Optical Result Patents (Class 436/164)
  • Patent number: 10344253
    Abstract: Devices for the propagation or storage of microorganisms are provided including a first layer that has a first portion of a surface of the first layer, to which a first water-swellable gelling agent comprising a first clay is affixed. The devices further include a second layer that is separable from the first layer and has a first portion of a surface of the second layer, to which a second water-swellable gelling agent is affixed. Methods for detecting and enumerating at least one microorganism in a sample are provided. The methods include providing a device, separating the first layer from the second layer, adding an aliquot of a sample containing at least one microorganism onto the first or second water-swellable gelling agent to form an inoculated device, laminating the first layer back to the second layer, and incubating the inoculated device. Kits and methods of making the devices are also provided.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 9, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Evan D. Brutinel, Alexi J. Young, Adam J. Stanenas
  • Patent number: 10302639
    Abstract: Provided is a thermal transfer medium for a testing device, the thermal transfer medium including a support, a solid-phase reagent layer provided over the support and containing a reagent over a surface of the solid-phase reagent layer; and a protective layer provided over the solid-phase reagent layer in a manner to cover the reagent, wherein an average thickness of the protective layer is 0.5 ?m or greater but 30 ?m or less.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 28, 2019
    Assignee: Ricoh Company, Ltd.
    Inventors: Miyuki Hirata, Rie Kobayashi, Mio Akima
  • Patent number: 10302638
    Abstract: An automatic analyzing apparatus 10 includes a chip rack 11 that stores a pipette chip, a pipette 12 into which a specimen is injected, a conveyance unit that conveys the pipette 12 by parallel translation, a reagent rack 14, a reaction unit 15, a detection unit 16, and a detection block unit 17. The pipette chip stored by the chip rack 11 has a planar structure to directly and optically detect the specimen. The chip rack 11 includes, in a hole that receives the pipette chip, a guide corresponding to the structure of the pipette chip. The pipette 12 sucks or discharges the specimen via the pipette chip mounted onto the tip thereof by a drive of a pump. In the detection unit 16, a measurement is carried out with the pipette chip arranged so that the plane that receives light is vertical to an optical axis.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 28, 2019
    Inventors: Kazuyuki Hamada, Takeshi Akiba, Chikara Ohyama, Tohru Yoneyama, Yuki Tobisawa, Toshifumi Takeuchi
  • Patent number: 10287635
    Abstract: Certain exemplary embodiments can provide a method, which comprises causing a determination to be made that a body fluid sample is from a patient with cancer. The determination can be made via analyzing the body fluid sample by sub-THz resonance spectroscopy with absorption determinations being made at a plurality of frequencies between 0.05 and 1.0 THz to show a presence of specific Micro-RNAs as cancer related molecules in the body fluid.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: May 14, 2019
    Inventors: Tatiana Globus, Boris Gelmont, Amir Jazaery, Alexei Bykhovski, Igor Sizov, Aaron Moyer, Jerome Ferrance
  • Patent number: 10267743
    Abstract: Color quantification of chemical test pads and titration of analytes can be performed under different lighting conditions. In one embodiment, the lighting condition is estimated under which a digital image is captured and utilized to select a set of reference colors from which the quantified color is compared to determine the titration. In another embodiment, a plurality of comparisons are made with different lighting conditions with the result having the highest confidence level being selected to determine the titration.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: April 23, 2019
    Assignee: Scanadu Incorporated
    Inventors: Bernard Burg, Martin Zizi, Aaron Alexander Rowe, Anthony Smart, Walter De Brouwer
  • Patent number: 10254232
    Abstract: A device for detecting analytes in a sample includes (a) n light source units generating light; (b) a reaction strip including (i) a test area illuminated with light from the light source unit and including a material reacting to the analytes, (ii) a control area illuminated with the light from the light source unit and including a control material, and (iii) a background area illuminated with the light from the light source unit; and (c) at least n+1 light receiving units detecting light emitted from the test area, the control area, and the background area of the reaction strip, respectively.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: April 9, 2019
    Assignee: SUGENTECH, INC.
