Dicarboxylic Acid Having Four Or Less Carbon Atoms (e.g., Fumaric, Maleic, Etc.) Patents (Class 435/145)
  • Publication number: 20100297716
    Abstract: An organic acid is produced by allowing a bacterium belonging to the family Enterobacteriaceae, which has an ability to produce an organic acid and has been modified so that the phosphoenolpyruvate carboxykinase activity is enhanced, which is selected from Enterobacter, Pantoea, Erwinia, Klebsiella and Raoultella bacteria, or a product obtained by processing the bacterium, to act on an organic raw material in a reaction mixture containing carbonate ions, bicarbonate ions, or carbon dioxide gas to produce the organic acid, and collecting the organic acid.
    Type: Application
    Filed: June 3, 2010
    Publication date: November 25, 2010
    Inventors: Yoshinori Tajima, Keita Fukui, Kenichi Hashiguchi
  • Patent number: 7833763
    Abstract: An object to be solved by the present invention is to provide a method for producing organic acid with higher fermentation efficiency. The present invention provides a method for producing organic acid from an organic material by allowing bacterial cell or treated products thereof to act on an aqueous reaction solution containing the above organic material, which is characterized in that after completion of the reaction, the aqueous reaction solution is recovered, cell or treated products thereof are separated from the recovered aqueous reaction solution, and the separated cell or treated products thereof are allowed to act on a fresh aqueous reaction solution, so that the cell or treated products thereof are repeatedly used.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 16, 2010
    Assignee: Mitsubishi Chemical Corporation
    Inventor: Kenji Yamagishi
  • Publication number: 20100285546
    Abstract: Genetically modified microorganisms that produce itaconic acid at high yields and uses thereof.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 11, 2010
    Applicant: Industrial Technology Research Institute
    Inventors: James C. Liao, Pei-Ching Chang
  • Patent number: 7829316
    Abstract: Disclosed is a process for production of succinic acid, which comprises the step of reacting a bacterium which has been modified so as to increase the expression of a sucE1 gene or a product produced by any treatment of the bacterium with an organic raw material in a reaction solution containing a carbonate ion, a bicarbonate ion or carbon dioxide gas to thereby yield the desired succinic acid.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: November 9, 2010
    Assignee: Ajinomoto Co., Inc.
    Inventors: Chie Koseki, Keita Fukui, Jun Nakamura, Hiroyuki Kojima
  • Publication number: 20100267097
    Abstract: Fibrous materials, compositions that include fibrous materials, and uses of the fibrous materials and compositions are disclosed. For example, the fibrous materials can be operated on by a microorganism to produce ethanol or a by-product, such as a protein or lignin.
    Type: Application
    Filed: April 29, 2010
    Publication date: October 21, 2010
    Applicant: XYLECO, INC.
    Inventor: Marshall Medoff
  • Publication number: 20100196973
    Abstract: The invention relates to a method for the synthesis of diacids of general formula ROOC—(CH2)n—(CH?CH)n—(CH2)mCOOR1 in which n and m are identical or different and each represent an integer such that their sum is between 6 and 15, a is an index of 0 or 1, and R and R1 are H or an alkyl radical with 1 to 4 carbon atoms, from long-chain mono-unsaturated natural fatty acids or esters having at least 10 adjacent carbon atoms per molecule of the general formula CH3—(CH2)p—CH?CH—(CH2)q—COOR, p and q, being identical or different and representing indices between 2 and 11, wherein said method comprises the first step of oxidizing by fermentation said natural fatty acid or ester, using a microorganism, such as a bacterium, a yeast, or a fungus, into at least one unsaturated dicarboxylic acid or dicarboxylate, the second step of submitting the product from the first step to a metathesis crossed with a compound of formula R2OOC—(CH2)x—CH?CH—R3, in which R2 is H or an alkyl radical with 1 to 4 carbon atoms, x is 0 or 1 or
    Type: Application
    Filed: September 17, 2008
    Publication date: August 5, 2010
    Applicant: ARKEMA FRANCE
    Inventor: Jean-Luc Dubois
  • Patent number: 7763447
    Abstract: Succinic acid is produced by allowing a bacterium modified to enhance fumarate reductase activity or cell preparation thereof to react with an organic raw material in a reaction solution containing one of a carbonate ion, a bicarbonate ion, and carbon dioxide gas to generate succinic acid. More preferably, succinic acid is produced by allowing a bacterium modified to enhance activities of fumarate reductase and pyruvate carboxylase and decrease lactate dehydrogenase activity or cell preparation thereof to react with an organic raw material in a reaction solution containing one of a carbonate ion, a bicarbonate ion, and carbon dioxide gas to generate succinic acid. Succinic acid is obtained by collecting the produced succinic acid.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: July 27, 2010
    Assignee: Ajinomoto Co., Inc.
