Including Insulated Gate Field Effect Transistor Having Gate Surrounded By Dielectric (i.e., Floating Gate) Patents (Class 438/201)
  • Patent number: 8921175
    Abstract: An electronic device can include a tunnel structure that includes a first electrode, a second electrode, and tunnel dielectric layer disposed between the electrodes. In a particular embodiment, the tunnel structure may or may not include an intermediate doped region that is at the primary surface, abuts a lightly doped region, and has a second conductivity type opposite from and a dopant concentration greater than the lightly doped region. In another embodiment, the electrodes have opposite conductivity types. In a further embodiment, an electrode can be formed from a portion of a substrate or well region, and the other electrode can be formed over such portion of the substrate or well region.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: December 30, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Thierry Coffi Herve Yao, Gregory James Scott
  • Patent number: 8895390
    Abstract: Embodiments of the invention generally relate to memory devices and methods for manufacturing such memory devices. In one embodiment, a method for forming a memory device with a textured electrode is provided and includes forming a silicon oxide layer on a lower electrode disposed on a substrate, forming metallic particles on the silicon oxide layer, wherein the metallic particles are separately disposed from each other on the silicon oxide layer. The method further includes etching between the metallic particles while removing a portion of the silicon oxide layer and forming troughs within the lower electrode, removing the metallic particles and remaining silicon oxide layer by a wet etch process while revealing peaks separated by the troughs disposed on the lower electrode, forming a metal oxide film stack within the troughs and over the peaks of the lower electrode, and forming an upper electrode over the metal oxide film stack.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 25, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Dipankar Pramanik
  • Patent number: 8871585
    Abstract: A manufacturing method of a semiconductor device includes: forming a first gate insulating film on a semiconductor substrate in first and second regions in an active area; forming first gate electrodes on the first gate insulating film in the first and second regions; forming source/drain regions by introducing impurities at both sides of the first gate electrode in the first and second regions; performing heat treatment of activating the impurities; forming a stress liner film so as to cover the whole surface of first gate electrodes in the first and second regions; removing the stress liner film at an upper portion of the first gate electrode in the second region while allowing the stress liner film at least at a portion in the first region to remain to expose the upper portion of the first gate electrode in the second region; forming a groove by removing the first gate electrode in the second region; and forming a second gate electrode in the groove.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: October 28, 2014
    Assignee: Sony Corporation
    Inventor: Masanori Tsukamoto
  • Patent number: 8865536
    Abstract: As for a bypass capacitor, a first capacitor insulating film, together with a tunnel insulating film of a storage element, is formed of a first insulating film, a first electrode being a lower electrode, together with floating gate electrodes of the storage element, is formed of a doped·amorphous silicon film (a crystallized one), a second capacitor insulating film, together with a gate insulating film of transistors of 5 V in a peripheral circuit, is formed of a second insulating film, and a second electrode being an upper electrode, together with control gate electrodes of the storage element and gate electrodes of the transistors in the peripheral circuit, is formed of a polycrystalline silicon film.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: October 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Tatsuya Sugimachi
  • Patent number: 8836009
    Abstract: A MONOS Charge-Trapping flash (CTF), with record thinnest 3.6 nm ENT trapping layer, has a large 3.1 V 10-year extrapolated retention window at 125° C. and excellent 106 endurance at a fast 100 ?s and ±16 V program/erase. This is achieved using As+-implanted higher ? trapping layer with deep 5.1 eV work-function of As. In contrast, the un-implanted device only has a small 10-year retention window of 1.9 V at 125° C. A MoN—[SiO2—LaAlO3]—[Ge—HfON]—[LaAlO3—SiO2]—Si CTF device is also provided with record-thinnest 2.5-nm Equivalent-Si3N4-Thickness (ENT) trapping layer, large 4.4 V initial memory window, 3.2 V 10-year extrapolated retention window at 125° C., and 3.6 V endurance window at 106 cycles, under very fast 100 ?s and low ±16 V program/erase. These were achieved using Ge reaction with HfON trapping layer for better charge-trapping and retention.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: September 16, 2014
    Assignee: National Chiao Tung University
    Inventors: Albert Chin, Chun-Yang Tsai
  • Patent number: 8828884
    Abstract: A method of making multi-level contacts. The method includes providing an in-process multilevel device including at least one device region and at least one contact region. The contact region includes a plurality of electrically conductive layers configured in a step pattern. The method also includes forming a conformal etch stop layer over the plurality of electrically conductive layers, forming a first electrically insulating layer over the etch stop layer, forming a conformal sacrificial layer over the first electrically insulating layer and forming a second electrically insulating layer over the sacrificial layer. The method also includes etching a plurality of contact openings through the etch stop layer, the first electrically insulating layer, the sacrificial layer and the second electrically insulating layer in the contact region to the plurality of electrically conductive layers.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: September 9, 2014
    Assignee: Sandisk Technologies Inc.