    Inventors: Seungbum Yoo, Eunkyung Kim, Dong Gyu Lee, Sang Hoon Oh, Mi Jin Sohn
  • Patent number: 10254229
    Abstract: A hand-held microfluidic testing device is provided that includes a housing having a cartridge receiving port, a cartridge for input to the cartridge receiving port having a sample input and a channel, where the channel includes a mixture of Raman-scattering nanoparticles and a calibration solution, where the calibration solution includes chemical compounds capable of interacting with a sample under test input to the cartridge and the Raman-scattering nanoparticles, and an optical detection system in the housing, where the optical detection system is capable of providing an illuminated electric field, where the illuminating electric field is capable of being used for Raman spectroscopy with the Raman-scattering nanoparticles and the calibration solution to analyze the sample under test input to the cartridge.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: April 9, 2019
    Assignee: OndaVia, Inc.
    Inventors: Mark C. Peterman, Merwan Benhabib, Samuel Kleinman
  • Patent number: 10221388
    Abstract: Methods, devices and kits for the physical separation of plankton into its component parts utilizing phototactic behavior are described. The methods utilize positive phototactic behavior and negative contrast orientation of the zooplankton for maximal in situ separation of phytoplankton and zooplankton for use in further studies and evaluation of separation efficiency. The devices provide effective conditions for use in the separation of plankton into component parts.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: March 5, 2019
    Inventor: Nancy Leland
  • Patent number: 10209194
    Abstract: A Raman scattering probe, and a method of making such a probe, uses a capsule of nanometric size, such as a nanotube, to which is coupled at least one Raman-active molecule. The Raman-active molecule may be encapsulated in, or attached on the exterior of, the capsule, and exhibits a Raman scattering response when the probe is illuminated by an excitation light beam. A functionalization chemical group that is attached to an exterior of the capsule provides a connection between the capsule and a target material. This functionalization may include a generic chemical functionalization that bonds with any of a plurality of secondary chemical groups each of which bonds directly with a different target. A method of using the probe for Raman spectroscopy or Raman imaging is also provided.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: February 19, 2019
    Inventors: Richard Martel, Nathalie Y-Wa Tang, Francois Raymond, Janie Cabana, Marc-Antoine Nadon
  • Patent number: 10184891
    Abstract: A biochip device comprising a substrate constituted by at least one plate of material forming a multimode planar waveguide and carrying chromophore elements suitable for emitting fluorescence in response to excitation by guided waves having an evanescent portion, the device being characterized in that it includes coupling means for coupling excitation light with the waveguide in the form of guided waves, the coupling means being substantially non-directional.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: January 22, 2019
    Assignee: GENEWAVE
    Inventors: Claude Weisbuch, Lucio Martinelli, Henri Benisty, Christof Schafauer, Gabriel Sagarzazu, Thierry Gacoin, Mélanie Bedu
  • Patent number: 10184149
    Abstract: A device for performing biological sample reactions may include a plurality of flow cells configured to be mounted to a common microscope translation stage, wherein each flow cell is configured to receive at least one sample holder containing biological sample. Each flow cell also may be configured to be selectively placed in an open position for positioning the at least one sample holder into the flow cell and a closed position for reacting biological sample contained in the at least one sample holder. The plurality of flow cells may be configured to be selectively placed in the open position and the closed position independently of each other.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: January 22, 2019
    Inventors: Dennis Lehto, Steven J. Boege
  • Patent number: 10166540
