Metallic Housing Or Support Patents (Class 438/121)
  • Publication number: 20140306332
    Abstract: A packaged multi-output converter (200) comprising a leadframe with a chip pad (201) as ground terminal and a plurality of leads (202) including the electrical input terminal (203); a first FET chip (sync chip, 220) with its source terminal affixed to the leadframe and on its opposite surface a first drain terminal (221) positioned adjacent to a second drain terminal (222), the drain terminals connected respectively by a first (241) and a second (242) metal clip to a first (204) and second (205) output lead; a second FET chip (control chip, 211), positioned vertically over the first drain terminal, with its source terminal attached onto the first clip; a third FET chip (control chip, 212), positioned vertically over the second drain terminal, with its source terminal attached onto the second clip; and the drain terminals (213, 214) of the second and third chips attached onto a third metal clip (260) connected to the input lead (203).
    Type: Application
    Filed: February 17, 2014
    Publication date: October 16, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Marie Denison, Brian Ashley Carpenter, Osvaldo Jorge Lopez, Juan Alejandro Herbsommer, Jonathan Noquil
  • Publication number: 20140300009
    Abstract: A package structure includes a flexible-rigid PCB and a chip. The flexible PCB includes a flexible PCB, a glue piece and an outer trace layer. The flexible PCB includes two bending portions and a fixing portion connected between the two bending portions, and includes an insulating layer and an inner trace layer formed on the insulating layer. The glue piece is adhered to the fixing portion. The outer trace layer is adhered to the glue piece and includes conductive pads. The fixing portion, the glue piece and the outer trace layer form a rigid portion, the bending portions form flexible portions. The chip is packaged on the rigid portion and includes electrode pads electrically connected to the conductive pads.
    Type: Application
    Filed: November 20, 2013
    Publication date: October 9, 2014
    Applicant: ZHEN DING TECHNOLOGY CO., LTD.
    Inventor: SHIH-PING HSU
  • Patent number: 8850701
    Abstract: A method for manufacturing a multilayer PCB comprises the following steps. First, a PCB substrate includes a first circuit layer is provided. The first circuit layer includes a mounting portion. A first solder-resistant layer is formed on the mounting portion and a protective adhesive film is attached on the first solder-resistant layer. Next, a first copper foil, a first adhesive layer, a second copper foil, and a second adhesive layer are laminated on the PCB substrate, and the first and second copper foils are etched to form circuit layers. Then a cavity is defined and the protective adhesive film is exposed in it. After removing the protective adhesive film, an electronic component is mounted in the cavity. As such, a multilayer PCB with the electronic component embedded in is obtained.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: October 7, 2014
    Assignees: FuKui Precision Component (Shenzhen) Co., Ltd., Zhen Ding Technology Co., Ltd.
    Inventor: Xue-Jun Cai
  • Patent number: 8853006
    Abstract: A method of manufacturing a semiconductor device comprises a mounting step of mounting a semiconductor element having an Au—Sn layer on a substrate, wherein the mounting step includes a paste supplying step of supplying an Ag paste having an Ag nanoparticle onto the substrate, a device mounting step of mounting a side of the Au—Sn layer of the semiconductor element on the Ag paste, and a bonding step of alloying the Au—Sn layer and the Ag paste to bond the semiconductor element to the substrate, wherein the Au—Sn layer has a content rate of Au of 50 at % to 85 at %.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: October 7, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Syota Shimonishi, Hiroyuki Tajima, Yosuke Tsuchiya, Akira Sengoku
  • Publication number: 20140291849
    Abstract: A semiconductor package includes a semiconductor die having a first electrode at a first side and a second electrode at a second side opposing the first side, a first lead under the semiconductor die and connected to the first electrode at a first level of the package, and a second lead having a height greater than the first lead and terminating at a second level in the package above the first level, the second level corresponding to a height of the semiconductor die. A connector of a single continuous planar construction over the semiconductor die and the second lead is connected to both the second electrode and the second lead at the same second level of the package.
