Metallic Housing Or Support Patents (Class 438/121)
  • Publication number: 20130334695
    Abstract: The invention relates to an electronic device (200) for protection against transient voltages in high-power applications. The electronic device (200) comprises: i) a semiconductor substrate (220) comprising an active element (Dd) having at least two terminals (T1, T2); ii) a conductive pad (225) provided on said substrate (220) and being electrically coupled to one of said terminals (T1, T2); iii) electrically-conductive solder material (226) provided on the conductive pad (225); iv) a first conductive part (230) electrically coupled to the conductive pad (225) via the electrically-conductive interconnect material (226). The electronic device further comprises a wall (229) being provided along the periphery of the conductive pad (225) for forming a lateral confinement of the interconnect material (226) on the conductive pad (225). The invention further relates to a method of manufacturing such electronic device.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 19, 2013
    Inventors: Edwin TIJSSEN, Sven WALCZYK, Roelf Anco Jacob GROENHUIS, RĂ¼diger WEBER, Chee Wee TEE
  • Patent number: 8609466
    Abstract: A cap and substrate having an electrical connection at a wafer level includes providing a substrate and forming an electrically conductive ground structure in the substrate and electrically coupled to the substrate. An electrically conductive path to the ground structure is formed in the substrate. A top cap is then provided, wherein the top cap includes an electrically conductive surface. The top cap is bonded to the substrate so that the electrically conductive surface of the top cap is electrically coupled to the path to the ground structure.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jung-Huei Peng
  • Publication number: 20130330882
    Abstract: Some embodiments include methods of assembling integrated circuit packages in which at least two different conductive layers are formed over a bond pad region of a semiconductor die, and in which a conductive projection associated with an interposer is bonded through a gold ball to an outermost of the at least two conductive layers. The conductive layers may comprise one or more of silver, gold, copper, chromium, nickel, palladium, platinum, tantalum, titanium, vanadium and tungsten. In some embodiments, the bond pad region may comprise aluminum, an inner of the conductive layers may comprise nickel, an outer of the conductive layers may comprise gold, the conductive projection associated with the interposer may comprise gold; and the thermosonic bonding may comprise gold-to-gold bonding of the interposer projection to a gold ball, and gold-to-gold bonding of the outer conductive layer to the gold ball. Some embodiments include integrated circuit packages.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 12, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Setho Sing Fee, Lim Thiam Chye, Tongbi Jiang
  • Publication number: 20130328213
    Abstract: One aspect is a device including a carrier comprising a first conducting layer, a first insulating layer over the first conducting layer, and at least one first through-connection from a first face of the first insulating layer to a second face of the first insulating layer. A semiconductor chip is attached to the carrier and a second insulating layer is over the carrier and the semiconductor chip. A metal layer is over the second insulating layer. A second through-connection is through the second insulating layer electrically coupling the semiconductor chip to the metal layer. A third through-connection is through the second insulating layer electrically coupling the carrier to the metal layer.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Infineon Technologies AG
    Inventors: Ralf Otremba, Henrik Ewe, Klaus Schiess, Manfred Mengel
  • Patent number: 8603864
    Abstract: A method of fabricating a semiconductor device. One embodiment provides a metal carrier. A semiconductor chip is provided. A porous layer is produced at a surface of at least one of the carrier and the semiconductor chip. The semiconductor chip is placed on the carrier. The resulting structure is heated until the semiconductor chip is attached to the carrier.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: December 10, 2013
    Assignee: Infineon Technologies AG
    Inventors: Edmund Riedl, Ivan Nikitin, Johannes Lodermeyer, Robert Bergmann, Karsten Guth
  • Patent number: 8603860
    Abstract: A method includes loading a first package component on a concave boat, and placing a second package component over the first package component. A load clamp is placed over the second package component, wherein the load clamp is supported by a temperature-variable spacer of the concave boat. A reflow step is performed to bond the second package component to the first package component. During a temperature-elevation step of the reflow step, the temperature-variable spacer is softened in response to an increase in temperature, and a height of the softened temperature-variable spacer is reduced, until the load clamp is stopped by a rigid spacer of the concave boat.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: December 10, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, L.L.C.