    Abstract: A nanofluidic biosensor system (200) comprising a bottom substrate (120) and a top substrate (110) between which are defined an input lateral aperture (210), a nanoslit (230) which contains at least one functionalized area (231) and an output lateral aperture (220) or an internal reservoir (221), said biosensor system (200) being adapted to let a solution containing biomolecules (320) enter the input lateral aperture (210) and successively pass through said nanoslit (230) and said output lateral aperture (220) or internal reservoir (221); said biosensor system (200) furthermore comprising a gas evacuation subsystem (150-155) which is located between said nanoslit (230) and the biosensor external environment.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: January 1, 2019
    Assignee: Abionic SA
    Inventors: Nicolas Durand, Iwan Maerki, Matthias Geissbuehler
  • Patent number: 10150160
    Abstract: The universal one-pot and up-scalable synthesis of SERS encoded nanoparticles relies on the controlled co-absorption of mercaptoundecanoic acid (MUA) and the Raman code on the metallic surfaces of the nanoparticles. In contrast to most of the reported procedures which typically involve complex steps, the present method has demonstrated to be an easy and fast one-pot approach for the production of SERS-encoded nanoparticles. This versatile strategy allows for the SERS codification of particles with every molecule with affinity toward the metal surface, independently of its chemical nature, as exemplified here in the fabrication of 31 different encoded particles using the same standard procedure. In addition to the easiness of preparation, scalability to the liter regime, stability in aqueous solutions including PBS and chemical diversity, our SERS-encoded particles show considerably higher optical efficiency than those fabricated by using PEG or PVP polymers.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: December 11, 2018
    Assignee: Medcom Advance, S.A.
    Inventors: Nicolás Pazos Pérez, Bernat Mir De Simón
  • Patent number: 10151699
    Abstract: A luminescent Ir(III) complex is used to develop a label-free G-quadruplex-based assay for lead ions in liquid or solution. In particular, the present invention describes method for monitoring lead ion concentration in water.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: December 11, 2018
    Assignees: Hong Kong Baptist University, University of Macau
    Inventors: Dik-Lung Ma, Chung-Hang Leung, Kangning Ren
  • Patent number: 10145825
    Abstract: A luminescent Ir(III) complex it used to develop a label-free G-quadruplex-based assay for lead ions in a liquid or aqueous solution. In particular, the present invention describes method for monitoring lead ion concentration in water.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: December 4, 2018
    Assignees: Hong Kong Baptist University, University of Macau
    Inventors: Dik-Lung Ma, Sheng Lin, Chung-Hang Leung
  • Patent number: 10113962
    Abstract: To be adapted to various types of latex reagents for detecting scattered light and thereby measuring agglutination reactions with high sensitivity while sufficiently ensuring integration time. To be adapted to various types of latex particles of different particle sizes, a plurality of light receivers are arranged in a plane perpendicular to the direction of cell movement by rotation of a cell disk. To ensure sufficient integration time, the angle between the optical axis of the irradiation light and each of a plurality of optical axes of scattered light viewed from above the cell is made equal to or less than 17.7° including a mounting error.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: October 30, 2018
    Inventors: Sakuichiro Adachi, Muneo Maeshima, Isao Yamazaki, Tomonori Mimura
  • Patent number: 10077286
    Abstract: Disclosed is a method for selectively eliminating triglycerides in lipoproteins other than low density lipoprotein, which method allows one to provide a method for directly and differentially quantifying LDL-TG in a sample with excellent simplicity, specificity and accuracy using an automated analyzer or the like without performing a laborious operation of pretreatment such as centrifugation or electrophoresis. The method for eliminating triglycerides in lipoproteins other than low density lipoproteins includes allowing lipoprotein lipase, cholesterol esterase, glycerol kinase and glycerol-3-phosphate oxidase to act on a sample in the presence of a surfactant that acts on lipoproteins other than low density lipoprotein and/or a surfactant having LDL-protecting action, and eliminating hydrogen peroxide produced thereby.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: September 18, 2018
    Assignee: DENKA SEIKEN CO., LTD.