    Type: Application
    Filed: April 2, 2013
    Publication date: October 2, 2014
    Applicant: Infineon Technologies Austria AG
    Inventors: Ralf Otremba, Josef Höglauer, Klaus Schiess, Chooi Mei Chong
  • Publication number: 20140291821
    Abstract: A semiconductor package and method of manufacture are provided. The semiconductor package may include a package substrate, a semiconductor chip, a molding member and a grounding member. The package substrate may include a ground pad and a signal pad. The semiconductor chip may be arranged on an upper surface of the package substrate. The semiconductor chip may be electrically connected with the signal pad of the package substrate. The molding member may be formed on the upper surface of the package substrate to cover the semiconductor chip. The grounding member may be arranged on a surface of the molding member. The grounding member may be electrically connected with the ground pad.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: In-sang SONG
  • Patent number: 8847381
    Abstract: A semiconductor element housing package includes a substrate, a frame body disposed on the substrate; an insulating substrate disposed in a frame-body-surrounded region of the substrate; a first mounting member disposed on the insulating substrate, for mounting a power semiconductor element thereon; a second mounting member disposed on the insulating substrate so as to be spaced away from the first mounting member; a first lead member having a first bend; and a second lead member having a second bend. The first lead member is disposed so as to pass through the frame body from an exterior thereof and extend over the first mounting member and makes connection therewith through the first bend. The second lead member is disposed so as to pass through the frame body from the exterior thereof and extend over the second mounting member and makes connection therewith through the second bend.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: September 30, 2014
    Assignee: Kyocera Corporation
    Inventors: Yoshiaki Ueda, Shinji Nakamoto, Hiroshi Mizushima, Nobuyuki Tanaka
  • Patent number: 8847380
    Abstract: A method of fabricating a semiconductor assembly can include providing a semiconductor element having a front surface, a rear surface, and a plurality of conductive pads, forming at least one hole extending at least through a respective one of the conductive pads by processing applied to the respective conductive pad from above the front surface, forming an opening extending from the rear surface at least partially through a thickness of the semiconductor element, such that the at least one hole and the opening meet at a location between the front and rear surfaces, and forming at least one conductive element exposed at the rear surface for electrical connection to an external device, the at least one conductive element extending within the at least one hole and at least into the opening, the conductive element being electrically connected with the respective conductive pad.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 30, 2014
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Publication number: 20140284806
    Abstract: A semiconductor device has first and semiconductor dies having active faces presenting electrical contact elements and back faces attached to first and second bonding areas side by side on an electrically conductive die support. A layer of electrically insulating material is applied to the first bonding area of the die support. A layer of electrically insulating adhesive bonding material attaches the back face of the first semiconductor die to the first bonding area of the die support through the layer of electrically insulating material. A layer of electrically conductive adhesive bonding material attaches the back face of the second semiconductor die to the second bonding area of the die support.
    Type: Application
    Filed: February 18, 2014
    Publication date: September 25, 2014
    Inventors: Junhua Luo, Nan Xu, Jinzhong Yao
  • Publication number: 20140284797
    Abstract: A method for fabricating a power semiconductor device that comprises a base substrate with a conductive layer on a surface of the base substrate and semiconductor components mounted on the base substrate includes forming a hardened layer on the surface of the conductive layer before mounting a semiconductor component on the base substrate. The forming of the hardened layer may optionally be performed using a peening process, for example, a shot peening process, a laser peening process, or an ultrasonic peening process. The conductive layer may comprise a metal such as, for example, aluminum or copper.
    Type: Application
    Filed: September 3, 2013
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuuji HISAZATO, Hiroki SEKIYA, Yo SASAKI, Kazuya KODANI, Nobumitsu TADA, Hitoshi MATSUMURA, Tomohiro IGUCHI
  • Publication number: 20140287556
    Abstract: Provided are methods of forming a bump and a semiconductor device with the same. The method may include providing a substrate with pads, forming a bump maker layer to cover the pads and include a resin and solder particles, thermally treating the bump maker layer to aggregate the solder particles onto the pads, removing the resin to expose the aggregated solder particles, forming a resin layer to cover the aggregated solder particles, and reflowing the aggregated solder particles to form bumps on the pads.
    Type: Application
    Filed: May 29, 2013
    Publication date: September 25, 2014
    Inventors: Kwang-Seong CHOI, Yong Sung EOM, Hyun-cheol BAE, Haksun LEE
  • Publication number: 20140284789
    Abstract: To improve coupling reliability in flip chip bonding of a semiconductor device. By using, in the fabrication of a semiconductor device, a wiring substrate in which a wiring that crosses an opening area of a solder resist film on the upper surface of the wiring substrate has, on one side of the wiring, a bump electrode and, on the other side, a plurality of wide-width portions having no bump electrode thereon, a solder on the wiring can be dispersed to each of the wide-width portions during reflow treatment in a solder precoating step. Such a configuration makes it possible to reduce a difference in height between the solder on each of terminals and the solder on each of the wide-width portions and to enhance the coupling reliability in flip chip bonding.