    Inventors: Meng-Tse Chen, Kuei-Wei Huang, Wei-Hung Lin, Wen-Hsiung Lu, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8603878
    Abstract: In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: December 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
  • Patent number: 8592259
    Abstract: There are disclosed herein various implementations of improved wafer level semiconductor packages. One exemplary implementation comprises forming a post-fabrication redistribution layer (post-Fab RDL) between first and second dielectric layers affixed over a surface of a wafer, and forming a window for receiving an electrical contact body in the second dielectric layer, the window exposing the post-Fab RDL. At least one of the first and second dielectric layers is a pre-formed dielectric layer, which may be affixed over the surface of the wafer using a lamination process. In one implementation, the window is formed using a direct laser ablation process.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: November 26, 2013
    Assignee: Broadcom Corporation
    Inventors: Kevin (Kunzhong) Hu, Chonghua Zhong, Edward Law
  • Patent number: 8592971
    Abstract: The semiconductor package as well as a method for making it and using it is disclosed. The semiconductor package comprises a semiconductor chip having at least one heat-generating semiconductor device and a volumetrically expandable chamber disposed to sealingly surround the semiconductor chip, the volumetrically expandable chamber filled entirely with a non-electrically conductive liquid in contact with the semiconductor device and circulated within the volumetrically expandable chamber at least in part by the generated heat of the at least one semiconductor device to cool the at least one semiconductor device.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 26, 2013
    Assignee: The Boeing Company
    Inventors: Andrew G. Laquer, Ernest E. Bunch
  • Publication number: 20130309815
    Abstract: An electronic device package includes a substrate and wire columns arranged in groups about a neutral stress point of the substrate. The height of the wire columns is substantially uniform for the plural groups of wire columns, and a length of at least one of the wire columns is greater than the uniform height. A method of fabricating an electronic device package having a column grid array includes applying two templates on wire columns of the column grid array and bending at least one wire column to increase its length while maintaining a uniform height for the column grid array. In another aspect, an electronic device package substrate includes wire columns having at least one non-uniformity in lengths of the columns, and the length of a wire column corresponds to a distance of that wire column from the neutral stress point of the substrate.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: BAE Systems Information and Electronic Systems Intergration Inc.
    Inventors: John A. Hughes, Christy A. Hagerty, Santos Nazario-Camacho, Keith K. Sturcken
  • Patent number: 8586420
    Abstract: In a method for producing a power semiconductor arrangement, an insulation carrier with a top side, a metallization, and a contact pin with a first end are provided. The metallization is attached to the top side and a target section of the metallization is determined. After the metallization is attached to the top side of the insulation carrier, the first end of the contact pin is pressed into the target section such that the first end is inserted in the target section. Thereby, an interference fit and an electrical connection are established between the first end of the contact pin and the target section of the metallization.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: November 19, 2013
    Assignee: Infineon Technologies AG
    Inventors: Thilo Stolze, Guido Strotmann, Karsten Guth
  • Patent number: 8586417
    Abstract: An electronic device package includes a substrate and wire columns arranged in groups about a neutral stress point of the substrate. The height of the wire columns is substantially uniform for the plural groups of wire columns, and a length of at least one of the wire columns is greater than the uniform height. A method of fabricating an electronic device package having a column grid array includes applying two templates on wire columns of the column grid array and bending at least one wire column to increase its length while maintaining a uniform height for the column grid array. In another aspect, an electronic device package substrate includes wire columns having at least one non-uniformity in lengths of the columns, and the length of a wire column corresponds to a distance of that wire column from the neutral stress point of the substrate.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: November 19, 2013
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: John A. Hughes, Christy A. Hagerty, Santos Nazario-Camacho, Keith K. Sturcken
  • Patent number: 8580621
    Abstract: A method of forming an electronic device provides an electronic device substrate having a solder bump pad located thereover. A nickel-containing layer is located over the solder bump pad. A copper-containing layer is formed on the nickel-containing layer prior to subjecting the electronic device to a reflow process.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: November 12, 2013