    Inventor: Motoko Ohta
  • Patent number: 10048249
    Abstract: A blood coagulation analyzer comprises: a light irradiation unit configured to apply light onto a container configured to store a measurement specimen containing a sample and a reagent, and comprising: light sources including a first light source configured to generate light of a first wavelength for blood coagulation time measurement, a second light source configured to generate light of a second wavelength for synthetic substrate measurement, and a third light source configured to generate light of a third wavelength for immunonephelometry measurement; and optical fiber parts facing the respective light sources; a light reception part configured to receive light transmitted through the container; and an analysis unit configured to analyze the sample using an electric signal outputted from the light reception part.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: August 14, 2018
    Inventors: Naoto Nishimura, Tsuyoshi Fukuzaki
  • Patent number: 10041922
    Abstract: Disclosed are in vitro methods for predicting the relative irritancy of a test substance. The disclosed methods include a first assay for water insoluble test substances and a second assay for water soluble test substances. The combined results of both assays provide greater sensitivity and accuracy in predicting relative irritancy than tests for water soluble irritants alone.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 7, 2018
    Inventor: Stewart Lebrun
  • Patent number: 10036056
    Abstract: The present invention relates to catalytic nucleic acid molecule signal amplification combined with surface plasmon properties of gold nanoparticles to achieve simple and sensitive colorimetric detection of biological targets. The assays of the present invention have about 50 pM sensitivity without the need for purification steps, can detect multiple targets in parallel, and is easily adaptable to new targets. The methods of the present invention are capable of rapid detection of genetic targets for gonorrhea, syphilis, malaria, and hepatitis B infections.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: July 31, 2018
    Inventors: Warren Che Wor Chan, Kyrylo Zagorovsky
  • Patent number: 10012760
    Abstract: A heat source-free fiber positioning and orienting system for seepage of submerged or partially submerged structures and monitoring method thereof includes a plurality of seepage monitoring devices connected through rotary supports. The seepage monitoring devices include first seepage monitoring units symmetrically distributed on the front and back and second seepage monitoring units symmetrically distributed on left and right. Seepage monitoring fibers are distributed in the first seepage monitoring units and the second seepage monitoring units, and the seepage conditions of the submerged or partially submerged structures are monitored through the seepage monitoring fibers. The heat source-free fiber positioning and orienting system for the seepage of submerged or partially submerged structures has the characteristics of no heating, distribution manner, multiple orientations and synchronicity or the like.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: July 3, 2018
    Inventors: Huaizhi Su, Meng Yang, Hao Li, Xing Li, Zhaoqing Fu
  • Patent number: 10001435
    Abstract: Methods and apparatuses for determining a material characteristic of a sample material are disclosed. A sample material is loaded to a plurality of cells. An interference material is disposed relative to the sample material such that the interference material at least retards the transport of the sample material from a one of the cells to at least another one of the cells. For each one of the cells, independently: a stimulus is applied to the sample material in the cell such that a conditioned sample material is obtained; and a material characteristic of the conditioned sample material is sensed.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: June 19, 2018
    Assignee: The Governing Council of the University of Toronto
    Inventors: David Sinton, Jason Riordon, Yi Xu, Bo Bao
  • Patent number: 9994808
    Abstract: The present invention is directed to compositions, tools, methods and devices to culture microorganisms and, in particular, to compositions, tools, methods and devices for the detection of microorganisms in biological samples.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: June 12, 2018
    Assignee: Vax-Immune, LLC
    Inventors: Bhairavi Parikh, James Stone
  • Patent number: 9977031
    Abstract: The invention provides methods, compositions, kits, and systems for the sensitive detection of cardiac troponin, Such methods, compositions, kits, and systems are useful in diagnosis, prognosis, and determination of methods of treatment in conditions that involve release of cardiac troponin.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: May 22, 2018
    Assignees: Singulex, Inc., The Regents of the University of California
    Inventors: Philippe Goix, Robert Puskas, John Todd, Richard Livingston, Douglas Held, Allan H. B. Wu
  • Patent number: 9964552
    Abstract: A method is described for mass spectrometric analysis, detection and quantification of catecholamines. The methods can comprise reacting the catecholamines with a 4-aminoantipyrine reagent and detecting and/or quantifying the adduct produced by the reaction. The methods can also allow for multiplexing. Compounds formed by the reactions are also provided.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: May 8, 2018
    Assignee: DH Technologies Development Pte. Ltd.