    Type: Application
    Filed: December 24, 2013
    Publication date: September 25, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Masaki Watanabe, Shinji Baba, Muneharu Tokunaga, Toshihiro Iwasaki
  • Publication number: 20140284617
    Abstract: According to embodiments, a semiconductor device includes an insulating substrate, a first electrode plate disposed on the insulating substrate, a second electrode plate disposed on the insulating substrate, a third electrode plate disposed on the insulating substrate, a first semiconductor element disposed on the first electrode plate, a first electrode of the first semiconductor element being electrically connected to the first electrode plate, a second semiconductor element disposed on the second electrode plate, a first electrode of the second semiconductor element being electrically connected to the second electrode plate, a first bonding wire electrically connecting a second electrode of the first semiconductor element to the third electrode plate, and a second bonding wire electrically connecting a second electrode of the second semiconductor element to the third electrode plate.
    Type: Application
    Filed: September 3, 2013
    Publication date: September 25, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Yoko SAKIYAMA
  • Patent number: 8841172
    Abstract: A method of making a package substrate includes steps of forming a plurality of trenches on a first surface of a metal plate, placing insulation material in the trenches, removing metal plate material under the second surface of the metal plate, and exposing the insulation material in the trenches from substrate. The resulting substrate body includes a conductive portion made of the metal plate, and an insulation portion made of the insulation material. The bonding layers on the opposite sides of the substrate are conducted by the conductive portion for heat dissipation, and are separated from one another by the insulation portion.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: September 23, 2014
    Assignee: Viking Tech Corporation
    Inventors: Shih-Long Wei, Shen-Li Hsiao, Chien-Hung Ho
  • Publication number: 20140264949
    Abstract: The amount of gold required for bonding a semiconductor die to an electronic package is reduced by using a sheet preform tack welded to the package prior to mounting the die. The preform, only slightly larger than a semiconductor die to be attached to the package, is placed in the die bond location and tack welded to the package at two spaced locations.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: Materion Corporation
    Inventor: Ramesh Kothandapani
  • Publication number: 20140264814
    Abstract: Embodiments of the present invention relate to a semiconductor chip comprising a plurality of contact pads, which are arranged in an edge area on a surface of the semiconductor chip. In a semiconductor area of the semiconductor chip, every contact pad of the plurality of contact pads has an associated pad cell provided, which includes at least one of a driver or a receiver and is configured to drive output signals or receive input signals on its associated contact pad, if the driver or receiver is connected to the contact pad. Additionally, for a contact pad which is used as a supply contact pad, the driver or receiver of the associated pad cell is not connected to the contact pad or any other contact pad for driving output signals or receiving input signals on the same.
    Type: Application
    Filed: May 28, 2014
    Publication date: September 18, 2014
    Applicant: Infineon Technologies AG
    Inventors: Peter Ossimitz, Matthias Van Daak, Dirk Hesidenz
  • Publication number: 20140264930
    Abstract: A method embodiment includes forming a sacrificial film layer over a top surface of a die, the die having a contact pad at the top surface. The die is attached to a carrier, and a molding compound is formed over the die and the sacrificial film layer. The molding compound extends along sidewalls of the die. The sacrificial film layer is exposed. The contact pad is exposed by removing at least a portion of the sacrificial film layer. A first polymer layer is formed over the die, and a redistribution layer (RDL) is formed over the die and electrically connects to the contact pad.