    Inventors: Makoto Murase, Ryusuke Aoyama, Miki Ikuta, Kenji Yamagishi, Mika Moriya, Jun Nakamura, Hiroyuki Kojima
  • Publication number: 20100184171
    Abstract: Genetically engineered microorganisms have been constructed to produce succinate and malate in mineral salt media in pH-controlled batch fermentations without the addition of plasmids or foreign genes. The subject invention also provides methods of producing succinate and malate comprising the culture of genetically modified microorganisms.
    Type: Application
    Filed: March 19, 2008
    Publication date: July 22, 2010
    Inventors: Kaemwich Jantama, Mark John Haupt, Xueli Zhang, Jonathan C. Moore, Keelnatham T. Shanmugam, Lonnie O'Neal Ingram
  • Publication number: 20100168481
    Abstract: Recombinant hosts for producing polyhydroxyalkanoates and methods of producing polyhydroxyalkanoates from renewable carbon substrates are provided. Certain recombinant hosts that produce 5 carbon chemicals such as 5-aminopentanoate (5AP), 5-hydroxyvalerate (5HV), glutarate, and 1,5 pentanediol (PDO) are also provided. One embodiment provides a recombinant host expressing a gene encoding a heterologous enzyme selected from the group consisting of a polyhydroxyalkanoate synthase and a 5-hydroxyvalerate-CoA (5HV-CoA) transferase, wherein the host produces a polymer containing 5-hydroxyvalerate. Preferably, the host expresses both a polyhydroxyalkanoate synthase and a 5HV-CoA transferase. The host can be prokaryotic or eukaryotic. A preferred prokaryotic host is E. coli. The polymers produced by the recombinant hosts can be homopolymers or copolymers of 5-hydroxyvalerate. A preferred copolymer is poly(3-hydroxybutyrate-co-5-hydroxyvalerate).
    Type: Application
    Filed: December 14, 2009
    Publication date: July 1, 2010
    Inventors: William R. Farmer, Jeff Bickmeier, Chenfeng Lu, Dong-Eun Chang, Frank Skraly, Thomas Martin Ramseier
  • Publication number: 20100159543
    Abstract: The present invention is concerned with bacteria for the production of succinic acid. Specifically, the invention relates to a bacterial cell of the genus Pasteurella comprising a heterologous polypeptide having isocitrate lyase activity and a heterologous polypeptide having malate synthase activity. Further, the present invention contemplates a polynucleotide comprising a nucleic acid encoding a polypeptide having isocitrate lyase activity and a nucleic acid encoding a polypeptide having malate synthase activity. Finally, the present invention relates to the use of a bacterial cell of the invention for the manufacture of succinic acid.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 24, 2010
    Applicant: BASF SE
    Inventors: Edzard Scholten, Stefan Haefner, Hartwig Schröder
  • Publication number: 20100159544
    Abstract: The present invention relates to microbial variants producing homo-succinic acid at high yields and a method for producing homo-succinic acid using the same, more particularly, to a microbial variant constructed by disrupting a lactate dehydro-genase-encoding gene (idhA) and an acetate kinase-encoding gene (ackA), as well as a method for producing homo-succinic acid at high concentration, which comprises culturing such variants using glucose as a carbon source in anaerobic conditions.
    Type: Application
    Filed: January 15, 2008
    Publication date: June 24, 2010
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Yup Lee, Ji Mahn Kim, Jeong Wook Lee, Hyohak Song, Sol Choi
  • Publication number: 20100159542
    Abstract: The present invention relates to a bacterial cell of the genus Pastorella comprising a heterologous polypeptide having formate dehydrogenase activity. Moreover, the present invention also relates to a method of manufacturing succinic acid and the use of the bacterial cell for the manufacture of succinic acid.
    Type: Application
    Filed: December 21, 2009
    Publication date: June 24, 2010
    Applicant: BASF SE
    Inventors: Edzard Scholten, Stefan Haefner, Hartwig Schröder
  • Publication number: 20100129883
    Abstract: Biological method for conversion of a lignocellulosic hydrolysate into a desired biochemical product. Use of a plurality of substrate-selective cells allows different sugars in a complex mixture to be consumed concurrently and independently. The method can be readily extended to remove inhibitory compounds from hydrolysate.