    Assignee: LSI Corporation
    Inventors: Mark A. Bachman, John W. Osenbach, Kishor V. Desai
  • Patent number: 8580620
    Abstract: To aim at improvement of reliability of a semiconductor device of flip chip connection type. In assembling a BGA of flip chip connection type, when a semiconductor chip is solder-connected by a flip chip connection, because solder precoat is formed on the surface of a land on the side of an undersurface of a wiring substrate, the connection between the land and a solder ball, which is an external terminal, is solder-connection, and therefore, it is possible to increase impact resistance of a connection part between the land and the solder ball and to aim at improvement of reliability of the BGA.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuyuki Nakagawa, Shinji Baba, Satoshi Yamada, Takashi Karashima
  • Publication number: 20130295722
    Abstract: A method for forming an integrated circuit package is disclosed. A flex circuit is form by forming a direct connect pad on a first side of a dielectric layer. After forming the direct connect pad, an opening from a second side of the dielectric layer is formed to expose the direct connect pad. A blind via is formed within the opening in the dielectric layer. A first conductor is formed within the opening. A bond pad of a semiconductor die is electrically coupled with the direct connect pad using a second conductor, wherein the bond pad and the second conductor directly overlie the direct connect pad.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 7, 2013
    Inventors: Kenneth Robert Rhyner, Peter R. Harper
  • Patent number: 8575767
    Abstract: A sheet of material includes a layer of the insulative thermoplastic material such as PET (poly(ethylene terephthalate)). The sheet is placed down over the wirebonds and a semiconductor die of a substrate assembly so that the sheet contacts the wirebonds and/or the semiconductor die. In one example, the sheet is a preform and the bottom of the sheet includes a layer of tacky adhesive that adheres the sheet to the substrate assembly. The sheet is then heated such that the PET softens and becomes conformal to the wirebonds and the semiconductor die of the upper surface of the substrate assembly. The resulting encapsulated substrate assembly is then encapsulated (for example, by overmolding in an injection molding process) to form a packaged semiconductor device. The conformal PET sheet is embedded within the packaged semiconductor device in such a way that it separates the wirebonds and semiconductor die from another encapsulant.
    Type: Grant
    Filed: October 6, 2012
    Date of Patent: November 5, 2013
    Assignee: IXYS Corporation
    Inventor: Nathan Zommer
  • Patent number: 8574964
    Abstract: A semiconductor device has a flipchip type semiconductor die with contact pads and substrate with contact pads. A flux material is deposited over the contact pads of the semiconductor die and contact pads of the substrate. A solder tape formed as a continuous body of solder material with a plurality of recesses is disposed between the contact pads of the semiconductor die and substrate. The solder tape is brought to a liquidus state to separate a portion of the solder tape outside a footprint of the contact pads of the semiconductor die and substrate under surface tension and coalesce the solder material as an electrical interconnect substantially within the footprint of the contact pads of the semiconductor die and substrate. The contact pads on the semiconductor die and substrate can be formed with an extension or recess to increase surface area of the contact pads.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 5, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: SungWon Cho, TaeWoo Lee, DaeSik Choi, KyuWon Lee
  • Patent number: 8573836
    Abstract: An apparatus evaluates a substrate mounting device adapted to hold a target substrate placed on a mounting surface and to control a temperature of the target substrate. The apparatus includes an evacuatable airtightly sealed chamber accommodating therein the substrate mounting device, a heat source, arranged in a facing relationship with the mounting surface, for irradiating infrared light. The apparatus further includes an evaluation-purpose substrate adapted to be mounted on the mounting surface in place of the target substrate, the evaluation-purpose substrate being made of an infrared light absorbing material, and having a unit for measuring temperatures at plural sites on a surface and/or inside of the substrate.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 5, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yasuharu Sasaki, Takehiro Ueda, Taketoshi Okajo, Kaoru Oohashi
  • Publication number: 20130285237
    Abstract: An interposer includes a substrate having a contact pad structure and a stud operably coupled to the contact pad structure. A solder ball is seated on the contact pad structure and formed around the stud. The stud is configured to regulate a collapse of the solder ball when a top package is mounted to the substrate.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 31, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chen-Hua Yu, Mirng-Ji Lii, Hao-Yi Tsai, Kai-Chiang Wu