    Type: Application
    Filed: July 9, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Yen-Chang Hu, Ching-Wen Hsiao, Mirng-Ji Lii, Chung-Shi Liu, Chien Ling Hwang, Chih-Wei Lin, Chen-Shien Chen
  • Publication number: 20140268612
    Abstract: Embodiments of the present disclosure are directed towards coreless substrates with passive device pads, as well as methods for forming coreless substrates with passive device pads and package assemblies and systems incorporating such coreless substrates. A coreless substrate may comprise a plurality of build-up layers, such as bumpless build-up layers (BBUL). In various embodiments, electrical routing features and passive device pads may be disposed on an outer surface of the substrate. In various embodiments, the passive device pads may be coupled with a conductive element disposed on or within the build-up layers. In various embodiments, an electrical path may be defined in the plurality of build-up layers to route electrical power between the passive device pads and a die coupled to the coreless substrate.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: Qinglei Zhang, Yueli Liu
  • Patent number: 8835226
    Abstract: In one embodiment, a meta-module having circuitry for two or more modules is formed on a substrate, which is preferably a laminated substrate. The circuitry for the different modules is initially formed on the single meta-module. Each module will have one or more component areas in which the circuitry is formed. A metallic structure is formed on or in the substrate for each component area to be shielded. A single body, such as an overmold body, is then formed over all of the modules on the meta-module. At least a conductive vertical interconnect access structure (vias) associated with each component area to be shielded is then exposed through the body by a cutting, drilling, or similar operation. Next, an electromagnetic shield material is applied to the exterior surface of the body of each of the component areas to be shielded and in contact with the exposed conductive vias.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: September 16, 2014
    Assignee: RF Micro Devices, Inc.
    Inventors: Thomas Scott Morris, Ulrik Riis Madsen, Donald Joseph Leahy
  • Patent number: 8835225
    Abstract: A Quad Flat No-Lead (QFN) semiconductor package includes a die pad; I/O connections disposed at the periphery of the die pad; a chip mounted on the die pad; bonding wires; an encapsulant for encapsulating the die pad, the I/O connections, the chip and the bonding wires while exposing the bottom surfaces of the die pad and the I/O connections; a surface layer formed on the bottoms surfaces of the die pad and the I/O connections; a dielectric layer formed on the bottom surfaces of the encapsulant and the surface layer and having openings for exposing the surface layer. The surface layer has good bonding with the dielectric layer that helps to prevent solder material in a reflow process from permeating into the die pad and prevent solder extrusion on the interface of the I/O connections and the dielectric layer, thereby increasing product yield.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: September 16, 2014
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Fu-Di Tang, Ching-Chiuan Wei, Yung-Chih Lin
  • Patent number: 8835922
    Abstract: A method of manufacturing a semiconductor device and a semiconductor device package are disclosed. A method of manufacturing a semiconductor device comprises the steps of testing the semiconductor device using at least a first monitoring pad connected to an internal circuit of the semiconductor device via at least a first fuse circuit; after testing the semiconductor device, electrically disconnecting the first monitoring pad from the internal circuit by opening the first fuse circuit; and after testing of the semiconductor device, electrically connecting at least a first auxiliary pad to the first monitoring pad with at least a first connecting terminal, wherein the first auxiliary pad is connected, through at least a first conductive line, to at least a first power pad of the semiconductor device.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Byung-Chul Kim
  • Patent number: 8836108
    Abstract: A circuit board structure, a packaging structure and a method for making the same are disclosed. First, a first substrate and a second substrate are provided. The first substrate includes a release film attached to a carrier. The second substrate includes a copper film covered with a solder mask. Second, the solder masked is patterned. Next, the release film and the patterned solder mask are pressed together so that the first substrate is attached to the second substrate. Then, the copper film is patterned to form a first pattern and a second pattern. The first pattern is in direct contact with the release film and the second pattern is in direct contact with the patterned solder mask. Later, a passivation is formed to cover the first pattern and the second pattern to form a circuit board structure. Afterwards, a package is formed on the carrier to form a packaging structure.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: September 16, 2014
    Assignee: Advance Materials Corporation
    Inventor: Lee-Sheng Yen
  • Patent number: 8835223
    Abstract: An assembly and method of making same are provided. The assembly can be formed by juxtaposing a first electrically conductive element overlying a major surface of a first semiconductor element with an electrically conductive pad exposed at a front surface of a second semiconductor element. An opening can be formed extending through the conductive pad of the second semiconductor element and exposing a surface of the first conductive element. The opening may alternatively be formed extending through the first conductive element. A second electrically conductive element can be formed extending at least within the opening and electrically contacting the conductive pad and the first conductive element. A third semiconductor element can be positioned in a similar manner with respect to the second semiconductor element.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: September 16, 2014
    Assignee: Tessera, Inc.