    Type: Application
    Filed: October 7, 2009
    Publication date: May 27, 2010
    Inventors: Mark A. Eiteman, Elliot Altman
  • Publication number: 20100112651
    Abstract: Nucleotide and protein sequences that encode enzymes that change carbon flux through metabolic pathways that lead to lactic acid or fumarate production in a host cell, such as a R. oryzae cell, are provided. Methods of manipulating carbon flux in a cell also are provided.
    Type: Application
    Filed: March 23, 2009
    Publication date: May 6, 2010
    Applicant: Archer-Daniels-Midland Company
    Inventors: Beth Fatland-Bloom, P. John Rayapati, Nyerhovwo John Tonukari
  • Publication number: 20100112647
    Abstract: An acidic substance having a carboxyl group is produced by culturing in a medium a microorganism which has been modified to enhance expression of the ybjL gene, and collecting the acidic substance having a carboxyl group from the medium.
    Type: Application
    Filed: October 15, 2009
    Publication date: May 6, 2010
    Inventors: Yoshihiko Hara, Keita Fukui, Yoshinori Tajima, Kazue Kawamura, Yoshihiro Usuda, Kazuhiko Matsui
  • Publication number: 20100086965
    Abstract: The invention relates to an eukaryotic cell expressing nucleotide sequences encoding the ara A, ara B and ara D enzymes whereby the expression of these nucleotide sequences confers on the cell the ability to use L-arabinose and/or convert L-arabinose into L-ribulose, and/or xylulose 5-phosphate and/or into a desired fermentation product such as ethanol. Optionally, the eukaryotic cell is also able to convert xylose into ethanol.
    Type: Application
    Filed: October 1, 2007
    Publication date: April 8, 2010
    Inventors: Antonius Jeroen Adriaan Van Maris, Jacobus Thomas Pronk, Hendrik Wouter Wisselink, Johannes Pieter Van Dijken, Aaron Adriaan Winkler, Johannes Hendrik De Winde
  • Publication number: 20100081180
    Abstract: An organic acid is produced by allowing a bacterium which has an ability to produce an organic acid and has been modified so that expression of yidE gene is enhanced, or a product obtained by processing the bacterium, to act on an organic raw material in a reaction mixture containing carbonate ions, bicarbonate ions, or carbon dioxide gas to produce the organic acid, and collecting the organic acid.
    Type: Application
    Filed: October 15, 2009
    Publication date: April 1, 2010
    Inventors: Keita Fukui, Yoshinori Tajima, Kazue Kawamura, Yoshihiro Usuda, Kazuhiko Matsui
  • Publication number: 20100075388
    Abstract: There is provided a process for industrial production of simple 3-carboxy-cis,cis-muconic acid and/or 3-carboxymuconolactone from low molecular mixtures derived from plant components such as vanillin, vanillic acid and protocatechuic acid, via a multistage enzyme reaction. A recombinant plasmid containing a vanillate demethylase gene (vanAB genes), benzaldehyde dehydrogenase gene (ligV gene) and protocatechuate 3,4-dioxygenase gene (pcaHG genes); transformants incorporating the plasmid; and a process for production of 3-carboxy-cis,cis-muconic acid and/or 3-carboxymuconolactone characterized by culturing the transformants in the presence of vanillin, vanillic acid, protocatechuic acid or a mixture of two or more thereof.
    Type: Application
    Filed: August 10, 2007
    Publication date: March 25, 2010
    Inventors: Kohei Mase, Toshihisa Shimo, Naoki Ohara, Yoshihiro Katayama, Kiyotaka Shigehara, Eiji Masai, Masao Fukuda, Seiji Ohara, Masaya Nakamura, Yuichiro Otsuka
  • Publication number: 20100068774
    Abstract: An organic acid is produced by allowing a bacterium which has an ability to produce an organic acid and has been modified so that expression of the sucE1 and mdh genes are enhanced, or a product obtained by processing the bacterium, to act on an organic raw material in a reaction mixture containing carbonate ions, bicarbonate ions, or carbon dioxide gas, and collecting the organic acid.