  • Patent number: 8569112
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a leadframe having a mounting region; applying a mounting structure in the mounting region; mounting an integrated circuit die on the mounting structure; forming an encapsulation on the integrated circuit die and having an encapsulation cavity, the encapsulation cavity shaped by the mounting structure; forming a lead having a lead protrusion from the leadframe, the lead protrusion below a horizontal plane of the integrated circuit die; and removing the mounting structure for exposing the integrated circuit die.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: October 29, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8569878
    Abstract: A semiconductor substrate has a plurality of groove portions formed along scribe lines. The semiconductor substrate includes: a device region in contact with at least any one of the plurality of groove portions and having a semiconductor device formed therein; a surface insulating layer formed to cover the device region and constituting a surface layer of the semiconductor substrate; and a wiring electrode connected to the semiconductor device and formed in a protruding shape rising above a surface of the surface insulating layer. The semiconductor substrate can be manufactured by forming a plurality of groove portions along scribe lines; applying an insulating material to a surface on a side where the plurality of groove portions are formed to form a surface insulating layer; and forming a wiring electrode connected to the semiconductor device and in a protruding shape rising above a surface of the surface insulating layer, after the formation of the surface insulating layer.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: October 29, 2013
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Patent number: 8564113
    Abstract: A back of a dielectric transparent handle substrate is coated with a blanket conductive film or a mesh of conductive wires. A semiconductor substrate is attached to the transparent handle substrate employing an adhesive layer. The semiconductor substrate is thinned in the bonded structure to form a stack of the transparent handle substrate and the semiconductor interposer. The thinned bonded structure may be loaded into a processing chamber and electrostatically chucked employing the blanket conductive film or the mesh of conductive wires. The semiconductor interposer may be bonded to a semiconductor chip or a packaging substrate employing C4 bonding or intermetallic alloy bonding. Illumination of ultraviolet radiation to the adhesive layer is enabled, for example, by removal of the blanket conductive film or through the mesh so that the transparent handle substrate may be detached. The semiconductor interposer may then be bonded to a packaging substrate or a semiconductor chip.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Edward C. Cooney, III, Edmund J. Sprogis, Anthony K. Stamper, Cornelia K. Tsang
  • Patent number: 8563364
    Abstract: In a method for producing a power semiconductor arrangement, a dielectric insulation carrier with a top side and a top metallization layer arranged on the top side are provided. Also provided are a semiconductor chip and at least one electrically conductive contact pin, each pin having a first end and an opposite second end. The semiconductor chip is sintered or diffussion soldered to the top metallization layer. Between the first end and the top metallization layer an electrically conductive connection is formed, in which electrically conductive connection material of the contact pin is in direct physical contact with the material of the top metallization layer.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: October 22, 2013
    Assignee: Infineon Technologies AG
    Inventors: Thilo Stolze, Guido Strotmann, Karsten Guth
  • Publication number: 20130266035
    Abstract: A housing for an optoelectronic semiconductor component includes a housing body having a mounting plane and a leadframe with a first connection conductor and a second connection conductor. The housing body deforms the leadframe in some regions. The leadframe has a main extension plane which extends obliquely or perpendicularly with respect to the mounting plane. A semiconductor component having such a housing and a semiconductor chip and a method for producing a housing are also disclosed.
    Type: Application
    Filed: September 13, 2011
    Publication date: October 10, 2013
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Uwe Strauss, Markus Arzberger
  • Publication number: 20130267066
    Abstract: Provided are a semiconductor package and a method of fabricating the same. The semiconductor package includes a semiconductor chip having a bonding pad, a metal line electrically connected to the semiconductor chip and having a terminal contacting an external terminal, an insulation layer covering the metal line and having an opening that defines the terminal, and a molding layer molding the semiconductor chip, wherein the molding layer includes a recess pattern exposing the bonding pad and extending from the bonding pad to the terminal, and the metal line is embedded in the recess pattern to contact the bonding pad.