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Publication number: 20140256091
    Abstract: Embodiments of methods for forming a semiconductor device that includes a die and a substrate include pressing together the die and the substrate such that a first gold layer and one or more additional material layers are between the die and the substrate, and performing a bonding operation to form a die attach layer between the die and the substrate. The die attach layer includes a gold interface layer that includes gold and a plurality of first precipitates in the gold. Each of the first precipitates includes a combination of nickel, cobalt, palladium, gold, and silicon.
    Type: Application
    Filed: May 26, 2014
    Publication date: September 11, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: JIN-WOOK JANG, LALGUDI M. MAHALINGAM, AUDEL A. SANCHEZ, LAKSHMINARAYAN VISWANATHAN
  • Publication number: 20140256090
    Abstract: A method of forming a 3D package. The method may include joining an interposer to a laminate chip carrier with the solid state diffusion of a first plurality of solder bumps by applying a first selective non-uniform heat and first uniform pressure; joining a top chip to the interposer with the solid state diffusion of a second plurality of solder bumps by applying a second selective non-uniform heat and second uniform pressure; heating the 3D package, the first and second pluralities of solder bumps to a temperature greater than the reflow temperature of the first and second pluralities of solder bumps, where the second plurality of solder bumps achieves the reflow temperature before the first plurality of solder bumps, where the first and second selective non-uniform heats being less that the reflow temperature of the first and second pluralities of solder bumps, respectively.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mario J. Interrante, Katsuyuki Sakuma
  • Publication number: 20140252604
    Abstract: A stacked device encompasses a lower chip including a plurality of wiring lands and a plurality of wall-block patterns, each of the wall-block patterns is allocated at a position except locations where the wiring lands are disposed, each of the wall-block patterns has a inclined plane, a height of each of the wall-block patterns measured from a reference plane of the array of the wiring lands is higher than the wiring lands, and an upper chip including a plurality of wiring bumps assigned correspondingly to the positions of the wiring lands, respectively, and a plurality of cone bumps assigned correspondingly to the positions of the wall-block patterns, respectively.
    Type: Application
    Filed: January 30, 2014
    Publication date: September 11, 2014
    Applicant: TOHOKU-MICROTEC CO., LTD
    Inventor: Makoto MOTOYOSHI
  • Publication number: 20140252593
    Abstract: Methods and apparatus are disclosed for attaching the integrated circuit (IC) packages to printed circuit boards (PCBs) to form smooth solder joints. A polymer flux may be provided in the process to mount an IC package to a PCB. The polymer flux may be provided on connectors of the IC package, or provided on PCB contact pad and/or pre-solder of the PCB. When the IC package is mounted onto the PCB, the polymer flux may cover a part of the connector, and may extend to cover a surface of the molding compound on the IC package. The polymer flux may completely cover the connector as well. The polymer flux delivers a fluxing component that facilitates smooth solder joint formation as well as a polymer component that offers added device protection by encapsulating individual connectors. The polymer component may be an epoxy.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 11, 2014
    Inventor: Hsien-Wei Chen
  • Patent number: 8829691
    Abstract: A light-emitting device package includes: a package body on which a mount portion and a terminal portion are disposed; a light-emitting device chip that is mounted on the mount portion; and a bonding wire that electrically connects an electrode of the light-emitting device chip and the terminal portion. The bonding wire includes a rising portion that rises from the light-emitting device chip to a loop peak, and an extended portion that connects the loop peak and the terminal portion. A first kink portion, which is bent in a direction intersecting a direction in which the rising portion rises, is disposed on the rising portion.
    Type: Grant
    Filed: September 25, 2011
    Date of Patent: September 9, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-yun Lim, Kook-jin Oh, Joon-gil Lee
  • Patent number: 8829684
    Abstract: An integrated circuit package has a host integrated circuit with an active front side that is surface-mounted on a support and an inactive backside. Conductive pathways extend between the front and back sides of the integrated circuit. A redistribution layer on the back side of the host integrated circuit provides conductive traces and contact pads. The traces of the redistribution layer establish connection between the conductive pathways and the contact pads. At least one additional component is surface-mounted on the back side of the host integrated circuit by electrical connection to the contact pads of the redistribution layer to provide a compact three-dimensional structure. In an alternative embodiment, the additional components can be mounted on the active side.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: September 9, 2014
    Assignee: Microsemi Semiconductor Limited
    Inventors: Piers Tremlett, Michael Anthony Higgins, Martin McHugh
  • Publication number: 20140246774
    Abstract: A semiconductor device and method for manufacturing the same are provided. A metal pad can be electrically connected to metal interconnections in a lower portion of the device. A passivation layer can be provided and can exposes a portion of the metal pad, and a buffer layer can be formed on lateral sides of the passivation layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 4, 2014
    Applicant: DONGBU HITEK CO., LTD.