    Type: Application
    Filed: October 9, 2009
    Publication date: March 18, 2010
    Inventors: Keita Fukui, Yoko Mihara
  • Publication number: 20100041115
    Abstract: The invention concerns a method for producing dicarboxylic acids (DCA) with long hydrocarbon chains, also called diacids, which consists in culturing a mutant strain of Yarrowia lipolytica obtained by mutagenesis directed and more particularly disrupted at least for the POX2, POX3, POX4 and POX5 genes encoding acyl-CoA oxydase, in a medium consisting essentially of an energetic substrate including at least one carbon source and one nitrogen source and in subjecting said strain to a bioconversion substrate selected among n-alkanes of at least 10 carbon atoms, fatty acids of at least 10 carbon atoms, their alkyl esters and natural oils.
    Type: Application
    Filed: December 13, 2005
    Publication date: February 18, 2010
    Inventors: Jean-Marc Nicaud, France Thevenieau, Marie-Thérèse Le Dall, Rémy Marchal
  • Publication number: 20100009419
    Abstract: A non-naturally occurring eukaryotic or prokaryotic organism includes one or more gene disruptions occurring in genes encoding enzymes imparting increased fumarate, malate or acrylate production in the organism when the gene disruption reduces an activity of the enzyme. The one or more gene disruptions confers increased production of acrylate onto the organism. Organisms that produce acrylate have an acrylate pathway that at least one exogenous nucleic acid encoding an acrylate pathway enzyme expressed in a sufficient amount to produce acrylate, the acrylate pathway comprising a decarboxylase. Methods of producing fumarate, malate or acrylate include culturing these organisms.
    Type: Application
    Filed: June 17, 2009
    Publication date: January 14, 2010
    Inventors: Mark J. Burk, Anthony P. Burgard, Priti Pharkya
  • Publication number: 20090291480
    Abstract: The present disclosure provides novel beta-alanine/alpha ketoglutarate aminotransferase nucleic acid and protein sequences having increased biological activity. Also provided are cells containing such enzymes, as well as methods of their use, for example to produce malonyl semialdehyde and downstream products thereof, such as 3-hydroxypropionic acid and derivatives thereof.
    Type: Application
    Filed: August 17, 2007
    Publication date: November 26, 2009
    Applicant: CARGILL, INCORPORATED
    Inventors: Holly Jean Jessen, Hans H. Liao, Steven John Gort, Olga V. Selifonova
  • Publication number: 20090269812
    Abstract: The invention provides a method of producing a chemical product through continuous fermentation which includes filtering a culture of a microorganism or cultured cells with a separation membrane to recover a product from a filtrate and simultaneously retaining a nonfiltered fluid in, or refluxing it to, the culture, and adding fermentation materials to the culture, wherein a porous membrane having an average pore size of 0.01 ?m or more to less than 1 ?m is used as the separation membrane and the filtration is conducted with a transmembrane pressure difference in the range of 0.1 to 20 kPa. According to this method, the fermentation productivity of the chemical product can be largely elevated at high stability and a low cost.
    Type: Application
    Filed: February 16, 2007
    Publication date: October 29, 2009
    Applicant: Toray Industries, Inc , a corporation of Japan
    Inventors: Hideki Sawai, Katsushige Yamada, Takashi Mimitsuka, Kenji Sawai, Tetsu Yonehara, Yohito Ito, Masahiro Henmi
  • Patent number: 7608191
    Abstract: A process of separating suspended solids from a fermentation liquor by subjecting the liquor to a solids-liquid separation stage, wherein the fermentation liquor is produced in a fermentation process for the production of a fermentation product, and which liquor comprises lignin, wherein the solids-liquid separation stage is assisted by a treatment system, characterized in that the treatment system comprises an anionic polymer, with the proviso that the treatment system and does not include a cationic polymer having an intrinsic viscosity (IV) of at least 4 dl/g.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: October 27, 2009
    Assignee: Ciba Specialty Chemicals Water Treatments Ltd.
    Inventors: Jonathan Hughes, Rajesh Mistry, Kenneth Charles Symes
  • Publication number: 20090226571
    Abstract: The present invention relates to a method for the production of at least one nonvolatile microbial metabolite in solid form by sugar-based microbial fermentation, in which process a microorganism strain which produces the desired metabolites is grown using a sugar-containing liquid medium with a monosaccharide content of more than 20% by weight based on the total weight of the liquid medium, and the volatile constituents of the fermentation liquor are subsequently largely removed, the sugar-containing liquid medium being prepared by: a1) milling selected starch feedstock from cereal grains; and a2) liquefying the millbase in an aqueous liquid in the presence of at least one starch-liquefying enzyme, followed by saccharification using at least one saccharifying enzyme, where, for liquefaction purposes, at least a portion of the millbase is liquefied by continuous or batchwise addition to the aqueous liquid.