    Inventors: Subhakar Dey, Subhasish Purkayastha
  • Patent number: 9952193
    Abstract: A test strip device exhibits visual changes, such as color changes, when there is a only slight difference in the composition of liquids such as gasoline, oil, ethanol and water. Such a slight liquid composition difference usually requires a sophisticated and expensive instrument to differentiate. The test strip consists of one and more than one inverse opal films deposited on a substrate and achieves this goal of differentiation in a simple, fast and energy-free manner.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 24, 2018
    Inventors: Gurdeep Ahira, Paul Chi Hang Li, Abootaleb Sedighi, Shuang Qiu, Chung Kay Michael Wong, Wilson Ka Ho Chim, Un I Cheang
  • Patent number: 9952241
    Abstract: Methods of identifying a characteristic of a clinical analysis specimen or a sample container containing the specimen are disclosed. The methods include moving the sample container along a track while causing translation and rotation of the sample container, and capturing two or more images of the sample container during the translation and rotation. The track may have one or more moveable belts contacting a carrier to rotate and translate the carrier holding the sample container. Image analysis may be used to read a barcode label of the sample container, determine HIL, and/or physical characteristics of the sample container. Apparatus for carrying out the method are described, as are other aspects.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: April 24, 2018
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Kerry L. Miller
  • Patent number: 9931629
    Abstract: An apparatus including an array of wells including a number of well channels, each well channel including a plurality of wells in the well channel, the wells containing a substance in use, one or more inlets for receiving respective fluids and channels coupled to the one or more inlets for selectively supplying one or more fluids to each well channel to thereby expose the substance to different conditions allowing a response of the substance to the conditions to be determined.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: April 3, 2018
    Assignee: The University of Queensland
    Inventors: Justin John Cooper-White, Drew Murray Titmarsh
  • Patent number: 9922224
    Abstract: A system for identifying and authenticating an object includes an indicium having randomly applied fluorophores that emit light when excited. The fluorophores produce a unique, random pattern that uniquely identifies any object to which the indicium is attached. The indicium may also include an identification code. An imaging unit with a flash excites and captures the photo-luminescence of the indicium in the form of a random image. The identification and authentication of the object is done by sending the image captured via a mobile phone or other device such as a laptop or notepad to a server of an authentication unit via the Internet or other communication media to correlate with a reference image of the indicium captured at the time of manufacture. This assures the authenticity of the product with a high degree of confidence.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: March 20, 2018
    Inventor: Narayan Nambudiri
  • Patent number: 9903807
    Abstract: A wearable device includes a testing portion, the testing portion includes receiving space, a bottom surface defining an opening, an opposite top surface, and a first side surface defining a slot. A white light source is received in the receiving space. A wearable portion of the device is secured to the testing portion and the wearable portion can be placed around a terminal device comprising a camera. The opening faces the camera when the wearable portion is around the terminal device, allowing the camera to capture a standard image of the white light, and capture a wet image of a test paper imbued with user bio-matter when the test paper is inserted into the slot. A biological information of the user, as an indicator of health, is calculated according to a color comparison between the wet image and the standard image.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: February 27, 2018
    Inventor: Jen-Tsorng Chang
  • Patent number: 9891226
    Abstract: A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: February 13, 2018
    Assignee: CLONDIAG GMBH
    Inventors: Eugen Ermantraut, Thomas Kaiser, Jens Tuchscheerer, Vico Baier, Torsten Schulz, Anke Wostemeyer
  • Patent number: 9889446
    Abstract: The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: February 13, 2018
    Assignee: The University of Chicago
    Inventors: Rustem F. Ismagilov, Joshua David Tice, Helen Song Baca, Lewis Spencer Roach
  • Patent number: 9872606