    Inventor: Nam Gon CHOI
  • Publication number: 20140246769
    Abstract: A semiconductor device includes an insulating substrate having a semiconductor element mounted thereon; an outer case accommodating the insulating substrate; and a metallic terminal bar disposed above the insulating substrate and fixed to side walls of the outer case at both ends thereof. Each of both ends of the terminal bar at a position close to the side wall of the outer case at a surface on an opposite side to a surface facing the insulating substrate is provided with a pressed groove.
    Type: Application
    Filed: September 12, 2012
    Publication date: September 4, 2014
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventors: Hideaki Takahashi, Tatsuya Karasawa, Yo Sakamoto
  • Publication number: 20140239474
    Abstract: In various embodiments a chip arrangement is provided, wherein the chip arrangement may include a chip and at least one foil attached to at least one side of the chip.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 28, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Frank Pueschner, Juergen Hoegerl, Roman Hollweck, Peter Scherl
  • Publication number: 20140239502
    Abstract: An electronic device is described comprising at least one chip enclosed in a package, in turn provided with a metallic structure or leadframe having a plurality of connection pins, this chip having at least one first contact realized on a first face and at least one second contact realized on a second and opposite face of this chip. The chip comprises at least one through via crossing the whole section of the chip as well as a metallic layer extending from the second contact arranged on the first face, along walls of the at least one through via up to the second and opposite face in correspondence with an additional pad. The electronic device comprises at least one interconnection layer for the electrical and mechanical connection between the chip and the metallic structure having at least one portion realized in correspondence with the at least one through via so as to bring the second contact placed on the second face of the chip back on its first face.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 28, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventor: Concetto Privitera
  • Patent number: 8815651
    Abstract: A method for manufacturing an electronic interconnect device is described, the method comprising: providing an electronic members each having one or more electrical contacts on a first member side thereof; providing a carrier having a carrier base and having sets of one or more electrically conductive projections on a surface of the carrier base; attaching the electronic members with the corresponding contacts thereof to the respective set of projections to thereby electrically connect the one or more electrical contacts of the respective chip with the corresponding one or more electrically conductive projections of the respective set; encapsulating exposed portions of the electronic member with an encapsulating material to form an encapsulation.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: August 26, 2014
    Assignee: Infineon Technologies AG
    Inventors: Edward Fuergut, Joachim Mahler
  • Patent number: 8815647
    Abstract: A chip package is provided, the chip package including: a carrier including at least one cavity; a chip disposed at least partially within the at least one cavity; at least one intermediate layer disposed over at least one side wall of the chip; wherein the at least one intermediate layer is configured to thermally conduct heat from the chip to the carrier.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 26, 2014
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Bernd Roemer, Erich Griebl, Fabio Brucchi
  • Patent number: 8809859
    Abstract: Methods and devices for embedding semiconductors in printed circuit boards (PCBs) are provided. In one example, a method of manufacturing a PCB having a die assembly embedded therein includes removing a release film from an adhesive layer of the die assembly. The method also includes disposing the die assembly on a first layer of the PCB such that the adhesive layer contacts the first layer of the PCB. The method includes disposing a second layer of the PCB over the first layer such that the die assembly is within an intermediate portion between the first layer and the second layer. The method also includes filling the intermediate portion with resin and subjecting the PCB to a press cycle to cure the resin.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: August 19, 2014
    Assignee: Apple Inc.
    Inventors: Shawn X. Arnold, Dennis R. Pyper
  • Publication number: 20140227829
    Abstract: In an integrated circuit (IC) adapted for use in a stack of interconnected ICs, interrupted through-silicon-vias (TSVs) are provided in addition to uninterrupted TSVs. The interrupted TSVs provide signal paths other than common parallel paths between the ICs of the stack. This permits IC identification schemes and other functionalities to be implemented using TSVs, without requiring angular rotation of alternate ICs of the stack.