    Type: Application
    Filed: September 6, 2006
    Publication date: September 10, 2009
    Applicant: BASF SE
    Inventors: Stephan Freyer, Markus Pompejus, Oskar Zelder, Markus Lohscheidt, Matthias Boy, Edzard Scholten
  • Patent number: 7582444
    Abstract: Process for improving the separation efficiency of residual solid matter from the liquid phase of an aqueous acid hydrolysate of a naturally occurring polysaccharide comprising dissolved sugars, and residual acid wherein a flocculating agent(s) is added to the aqueous mixture in an effective amount, and a process of producing fermentation products comprising the steps of, (i) hydrolysing a particulate polysaccharide based plant derived material in an acid medium, and thereby forming an aqueous mixture comprising dissolved sugar and solid matter, (ii) subjecting the aqueous mixture to one or more separation stages in which solid matter are removed from the aqueous phase, (iii) adjusting the pH of the obtained aqueous phase to a pH of at least 4, (iv) fermenting the dissolved sugars of the aqueous phase by a microorganism to produce a fermentation product, (v) isolating the fermentation product, wherein in at least one separation stage in step (ii) a flocculating agent is added to the aqueous mixture in an effe
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: September 1, 2009
    Assignee: Ciba Specialty Chemicals Water Treatments Ltd.
    Inventor: Jonathan Hughes
  • Patent number: 7582215
    Abstract: A process of separating suspended solids from a fermentation liquor by subjecting the liquor to a solids-liquid separation stage, wherein the fermentation liquor is produced in a fermentation process for the production of a fermentation product, which liquor comprises water, lignin and BOD, wherein the solids liquid separation stage is assisted by a treatment system, characterised in that the treatment system comprises either, (i) a cationic polymer having an intrinsic viscosity (IV) of at least 4 dl/g at a dose of above 2 kg/tonne based on dry weight of suspension, or (ii) a cationic polymer having an intrinsic viscosity (IV) of at least 4 dl/g and, (iii) an anionic polymer, and/or (iv) a cationic polymer of intrinsic viscosity of below 4 dl/g and a cationic charge density of at least 3 meq/g and/or (v) inorganic coagulants and/or (vi) charged microparticulate material.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: September 1, 2009
    Assignee: Ciba Specialty Chemicals Water Treatments Ltd.
    Inventors: Jonathan Hughes, Kenneth Charles Symes
  • Publication number: 20090215048
    Abstract: The present invention relates to an in silico method for improving an organism on the basis of the flux sum (?) of metabolites, and more particularly to a method for screening key metabolites that increase the production yield of a useful substance, the method comprising defining the metabolite utilization of an organism for producing a useful substance as flux sum and perturbing the flux sum, as well as a method for improving an organism producing a useful substance, the method comprising deleting and/or amplifying genes associated with the aforementioned screened key metabolites. According to the present invention, the correlation between specific metabolites and useful substance production can be exactly predicted, so that it is possible to develop an organism having increased useful substance production by introducing and/or amplifying and/or deleting genes expressing enzymes associated with the specific metabolites.
    Type: Application
    Filed: October 14, 2005
    Publication date: August 27, 2009
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Yup Lee, Tae Yong Kim, Dong Yup Lee
  • Publication number: 20090203095
    Abstract: The present invention relates to a mutant microorganism, which is selected from the group consisting of genus Mannheimia, genus Actinobacillus and genus Anaerobiospirillum, producing homo-succinic acid and a method for producing homo-succinic acid using the same, and more particularly to a mutant microorganism producing succinic acid at a high concentration while producing little or no other organic acids in anaerobic conditions, which is obtained by disrupting a gene encoding lactate dehydrogenase (ldhA), a gene encoding phosphotransacetylase (pta), and a gene encoding acetate kinase (ackA), without disrupting a gene encoding pyruvate formate lyase (pfl), as well as a method for producing succinic acid using the same. The inventive mutant microorganism has the property of having a high growth rate and succinic acid productivity while producing little or no organic acids, as compared to the prior strains producing succinic acid.