    Abstract: Improved systems, methods, and devices relating to optical fiber scanners are provided. In one aspect, a scanning apparatus includes an optical fiber and a piezoelectric actuator coupled to the optical fiber to deflect a distal end of the optical fiber in a scanning pattern. The apparatus can include drive circuitry coupled to the piezoelectric actuator, sense circuitry electrically coupled to the piezoelectric actuator and the drive circuitry to determine displacement of the piezoelectric actuator, and a processor coupled to the drive circuitry and the sense circuitry to drive the piezoelectric actuator in response to the displacement.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: January 23, 2018
    Inventors: Ivan L. Yeoh, Per G. Reinhall, Eric J. Seibel, Matthew J. Kundrat
  • Patent number: 9846115
    Abstract: The present invention relates generally to the field of chemical and biological sensors and in particular to micro electro-mechanical systems (MEMS) sensors for measuring fluid viscosity and detection of minute amounts of chemicals and biological agents in fluids. It is an object of the present invention to provide a sensor that will work in disposable cartridges with remote sensing that can measure dynamic changes of the functionalized cantilevers in liquid and gas environment.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: December 19, 2017
    Inventors: Hakan Urey, Goksenin Yaralioglu
  • Patent number: 9839912
    Abstract: An analytical device for automated determining of a measured variable of a liquid sample, includes: a base module; a replaceable cassette connectable with the base module and having at least one liquid container connectable via a fluid line with a measuring cell and containing a reagent to be added to the liquid sample for forming a measured liquid; and a measuring transducer for registering measured values correlated with the measured variable for the measured liquid accommodated in the measuring cell. The cassette has, associated with the at least one liquid container, a fluid coupling apparatus having a primary component and a secondary component and serving for producing a connection of the fluid line with the liquid container.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: December 12, 2017
    Assignee: Endress+Hauser Conducta GmbH+Co. KG
    Inventors: Michael Oprea, Thomas Baumgartner, Jurgen Erchinger, Christian Hirn, Ralf Steuerwald, Tobias Zachmann, Ulrich Kathe, Anja Gerlinger
  • Patent number: 9841382
    Abstract: Methods and systems for colorimetrically analyzing a liquid medium by analyzing chemical test strip images are provided. The liquid medium can be industrial water in an industrial water system. Image analyzing software carries out the analysis. The results of the analysis can be used to diagnosing a chemical treatment regimen of the industrial water system. A chemical test strip holder can be used to enhance reliability and repeatability of the imaging process and/or subsequent analysis.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: December 12, 2017
    Assignee: Ecolab USA Inc.
    Inventor: Robert S. Walicki
  • Patent number: 9810658
    Abstract: Described herein are three-dimensional (3-D) paper fluidic devices. The entire 3-D device is fabricated on a support layer formed from a single sheet of material and assembled by folding the support layer. The folded structure may be enclosed in an impermeable cover or package. Chemically sensitive particles may be disposed in the support layer for use in detecting analytes.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: November 7, 2017
    Assignee: Board of Regents, The University of Texas System
    Inventors: Richard M. Crooks, Hong Liu, Karen Scida, Christophe Renault
  • Patent number: 9804083
    Abstract: Examples of an optical standard and a calibration apparatus for calibrating or characterizing a spectroscopy system using such optical standard are disclosed. The optical standard can comprises a mixture of acetaminophen and barium sulfate, wherein a mass of the acetaminophen in the mixture is being less than a mass of the BaSO4. Such optical standard can be used in a calibration device for calibrating or characterizing a spectroscopy system. The calibration device can comprise a substrate base with a top surface and a bottom surface. The top surface can include a section for receiving the optical standard sample. The receiving section can be adhesive. The calibration device can further comprise a film that can be attached to the top surface of the substrate base to cover at least the section of the substrate where the optical standard is being placed. The calibration device can be disposed after the calibration measurements are completed.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: October 31, 2017
    Inventors: Haishan Zeng, Hequn Wang, Thomas Andrew Braun
  • Patent number: 9797877
    Abstract: This invention relates to a semi-quantitative diagnostic tool and a method for using the same to verify the efficacy of cleaning-in-place procedures in eliminating carbohydrate-based, organic residues from product contact surfaces in food, beverage and pharmaceutical manufacturing, processing and packaging facilities. The diagnostic tool comprises a permanganate-based colorimetric indicator formulation and a translucent assay container for containing the permanganate-based colorimetric indicator formulation.