    Type: Application
    Filed: April 16, 2014
    Publication date: August 14, 2014
    Applicant: Conversant Intellectual Property Management Inc
    Inventor: Peter GILLINGHAM
  • Patent number: 8803185
    Abstract: A light emitting diode package and a method of fabricating the same. The package includes a light emitting diode chip having a first surface and a second surface opposing the first surface, a metal frame (or TAB tape) having leads connected to the light emitting diode chip, and a light-pervious encapsulant encapsulating the light emitting diode chip, wherein the second surface of the chip is exposed from the first light-pervious encapsulant. The metal frame (or TAB tape) connects the light emitting diode chip to an external circuit board. The LED package does not need wire-bonding process. A method of fabricating a light emitting diode package is also provided.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: August 12, 2014
    Inventors: Peiching Ling, Vivek B. Dutta
  • Patent number: 8803305
    Abstract: A hybrid interconnect includes a through silicon via and a wire bond. Hybrid interconnects enable better layout of a stacked IC by combining benefits from both interconnect technologies. In one hybrid interconnect, wire bonds couples a second tier die mounted on a first tier die to a redistribution layer in the first tier die. Through silicon vias in the first tier die are coupled to the wire bonds to provide communication. In another hybrid interconnect, a wire bond couples a redistribution layer on a first tier die to a packaging substrate on which the first tier die is mounted. The redistribution layer couples to a second tier die mounted on the first tier die to provide a power supply to the second tier die. Through silicon vias in the first tier die couple to the second tier die to provide communication from the packaging substrate to the second tier die.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: August 12, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Ratibor Radojcic, Arvind Chandrasekaran, Ryan Lane
  • Publication number: 20140218885
    Abstract: A device includes a carrier, a first semiconductor chip arranged over the carrier and a first electrically conductive element arranged over the carrier. The device further includes a first wire electrically coupled to the first electrically conductive element and a second wire electrically coupled to the first electrically conductive element and to the first semiconductor chip. The first electrically conductive element is configured to forward an electrical signal between the first wire and the second wire.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 7, 2014
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Khalil Hosseini, Joachim Mahler
  • Publication number: 20140217600
    Abstract: The present invention includes a plate electrode to be a plate-shaped electrode member, an epoxy sheet serving as an integrated insulating sheet and provided on the plate electrode, a double printed board serving as a control board and provided on the epoxy sheet, and a board integrated electrode in which the plate electrode and the double printed board are formed integrally by the epoxy sheet.
    Type: Application
    Filed: October 23, 2013
    Publication date: August 7, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yoshihiro YAMAGUCHI
  • Patent number: 8796829
    Abstract: A package includes a die, which includes a semiconductor substrate, a plurality of through-vias penetrating through the semiconductor substrate, a seal ring overlapping and connected to the plurality of through-vias, and a plurality of electrical connectors underlying the semiconductor substrate and connected to the seal ring. An interposer is underlying and bonded to the die. The interposer includes a substrate, and a plurality of metal lines over the substrate. The plurality of metal lines is electrically coupled to the plurality of electrical connectors. Each of the plurality metal lines has a first portion overlapped by the first die, and a second portion misaligned with the die. A thermal conductive block encircles the die, and is mounted on the plurality of metal lines of the interposer.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: August 5, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jing-Cheng Lin
  • Publication number: 20140210059
    Abstract: Apparatus and methods for an electronic package incorporating shielding against emissions of electromagnetic interference (EMI). According to an integrated circuit structure, a substrate is on a printed circuit board. An integrated circuit chip is on the substrate. The integrated circuit chip is electrically connected to the substrate. An electromagnetic interference (EMI) shielding unit is on the integrated circuit chip and the substrate. The EMI shielding unit comprises a lid covering the integrated circuit chip and portions of the substrate outside the integrated circuit chip. A fill material can be deposited within a cavity formed between the lid and the substrate. The fill material comprises an EMI absorbing material. A periphery of the lid comprises a side skirt, the side skirt circumscribing the integrated circuit chip and the substrate. EMI absorbing material is on the printed circuit board, and a portion of the side skirt is embedded in the EMI absorbing material.
    Type: Application
    Filed: January 29, 2013
    Publication date: July 31, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: INTERNATIONAL BUSINESS MACHINES CORPORATION
  • Publication number: 20140206149
    Abstract: Embodiments include but are not limited to apparatuses and systems including a die or a preform including at least one groove configured to extend from at least one via of the die to an edge of the die. Other embodiments may be described and claimed.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Applicant: TriQuint Semiconductor, Inc.