    Type: Application
    Filed: January 25, 2009
    Publication date: August 13, 2009
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Yup LEE, Sung Won LIM, Hyohak SONG
  • Patent number: 7566563
    Abstract: Nucleotide sequences and genetic constructs that can be used to regulate genes encoding enzymes that change carbon flux through metabolic pathways that lead to lactic acid or fumarate production in a host cell, such as a R. oryzae cell, are provided. Methods of manipulating carbon flux in a cell also are provided.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: July 28, 2009
    Assignee: Archer-Daniels-Midland Company
    Inventors: Beth Fatland-Bloom, Gyan Rai, P. John Rayapati, Nyerhovwo John Tonukari
  • Patent number: 7563606
    Abstract: Non-amino organic acids such as succinic acid, malic acid and fumaric acid are produced by reacting bacterial cells or treated bacterial cells of a coryneform bacterium with an organic raw material in an aqueous medium containing magnesium carbonate and/or magnesium hydroxide, and a certain range of concentration of a monovalent cation, while maintaining the pH within a certain range without increasing the volume of the aqueous medium.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: July 21, 2009
    Assignees: Mitsubishi Chemical Corporation, Ajinomoto Co., Inc.
    Inventors: Ryusuke Aoyama, Makoto Murase, Kenji Yamagishi, Kiyohiko Nishi, Hiroyuki Kojima
  • Publication number: 20090181433
    Abstract: The present invention provides means for the production of desired end-products of in vitro and/or in vivo bioconversion of biomass-based feed stock substrates, including but not limited to such materials as starch and cellulose. In particularly preferred embodiments, the methods of the present invention do not require gelatinization and/or liquefaction of the substrate.
    Type: Application
    Filed: October 2, 2008
    Publication date: July 16, 2009
    Applicant: GENENCOR INTERNATIONAL, INC.
    Inventors: Gopal K. Chotani, Manoj Kumar, Jeffrey P. Pucci, Karl J. Sanford, Jayarama K. Shetty
  • Publication number: 20090162892
    Abstract: The invention relates to a process for the production of at least one microbial metabolite having at least 3 carbon atoms or at least 2 carbon atoms and at least 1 nitrogen atom by means of sugar-based microbial fermentation, comprising: a) the preparation of a sugar-containing liquid medium with a monosaccharide content of more than 20% by weight from a starch feedstock, the sugar-containing liquid medium also comprising non-starchy solid constituents of the starch feedstock; b) the fermentation of the sugar-containing liquid medium for the production of the metabolite(s); and c) depletion or isolation of at least one metabolite from the fermentation liquor, wherein a microorganism strain which produces the desired metabolite(s) is cultivated with the sugar-containing liquid medium, said liquid medium being obtained by: a1) milling the starch feedstock; and a2) liquefying the millbase in an aqueous liquid in the presence of at least one starch-liquefying enzyme, followed by saccharification using at lea
    Type: Application
    Filed: May 27, 2005
    Publication date: June 25, 2009
    Applicant: BASF AG
    Inventors: Markus Pompejus, Stephan Freyer, Markus Lohscheidt, Oskar Zelder, Matthias Boy
  • Publication number: 20090162910
    Abstract: The present invention relates to a method for mass production of other primary metabolites by inhibiting a specific metabolite of metabolism in microorganisms, a transformant for mass production of other primary metabolites plasmid clone by modifying a specific gene relating to the metabolism, and a method for preparation thereof. The primary metabolites can contain lactate, succinate, or alcohol as ethanol, wherein each has a high industrial applicability as an environmental friendly plasmid clone biochemical material.
    Type: Application
    Filed: February 16, 2007
    Publication date: June 25, 2009
    Inventors: Jeong-Sun Seo, Hyon-Yong Chong, Jeong-Hyun Kim, Jae-Young Kim
  • Publication number: 20090156779
    Abstract: Provided is a bacterium which is capable of producing an organic acid and is modified so as to have an enhanced 2-oxoglutarate dehydrogenase activity as compared with that of an unmodified strain. An organic acid such as succinic acid can be produced by culturing the bacterium.
    Type: Application
    Filed: February 23, 2007
    Publication date: June 18, 2009
    Applicants: MITSUBISHI CHEMICAL CORPORATION, AJINOMOTO CO., INC.
    Inventors: Makoto Murase, Ryusuke Aoyama, Akiko Sakamoto, Sanae Sato, Madoka Yonekura, Shuichi Yunomura, Kenji Yamagishi, Keita Fukui, Chie Koseki, Jun Nakamura, Hiroyuki Kojima
  • Publication number: 20090123981
    Abstract: The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 14, 2009
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC.