    Type: Grant
    Filed: September 1, 2014
    Date of Patent: October 24, 2017
    Inventor: Robin Duncan Kirkpatrick
  • Patent number: 9782774
    Abstract: This document provides methods and devices for metering fluids. In some cases, the methods and devices include intersecting channels that include capillary-stop geometries at each intersection point that guides the fluids on a desired path, which is controlled by the opening and closing of valves. For example, a metering channel can intersect a loading channel and intersect an outflow channel and a metering portion can be defined by the geometry of the metering channel between the intersection points.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: October 10, 2017
    Assignee: Daktari Diagnostics, Inc.
    Inventors: Lee Zamir, Aaron Oppenheimer, Lutz Weber
  • Patent number: 9746467
    Abstract: A microstructured chip (3; 33; 43; 53; 63) for surface plasmon resonance (SPR) analysis, taking the form of a solid formed by: a base (5; 77); an upper surface (4; 44), at least part of which is covered with a metal layer (2; 22; 42; 52; 62); and at least one side surface (55; 66). The chip is characterized in that the aforementioned upper surface is provided with micrometric zones intended to receive species to be analyzed and selected from among n protrusions and m cavities, and in that when n+m?2 the zones are separated from one another by planar surfaces, with n varying between 1 and j, m varying between 0 and i, and j and i being integers.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 29, 2017
    Assignee: PRESTODIAG
    Inventor: Thibaut Mercey
  • Patent number: 9739713
    Abstract: A microstructured chip (3; 33; 43; 53; 63) for surface plasmon resonance (SPR) analysis, taking the form of a solid formed by: a base (5; 77); an upper surface (4; 44), at least part of which is covered with a metal layer (2; 22; 42; 52; 62); and at least one side surface (55; 66). The chip is characterized in that the aforementioned upper surface is provided with micrometric zones intended to receive species to be analyzed and selected from among n protrusions and m cavities, and in that when n+m?2 the zones are separated from one another by planar surfaces, with n varying between 1 and j, m varying between 0 and i, and j and i being integers.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: August 22, 2017
    Assignee: PRESTODIAG
    Inventor: Thibaut Mercey
  • Patent number: 9696729
    Abstract: The present invention provides microfluidic technology enabling rapid and economical manipulation of reactions on the femtoliter to microliter scale.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: July 4, 2017
    Assignee: The University of Chicago
    Inventors: Rustem F. Ismagilov, Bo Zheng, Cory John Gerdts
  • Patent number: 9683935
    Abstract: The invention is directed towards methods and compositions for identifying the presence of surfactants in water. The invention is quite superior over the prior art because it can form a colorful complex in half the time, avoid the need for difficult separation steps, use a safer solvent, and avoid the formation of messy foam. The invention involves adding to the water a cobalt thiocyanate reagent, pre-prepared from a cobalt salt and a thiocyanate salt, which forms a colorful complex with the surfactant. Chloroform is then added to the water. The cobalt reagent causes the virtually all of the surfactant to form a colored complex which rapidly migrates into the chloroform and prevents the surfactant from foaming. Once in the chloroform, a UV-vis spectrometer can easily and precisely identify the type and amount of surfactant that was in the water.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: June 20, 2017
    Assignee: Nalco Company
    Inventors: Viviane Pacheco e Silva, Luiz Wanderley Bratfisch Pace, Edmir Carone, Jr.