    Inventors: Shixi Louis Liu, Wenlong Ma, Frank Hin-Fai Chau, Barry Jia-Fu Lin
  • Patent number: 8786079
    Abstract: Antenna switch modules and methods of making the same are provided. In certain implementations, an antenna switch module includes a package substrate, an integrated filter, and a silicon on insulator (SOI) die attached to the package substrate. The SOI die includes a capacitor configured to operate in the integrated filter and a multi throw switch for selecting amongst the RF signal paths. In some implementations, a surface mount inductor is attached to the package substrate adjacent the SOI die and is configured to operate in the integrated filter with the capacitor. In certain implementations, the inductor is formed from a conductive layer of the package substrate disposed beneath a layer of the package substrate used to attach the SOI die.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 22, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventors: Jong-Hoon Lee, Chuming Shih
  • Patent number: 8785252
    Abstract: A semiconductor device includes a thermoplastic resin case, a semiconductor chip mounted within the thermoplastic resin case, a metal terminal having a wire bonding surface and an opposing contact surface, and a wire connected between the wire bonding surface and the semiconductor chip. The contact surface of the metal terminal is thermoplastically bonded at an area to the inside of the thermoplastic resin case.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: July 22, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masafumi Matsumoto, Tatsuya Iwasa, Junji Yamada, Masaru Furukawa
  • Patent number: 8778739
    Abstract: A method of manufacturing a lead frame, includes forming a rectangular first dimple includes, first inclined side surfaces inclined to a depth direction, and arranged in two opposing sides in one direction, and standing side surfaces standing upright to a depth direction, and arranged in two opposing sides in other direction, on a backside of a die pad by a first stamping, and forming a second dimple having second inclined side surfaces inclined on the backside of the die pad by a second stamping, such that a second inclined side surfaces of the second dimple are arranged in side areas of the standing side surfaces of the first dimple, wherein the standing side surfaces are transformed into reversed inclined side surfaces inclined to a reversed direction to the first inclined side surfaces, and a front side of the die pad is semiconductor element mounting surface.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: July 15, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Hitoshi Miyao
  • Patent number: 8779570
    Abstract: A stackable integrated circuit package system including mounting an integrated circuit device over a package carrier, mounting a stiffener over the package carrier and mounting a mountable package carrier over the stiffener with a vertical gap between the integrated circuit device and the mountable package carrier.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: July 15, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Seong Bo Shim, TaeWoo Kang, Yong Hee Kang
  • Publication number: 20140191250
    Abstract: A method for manufacturing a semiconductor device is carried out by readying each of a semiconductor element, a substrate having Cu as a principal element at least on a surface, and a ZnAl solder chip having a smaller shape than that of the semiconductor element; disposing the semiconductor element and the substrate so that respective bonding surfaces face each other, and sandwiching the ZnAl eutectic solder chip between the substrate and the semiconductor element; increasing the temperature of the ZnAl solder chip sandwiched between the substrate and the semiconductor element while applying a load to the ZnAl solder chip such that the ZnAl solder chip melts to form a ZnAl solder layer; and reducing the temperature of the ZnAl solder layer while applying a load to the ZnAl solder layer.
    Type: Application
    Filed: July 27, 2012
    Publication date: July 10, 2014
    Applicants: NISSAN MOTOR CO., LTD., FUJI ELECTRIC CO., LTD., SANKEN ELECTRIC CO., LTD., SUMITOMO METAL MINING CO., LTD.
    Inventors: Satoshi Tanimoto, Yusuke Zushi, Yoshinori Murakami, Takashi Iseki, Masato Takamori, Shinji Sato, Kohei Matsui
  • Publication number: 20140191391
    Abstract: A package structure includes a chip attached to a substrate. The chip includes a bump structure including a conductive pillar having a length (L) measured along a long axis of the conductive pillar and a width (W) measured along a short axis of the conductive pillar. The substrate includes a pad region and a mask layer overlying the pad region, wherein the mask layer has an opening exposing a portion of the pad region. The chip is attached to the substrate to form an interconnection between the conductive pillar and the pad region. The opening has a first dimension (d1) measured along the long axis and a second dimension (d2) measured along the short axis. In an embodiment, L is greater than d1, and W is less than d2.
    Type: Application
    Filed: January 7, 2013
    Publication date: July 10, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.