    Inventors: JAMES F. PRESTON, III, Virginia Chow, Guang Nong, John D. Rice, Franz J. St. John
  • Publication number: 20090075352
    Abstract: The present invention is related to a method for improving a strain on the basis of in silico analysis, in which it compares the genomic information of a target strain for producing a useful substance to the genomic information of a strain overproducing the useful substance so as to primarily screen genes unnecessary for the overproduction of the useful substance, and then to secondarily screen genes to be deleted through performing simulation with metabolic flux analysis.
    Type: Application
    Filed: May 23, 2005
    Publication date: March 19, 2009
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Yup Lee, Tae Yong Kim, Dong Yup Lee, Sang Jun Lee
  • Publication number: 20090042264
    Abstract: Nucleotide sequences and genetic constructs that can be used to regulate genes encoding enzymes that change carbon flux through metabolic pathways that lead to lactic acid or fumarate production in a host cell, such as a R. oryzae cell, are provided. Methods of manipulating carbon flux in a cell also are provided.
    Type: Application
    Filed: August 21, 2008
    Publication date: February 12, 2009
    Applicant: Archer-Daniels-Midland Company
    Inventors: Beth Fatland-Bloom, Gyan Rai, P. John Rayapati, Nyerhovwo John Tonukari
  • Publication number: 20090036576
    Abstract: The present invention relates to fermentation processes for the production of cyanophycin in a microorganism whereby a plant-derived nitrogen source is converted by the microorganism into cyanophycin. The plant-derived nitrogen source preferably is a process stream being obtained in the processing of agricultural crops such as e.g., a by-product in the processing of starch from agricultural crops like corn, potato or cassave. The invention further relates to processes for the conversion of cyanophycin into a variety of compounds including e.g., ornithine, 1,4-butanediamine, n-alkyl amino alcohols, acrylonitrile, as well as cyanophycin derived functionalised poly(aspartic acid)s wherein the arginine residues have been functionalised to ornithine, (N-L-arginino)succinate, N-phospho-L-arginine or agmantine and the lysine residues have been functionalised to N6-hydroxy-L-lysine, 2,5-diaminohexanoate, N6-(L-1,3-dicarboxypropyl), pentanediamine, 5-aminopentanamide or N6-acetyl-L-lysine.
    Type: Application
    Filed: March 6, 2006
    Publication date: February 5, 2009
    Inventors: Yasser Abdel Kader Elbahloul, Elinor Lindsey Scott, Andreas Mooibroek, Johan Pieter Marinus Sanders, Martin Obst, Alexander Steinbuchel
  • Patent number: 7470530
    Abstract: Provided are novel rumen bacterial mutants resulted from the disruption of a lactate dehydrogenase gene (ldhA) and a pyruvate formate-lyase gene (pfl) from rumen bacteria; a novel bacterial mutant (Mannheimia sp. LPK7) having disruptions of a ldhA, a pfl,a phosphotransacetylase gene (pta), and a acetate kinase gene (ackA); a novel bacterial mutant (Mannheimia sp. LPK4) having disruptions of a ldhA, a pfl, and a phosphoenolpyruvate carboxylase gene (ppc) involved in the immobilization of CO2 in a metabolic pathway of producing succinic acid; and a method for producing succinic acid, characterized by culture of the above mutants in anaerobic conditions. The bacterial mutants have the property of producing succinic acid at high concentration while producing little or no organic acids, as compared to the prior wild-type strains of producing various organic acids. Thus, the bacterial mutants are useful as strains for the industrial production of succinic acid.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: December 30, 2008
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sang Yup Lee, Sang Jun Lee
  • Publication number: 20080305533
    Abstract: Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.
    Type: Application
    Filed: December 16, 2005
    Publication date: December 11, 2008
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Jian Yi, Susanne Kleff, Michael V. Guettler
  • Publication number: 20080293112
    Abstract: Coryneform bacterium is modified so that an activity of acetyl-CoA hydrolase is decreased, and succinic acid is produced by using the bacterium.
    Type: Application
    Filed: November 17, 2006
    Publication date: November 27, 2008
    Applicants: AJINOMOTO CO., INC., MITSUBISHI CHEMICAL CORPORATION
    Inventors: Keita FUKUI, Jun NAKAMURA, Hiroyuki KOJIMA
  • Publication number: 20080293113
    Abstract: Disclosed is a process for production of succinic acid, which comprises the step of reacting a bacterium which has been modified so as to increase the expression of a sucE1 gene or a product produced by any treatment of the bacterium with an organic raw material in a reaction solution containing a carbonate ion, a bicarbonate ion or carbon dioxide gas to thereby yield the desired succinic acid.