    Type: Application
    Filed: June 4, 2013
    Publication date: October 10, 2013
    Inventors: Sangwook Park, Jonggi Lee, Wonchul Lim
  • Patent number: 8552570
    Abstract: In the wiring board, insulating layers and wiring layers are alternately laminated, and the wiring layers are electrically connected by the vias. The wiring board includes first terminals arranged in a first surface and embedded in an insulating layer, second terminals arranged in a second surface opposite to the first surface and embedded in an insulating layer, and lands arranged in an insulating layer and in contact with the first terminals. The vias electrically connect the lands and the wiring layers laminated alternately with the insulating layers. No connecting interface is formed at an end of each of the vias on the land side but a connecting interface is formed at an end of each of the vias on the wiring layer side.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: October 8, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Katsumi Kikuchi, Shintaro Yamamichi, Masaya Kawano, Kouji Soejima, Yoichiro Kurita
  • Patent number: 8551813
    Abstract: A wafer level integrated circuit assembly method is conducted as follows. First, a mother device wafer with plural first posts is provided. The first posts are used for electrical connection and are made of copper according to an embodiment. Solder is sequentially formed on the first posts. The solder is preferably pre-formed on a wafer, and the locations of the solder correspond to the first posts of the mother device wafer. Consequently, the solder can be formed on or adhered to the first posts by placing the wafer having pre-formed solder onto the first posts. Plural dies having plural second posts corresponding to the first posts are placed onto the mother device wafer. Then, the solder is reflowed to bond the first and second posts, and the mother device wafer is diced.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: October 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Hsiun Lee, Clinton Chao, Mirng Ji Lii, Tjandra Winata Karta
  • Publication number: 20130256883
    Abstract: In various aspects of the disclosure, a package may be provided. The package may include at least one semiconductor device rotated about an axis with respect to an edge of the package, at least one bond pad on each semiconductor device, and at least one conductive trace electrically connected to the semiconductor device through the at least one bond pad.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Applicant: INTEL MOBILE COMMUNICATIONS GMBH
    Inventors: Thorsten Meyer, Bernd Waidhas, Thomas Ort
  • Publication number: 20130256894
    Abstract: One exemplary disclosed embodiment comprises a sintered porous metallic film as a die attach mechanically connecting a backside of a semiconductor die to a substrate of a package. Another exemplary disclosed embodiment comprises a sintered porous metallic film as an electrical connection between an electrode on an active surface of a semiconductor die and a substrate of a package. The porous metallic film may be integrated as a prefabricated film or may be created at the wafer or substrate level. By providing a conformal bond through the presence of pores in the metallic film, the sintered connection can provide a reliable mechanical connection with a lower effective elastic modulus. Thermal expansion stresses between die and substrate are thereby accommodated for robustness against thermal cycling, which is of particular relevance for high performance power modules and automotive applications.
    Type: Application
    Filed: October 19, 2012
    Publication date: October 3, 2013
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Gretchen Adema
  • Patent number: 8546960
    Abstract: A manufacturing method of a semiconductor device includes: sealing a semiconductor chip with a sealing resin containing a filler; exposing a part of the filler; etching at least a part of the exposed filler; and forming a metal film at least at a part of a surface of the sealing resin including inner surfaces of holes formed at the surface of the sealing resin by the etching.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takashi Yamazaki
  • Patent number: 8546183
    Abstract: A heat dissipating semiconductor package and a fabrication method thereof are provided. A semiconductor chip is mounted on a chip carrier. A heat sink is mounted on the chip, and includes an insulating core layer, a thin metallic layer formed on each of an upper surface and a lower surface of the insulating core layer and a thermal via hole formed in the insulating core layer. A molding process is performed to encapsulate the chip and the heat sink with an encapsulant to form a package unit. A singulation process is performed to peripherally cut the package unit. A part of the encapsulant above the thin metallic layer on the upper surface of the heat sink is removed, such that the thin metallic layer on the upper surface of the heat sink is exposed, and heat generated by the chip can be dissipated through the heat sink.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 1, 2013
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Chih-Ming Huang
  • Patent number: 8546191
    Abstract: In one embodiment, a method of forming a multi-die semiconductor device is provided. A plurality of dice is mounted on a semiconductor substrate, and neighboring ones of the dice are separated by a distance at which a first one of the neighboring dice will contact a meniscus of a flange of the neighboring die during underfill to form a capillary bridge between the neighboring dice. Solder bumps are reflowed to electrically connect contact terminals of the plurality of dice to contact terminals on a top surface of the substrate. Underfill is deposited along one or more edges of one or more of the plurality of dice. As a result of the capillary bridge formed between neighboring dice, flow of underfill is induced between the bottom surfaces of the neighboring dice and the top surface of the substrate. The dispensed underfill is cured.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: October 1, 2013
    Assignee: Xilinx, Inc.