  • Patent number: 9677936
    Abstract: Provided is a spectro-sensor which includes a nano antenna array. The nano antenna array includes a plurality of nano antennas which have different resonance wavelength bands and an optical detector array which includes a plurality of optical detectors that respectively detect light from the plurality of nano antennas.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: June 13, 2017
    Inventors: Seunghoon Han, Hongkyu Park, Moonsook Lee, Seongho Cho
  • Patent number: 9658246
    Abstract: A method and apparatus is provided for studying the reaction (chemical or physical) of a sample with a gas in the active atmosphere of an instrument such as an Environmental Transmission Electron Microscope (ETEM), optical microscope, X-ray microscope or scanning probe microscope. The sample is exposed to inert gas at a desired temperature before exchanging the inert gas to the active gas to reduce to avoid, or at least minimize, sample drift during image acquisition.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: May 23, 2017
    Assignee: FEI Company
    Inventors: Stan Johan Pieter Konings, Stephan Kujawa, Petrus Hubertus Franciscus Trompenaars
  • Patent number: 9638680
    Abstract: The embodiments of the present invention disclose a composition for the colorimetric detection of water in hydrocarbon fuels and a process for the preparation thereof. The embodiments of the present invention relate to an improved method for determining the presence or absence of water in non-polar organic fluids such as petroleum oil or hydrocarbon oils by using an indicator system containing a water insoluble wetting agent and a water soluble dye which can be performed rapidly without costly instrumentation and tedious, time consuming analytical methods.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: May 2, 2017
    Assignee: Council of Scientific & Industrial Research
    Inventors: Khatri Praveen Kumar, Jain Suman Lata, Ghosh Indrajit Kumar, Umesh Kumar, Chatterjee Alok Kumar, Garg Madhukar Onkarnath
  • Patent number: 9632026
    Abstract: A referencing method for an optical biosensor system using a single sensing region is provided. The method involves limiting the ligand immobilized in a single sensing region to only a portion thereof. In one embodiment, this is accomplished by selectively deactivating a portion of the sensing surface to prevent immobilization of ligand to that portion. As a result, a reference response can be recorded in the same sensing region as a molecular interaction response. Thus, the bulk refractive index can be accurately accounted for in measuring the kinetics of a molecular interaction.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: April 25, 2017
    Assignee: FLIR Systems, Inc.
    Inventor: John Gerard Quinn
  • Patent number: 9623407
    Abstract: A microfluidic device including one or more microchannels. Each microchannel comprising: a microchannel portion with a longitudinal liquid barrier that defines first and second regions. The device includes one or more first liquid passages at the level of the longitudinal barrier. A liquid inlet allows liquid to enter the first region and a liquid outlet allows liquid to leave the microchannel portion. A transverse liquid barrier between the microchannel portion and the liquid outlet holds liquid in the first region. The device includes one or more second liquid passages at the level of the transverse liquid barrier. A liquid pump displaces liquid through a microchannel portion. The first liquid passages allow excess liquid in the first region to flow into the second region, transversally to the longitudinal barrier. The second liquid passages allow excess liquid in the longitudinal portion to be discharged via the liquid outlet.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: April 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Onur Gökce
  • Patent number: 9618479
    Abstract: Devices and methods generate an ordered restriction map of genomic DNA extracted from whole cells. The devices have a fluidic microchannel that merges into a reaction nanochannel that merges into a detection nanochannel at an interface where the nanochannel diameter decreases in size by between 50% to 99%. Intact molecules of DNA are transported to the reaction nanochannel and then fragmented in the reaction nanochannel using restriction endonuclease enzymes. The reaction nanochannel is sized and configured so that the fragments stay in an original order until they are injected into the detection nanochannel. Signal at one or more locations along the detection nanochannel is detected to map fragments in the order they occur along a long DNA molecule.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 11, 2017
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Michael Ramsey, Laurent Menard