    Type: Application
    Filed: April 17, 2008
    Publication date: November 27, 2008
    Applicants: AJINOMOTO CO., INC., MITSUBISHI CHEMICAL CORPORATION
    Inventors: Chie KOSEKI, Keita FUKUI, Jun NAKAMURA, Hiroyuki KOJIMA
  • Patent number: 7455997
    Abstract: A process of producing fermentation product comprising the steps of, (i) forming an acidified suspension of particulate plant derived material comprising a first polysaccharide which is more readily hydrolysable and a second polysaccharide which is more difficult to hydrolysable, (ii) allowing the first polysaccharide to undergo hydrolysis by action of the acid at a temperature of at least 50° C.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: November 25, 2008
    Assignee: Ciba Specialty Chemicals Water Treatments Ltd
    Inventor: Jonathan Hughes
  • Patent number: 7435168
    Abstract: Nucleotide sequences and genetic constructs that can be used to regulate genes encoding enzymes that change carbon flux through metabolic pathways that lead to lactic acid or fumarate production in a host cell, such as a R. oryzae cell, are provided. Methods of manipulating carbon flux in a cell also are provided.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: October 14, 2008
    Assignee: Archer-Daniels-Midland Company
    Inventors: Beth Fatland-Bloom, Gyan Rai, P. John Rayapati, Nyerhovwo John Tonukari
  • Publication number: 20080193969
    Abstract: The present invention relates to fungal host cells that are transformed with a nucleic acid construct encoding a fungal oxygen-binding proteins or fragments thereof that comprise the oxygen-binding domain. Upon transformation of the host cell with the construct, the oxygen-binding protein confers to the host cell improved fermentation characteristics as compared to untransformed host cells. These characteristics include e.g. increases in oxygen uptake rates, biomass densities, volumetric productivities and/or product yields. The invention further relates to fermentation processes in which the host cells are used and to fungal oxygen binding proteins, in particular fungal flavohemoglobins and hemoglobin domains, and to nucleotides sequences encoding these proteins.
    Type: Application
    Filed: January 12, 2006
    Publication date: August 14, 2008
    Inventors: Rob Te Biesebeke, Peter Jan Punt, Cornelis Antonius Maria Jacobus Johannes Van den Hondel, Willem Meindert De Vos
  • Patent number: 7368268
    Abstract: The present invention provides an aerobic coryneform bacterium transformant in which a lactate dehydrogenase gene is disrupted, and a pyruvate carboxylase gene is recombined so as to be highly expressed by a genetic engineering method. The aerobic coryneform bacterium transformant of the present invention can produce dicarboxylic acids from saccharides at a high production rate.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: May 6, 2008
    Assignee: Research Institute of Innovative Technology for the Earth
    Inventors: Shikiko Murakami, Kaori Nakata, Shohei Okino, Yuko Ikenaga, Masayuki Inui, Hideaki Yukawa
  • Publication number: 20080090273
    Abstract: We disclose a recombinant yeast, wherein the yeast is pyruvate decarboxylase enzyme (PDC) activity negative (PDC-negative) and is functionally transformed with a coding region encoding a pyruvate carboxylase enzyme (PYC) wherein the PYC is active in the cytosol, a coding region encoding a malate dehydrogenase enzyme (MDH) wherein the MDH is active in the cytosol and is not inactivated in the presence of glucose, and a coding region encoding a malic acid transporter protein (MAE). We also disclose a method of producing malic acid by culturing such a yeast in a medium comprising a carbon source and a carbon dioxide source and isolating malic acid from the medium.
    Type: Application
    Filed: October 31, 2006
    Publication date: April 17, 2008
    Inventors: Aaron Adriaan Winkler, Abraham Frederik de Hulster, Johannes Pieter van Dijken, Jacobus Thomas Pronk
  • Patent number: 7262046
    Abstract: Methods of increasing yields of succinate using aerobic culture methods and a multi-mutant E. coli strain are provided. Also provided is a mutant strain of E. coli that produces high amounts of succinic acid.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: August 28, 2007
    Assignee: Rice University
    Inventors: San Ka-Yiu, George N. Bennett, Henry Lin
  • Patent number: 7244610
    Abstract: Methods of increasing yields of succinate using aerobic culture methods and a multi-mutant E. coli strain are provided. Also provided is a mutant strain of E. coli that produces high amounts of succinic acid.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: July 17, 2007
    Assignee: Rice University
    Inventors: Ka-Yiu San, George N. Bennett, Henry Lin