    Inventor: Arifur Rahman
  • Publication number: 20130252380
    Abstract: A method for fabricating a packaging structure having an embedded semiconductor element includes: providing a substrate having opposite first and second surfaces and at least an opening penetrating the first and second surfaces; forming a first metallic frame around the periphery of the opening on the first surface; forming at least an opening inside the first metallic frame by laser ablation; disposing a semiconductor chip in the opening; forming a first dielectric layer on the first and second surfaces and the chip; forming a first wiring layer on the first dielectric layer of the first surface; and forming a first built-up structure on the first dielectric layer and the first wiring layer of the first surface. A shape of the opening is precisely controlled through the first metallic frame around the periphery of the predefined opening region, thereby allowing the chip to be precisely embedded in the substrate.
    Type: Application
    Filed: May 23, 2013
    Publication date: September 26, 2013
    Applicant: UNIMICRON TECHNOLOGY CORPORATION
    Inventor: Kan-Jung Chia
  • Publication number: 20130249075
    Abstract: A semiconductor package includes: a metal plate including a first surface, a second surface and a side surface; a semiconductor chip on the first surface of the metal plate, the semiconductor chip comprising a first surface, a second surface and a side surface; a first insulating layer that covers the second surface of the metal plate; a second insulating layer that covers the first surface of the metal plate, and the first surface and the side surface of the semiconductor chip; and a wiring structure on the second insulating layer and including: a wiring layer electrically connected to the semiconductor chip; and an interlayer insulating layer on the wiring layer. A thickness of the metal plate is thinner than that of the semiconductor chip, and the side surface of the metal plate is covered by the first insulating layer or the second insulating layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 26, 2013
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventors: Akihiko Tateiwa, Masato Tanaka, Akio Rokugawa
  • Publication number: 20130252379
    Abstract: A multi-layered ceramic package comprises: a signal layer with identified chip/device area(s) that require a supply of power; and a voltage power (Vdd) layer and a ground (Gnd) layer disposed on opposite sides directly above or below and adjacent to the signal layer and providing a first reference mesh plane and a second reference mesh plane configured utilizing a hybrid mesh scheme. The hybrid mesh scheme comprises: a full dense mesh in a first area directly above or below the identified chip/device area(s); a half dense mesh in a second area that is above or below the edge(s) of the chip/device area; and a wider mesh pitch in all other areas The Vdd traces are aligned to run parallel and adjacent to signal lines in those other areas. Wider traces are provided within the mesh areas that run parallel and adjacent to signal lines.
    Type: Application
    Filed: September 15, 2012
    Publication date: September 26, 2013
    Inventors: Wiren D Becker, Jinwoo Choi, Tingdong Zhou
  • Publication number: 20130249086
    Abstract: A chip structure, a chip bonding structure, and manufacturing methods thereof are provided. The chip structure includes a chip, a plurality of bumps, and an insulation layer. The bumps are disposed on the chip. Each bump has a first bump portion and a second bump portion connected to each other, wherein the first bump portion and the second bump portion have different activities. The bumps are subjected to chemical reaction to form an insulation layer on the surface of one of the first bump portion and the second bump portion which has higher activity, so as to avoid short-circuit between the adjacent bumps.
    Type: Application
    Filed: April 13, 2013
    Publication date: September 26, 2013
    Applicant: Raydium Semiconductor Corporation
    Inventor: Ching-San Lin
  • Publication number: 20130249095
    Abstract: Systems, apparatuses, and methods related to the design, fabrication, and manufacture of gallium arsenide (GaAs) integrated circuits are disclosed. Copper can be used as the contact material for a GaAs integrated circuit. Metallization of the wafer and through-wafer vias can be achieved through copper plating processes disclosed herein. Direct die solder (DDS) attach can be achieved by use of electroless nickel plating of the copper contact layer followed by a palladium flash. GaAs integrated circuits can be singulated, packaged, and incorporated into various electronic devices.
    Type: Application
    Filed: March 26, 2012
    Publication date: September 26, 2013
    Applicant: SKYWORKS SOLUTIONS, INC.
