10, 2014
    Assignee: Veolia Water Solutions & Technologies Support
    Inventors: Alan Gideon Werker, Simon Olof Harald Bengtsson, Carl Anton Börje Karlsson