    Inventor: Hong Shen
  • Patent number: 8541262
    Abstract: A semiconductor device utilizing die edge contacts is provided. An integrated circuit die has a post-passivation layer with a trench filled with a conductive material extending from a contact to a die edge, thereby forming a die edge contact. Optionally, a through substrate via may be positioned along the die edge such that the conductive material in the trench is electrically coupled to the through-substrate via, thereby forming a larger die edge contact. The integrated circuit die may be placed in a multi-die package wherein the multi-die package includes walls having a major surface perpendicular to a major surface of the integrated circuit die. The die edge contacts are electrically coupled to contacts on the walls of the multi-die package. The multi-die package may include edge contacts for connecting to another substrate, such as a printed circuit board, a packaging substrate, a high-density interconnect, or the like.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: September 24, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Jen Lai, You-Hua Chou, Hon-Lin Huang, Huai-Tei Yang
  • Publication number: 20130241057
    Abstract: Methods and apparatus for direct connection to a through via. An apparatus includes a substrate having a front side surface and a back side surface; conductive through vias formed in the substrate and having through via protrusions extending from the back side surface; solder connectors on another device and coupling the another device to the substrate, wherein the solder connectors correspond to the through via protrusions and enclose the through via protrusions to form solder joints; and connectors on the front side surface of the substrate for forming additional electrical connections. Methods include providing a substrate with through vias; thinning the substrate; etching the substrate to create through via protrusions; aligning another device with solder connectors on a surface corresponding to the through via protrusions; placing the solder connectors in contact with the protrusions; and performing a thermal reflow to form solder joints around the through via protrusions.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yu-Hsiang Hu, Wen-Chih Chiou, Sao-Ling Chiu, Shih-Peng Tai
  • Publication number: 20130241083
    Abstract: Disclosed embodiments include wire joints and methods of forming wire joints that can enable realization of fine pitch joints and collapse control for various packages. A first embodiment is a structure comprising a first substrate, a second substrate, and a wire joint. The first substrate comprises a first bonding surface, and the second substrate comprises a second bonding surface. The first bonding surface is opposite and faces the second bonding surface. The wire joint is attached to and between the first bonding surface and the second bonding surface.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Da-Yuan Shih, Chih-Hang Tung
  • Publication number: 20130241071
    Abstract: A semiconductor device has a semiconductor die. The semiconductor die has a contact pad. A first conductive layer is formed over the contact pad. A conductive shell having a hollow core is formed over the first conductive layer. A compliant material is deposited in the hollow core. The semiconductor die is mounted over a substrate with the conductive shell electrically connected to a conductive trace on the substrate. A second conductive layer is formed over the conductive shell. The compliant material is an insulating material. A bump material is deposited around the conductive shell. A pre-solder material is deposited over the conductive trace. The conductive shell has a cross-sectional width less than 7 micrometers. The second conductive layer is a conductive lip. Mounting the semiconductor die over the substrate further includes mounting the semiconductor die over the substrate in a bump on lead (BOL) configuration.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Ming-Che Hsieh
  • Patent number: 8536663
    Abstract: A metal mesh lid MEMS package includes a substrate, a MEMS electronic component coupled to the substrate, and a metal mesh lid coupled to the substrate with a lid adhesive. The metal mesh lid includes a polymeric lid body having a top port formed therein and a metal mesh cap coupled to the lid body. The metal mesh cap covers the top port and serves as both a particulate filter and a continuous conductive shield for EMI/RF interferences. Further, the metal mesh cap provides a locking feature for the lid adhesive to maximize the attach strength of the metal mesh lid to the substrate.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: September 17, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Bob Shih-Wei Kuo, Russell Shumway, Louis B. Troche, Jr.
  • Publication number: 20130236138
    Abstract: There is provided a photoelectric composite substrate including: a wiring substrate comprising a first region and a second region; an optical waveguide disposed on the first region of the wiring substrate and including: a first cladding layer on the wiring substrate; a core layer on the first cladding layer; a second cladding layer on the core layer; a wiring layer on the second region of the wiring substrate; and an insulating layer having an opening portion on the wiring layer such that the wiring layer is exposed through the opening portion, wherein the insulating layer is made of the same material as that of the core layer.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 12, 2013
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventor: Kazunao Yamamoto
  • Patent number: 8530266
    Abstract: A backside illuminated image sensor includes a substrate layer having a frontside and a backside. An array of photosensitive pixels is disposed within the substrate layer and is sensitive to light incident through the backside of the substrate layer. A metal grid is disposed over the backside of the substrate layer. The metal grid surrounds each of the photosensitive pixels and defines optical apertures for receiving the light into the photosensitive pixels through the backside. The metal grid includes intersecting wires each having a triangular cross-section. A material layer surrounds the metal grid.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: September 10, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Hsin-Chih Tai
  • Patent number: 8524514
    Abstract: This method for producing a non-plane comprises fitting a flexible component onto a carrier by means of hybridization columns, each column having a first height and including a volume of solder material formed between two surfaces wettable by said solder material added to the flexible component and to the carrier respectively, said wettable surfaces being surrounded by zones non-wettable by the solder material, the wettable surfaces and the volume of solder material being determined as a function of a second height required for the flexible component relative to the carrier at the place where the column is formed, such that the column varies from the first height to the second height when the volume of material is brought to a temperature higher than or equal to its melting point and heating the volumes of solder material of the columns to a temperature higher than or equal to the melting point of said material in order to melt it.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: September 3, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Gilles Lasfargues, Delphine Dumas, Manuel Fendler
  • Patent number: 8525346
    Abstract: An electrical interconnect providing an interconnect between contacts on an IC device and contact pads on a printed circuit board (PCB). The electrical interconnect includes a substrate with a plurality of through holes extending from a first surface to a second surface. A resilient material is located in the through holes. The resilient material includes an opening extending from the first surface to the second surface. A plurality of discrete, free-flowing conductive nano-particles are located in the openings of the resilient material. The conductive particles are substantially free of non-conductive materials. A plurality of first contact members are located in the through holes adjacent the first surface and a plurality of second contact members are located in the through holes adjacent the second surface. The first and second contact members are electrically coupled to the nano-particles.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 3, 2013
    Assignee: HSIO Technologies, LLC
    Inventor: James Rathburn
  • Patent number: 8524531
    Abstract: Solder joint reliability in an integrated circuit package is improved. Each terminal of a quad, flat, non-leaded integrated circuit package is formed having portions that define a solder slot in the bottom surface of the terminal. An external surface of the die pad of the integrated circuit package is also formed having portions that define a plurality of solder slots on the periphery of the die pad. When solder is applied to the die pad and to the terminals, the solder that fills the solder slots increases the solder joint reliability of the integrated circuit package.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: September 3, 2013
    Assignee: STMicroelectronics, Inc.
    Inventors: Anthony M. Chiu, Tong Yan Tee
  • Patent number: 8525315
    Abstract: A semiconductor power module according to the present invention includes a base member, a semiconductor power device having a surface and a rear surface with the rear surface bonded to the base member, a metal block, having a surface and a rear surface with the rear surface bonded to the surface of the semiconductor power device, uprighted from the surface of the semiconductor power device in a direction separating from the base member and employed as a wiring member for the semiconductor power device, and an external terminal bonded to the surface of the metal block for supplying power to the semiconductor power device through the metal block.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: September 3, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Toshio Hanada
  • Publication number: 20130224911
    Abstract: A semiconductor device mountable to a substrate is provided. The device includes a semiconductor package having at least one semiconductor die, an electrically conductive attachment region, and a packaging material in which is embedded the semiconductor die and a first portion of the electrically conductive attachment region contacting the die. A metallic shell encloses the embedded semiconductor die and the first portion of the electrically conductive attachment region.
    Type: Application
    Filed: April 10, 2013
    Publication date: August 29, 2013
    Applicant: Vishay General Semiconductor LLC
    Inventor: Vishay General Semiconductor LLC
  • Publication number: 20130221525
    Abstract: There are disclosed herein various implementations of semiconductor packages having a selectively conductive film interposer. In one such implementation, a semiconductor package includes a first active die having a first plurality of electrical connectors on a top surface of the first active die, a selectively conductive film interposer situated over the first active die, and a second active die having a second plurality of electrical connectors on a bottom surface of the second active die. The selectively conductive film interposer may be configured to serve as an interposer and to selectively couple at least one of the first plurality of electrical connectors to at least one of the second plurality of electrical connectors.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Applicant: BROADCOM CORPORATION
    Inventors: Sam Ziqun Zhao, Kevin Kunzhong Hu, Sampath K. V. Karikalan, Rezaur Rahman Khan, Pieter Vorenkamp, Xiangdong Chen