    Inventors: Yao-Sheng Lee, Zhen Chen, Syo Fukata
  • Patent number: 8823098
    Abstract: The invention discloses a manufacture method and structure of a power transistor, comprising a lower electrode, a substrate, a drift region, two first conductive regions, two second conductive regions, two gate units, an isolation structure and an upper electrode. The two second conductive region are between the two first conductive regions and the drift region; the two gate units are on the two second conductive regions; the isolation structure covers the two gate units; the upper electrode covers the isolation structure and connects to the two first conductive regions and the two second conductive regions electrically. When the substrate is of the first conductive type, the structure can be used as MOSFET. When the substrate is of the second conductive type, the structure can be used as IGBT. This structure has a small gate electrode area, which leads to less Qg, Qgd and Rdson and improves device performance.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 2, 2014
    Assignee: Wuxi Versine Semiconductor Corp. Ltd.
    Inventors: Qin Huang, Yuming Bai
  • Patent number: 8815675
    Abstract: A nonvolatile semiconductor memory comprises a first memory cell transistor, a second memory cell transistor, a connection layer, protrusion portions and a contact portion. The first memory cell transistor comprises a first gate electrode formed above a first channel region, and a second gate electrode formed on a side of the first gate electrode through an insulating film. The second memory cell transistor comprises a third gate electrode formed above a second channel region, and a fourth gate electrode formed on a side of the third gate electrode through an insulating film and facing the second gate electrode. The connection layer connects the second gate electrode and the fourth gate electrode. The protrusion portions are formed of a material different than that of the second and fourth gate electrodes, and are formed on both ends of the connection layer. The contact portion is formed on the connection layer.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: August 26, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hideki Sugiyama, Hideki Hara
  • Patent number: 8816329
    Abstract: A radiation-emitting device for emitting electromagnetic radiation which is a mixture of at least three different partial radiations of a first, a second and a third wavelength range.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: August 26, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Ralf Krause, Günter Schmid, Stefan Seidel
  • Patent number: 8809141
    Abstract: A silicon nitrate layer (110) is formed over a transistor gate (40) and source and drain regions (70). The as-formed silicon nitride layer (110) comprises a first tensile stress and a high hydrogen concentration. The as-formed silicon nitride layer (110) is thermally annealed converting the first tensile stress into a second tensile stress that is larger than the first tensile stress. Following the thermal anneal, the hydrogen concentration in the silicon nitride layer (110) is greater than 12 atomic percent.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: August 19, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Haowen Bu, Rajesh Khamankar, Douglas T. Grider
  • Publication number: 20140225176
    Abstract: A process integration is disclosed for fabricating complete, planar non-volatile memory (NVM) cells (110) prior to the formation of high-k metal gate electrodes for CMOS transistors (212, 213) using a planarized dielectric layer (26) and protective mask (28) to enable use of a gate-last HKMG CMOS process flow without interfering with the operation or reliability of the NVM cells.
    Type: Application
    Filed: February 8, 2013
    Publication date: August 14, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Jon D. Cheek, Frank K. Baker, JR.
  • Patent number: 8803243
    Abstract: A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: August 12, 2014
    Assignee: International Business Machines Corporation
    Inventors: Yue Liang, Dureseti Chidambarrao, Brian J. Greene, William K. Henson, Unoh Kwon, Shreesh Narasimha, Xiaojun Yu
  • Patent number: 8778749
    Abstract: Air gap isolation in non-volatile memory arrays and related fabrication processes are provided. Air gaps are formed at least partially in isolation regions between active areas of the substrate. The air gaps may further extend above the substrate surface between adjacent layer stack columns. A sacrificial material is formed at least partially in the isolation regions, followed by forming a dielectric liner. The sacrificial material is removed to define air gaps prior to forming the control gate layer and then etching it and the layer stack columns to form individual control gates and columns of non-volatile storage elements.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: July 15, 2014
    Assignee: SanDisk Technologies Inc.
    Inventors: Jayavel Pachamuthu, Vinod R. Purayath, George Matamis
  • Patent number: 8772852
    Abstract: Provided is a nonvolatile memory device including a common source. The device includes a first active region crossing a second active region, a common source disposed in the second active region, and a source conductive line disposed on the common source in parallel to the common source. The source conductive line is electrically connected to the common source.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Soo Kim, Keon-Soo Kim
  • Patent number: 8765551
    Abstract: According to an example embodiment, a non-volatile memory device includes a semiconductor layer pattern on a substrate, a plurality of gate patterns and a plurality of interlayer insulating layer patterns that are alternately stacked along a side wall of the semiconductor layer pattern, and a storage structure between the plurality of gate patterns and the semiconductor layer pattern. The semiconductor layer pattern extends in a vertical direction from the substrate. The gate patterns are recessed in a direction from a side wall of the interlayer insulating layer patterns opposing the side wall of the semiconductor layer pattern. A recessed surface of the gate patterns may be formed to be vertical to a surface of the substrate.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-youl Yang, Dae-hong Eom, Byoung-moon Yoon, Kyung-hyun Kim, Se-ho Cha
  • Patent number: 8767457
    Abstract: An apparatus is disclosed for a memory cell having a floating body. A memory cell may include a transistor over an insulation layer, the transistor including a source, and a drain. The memory cell may also include a floating body including a first region positioned between the source and the drain, a second region positioned remote from each of the source and drain, and a passage extending through the insulation layer and coupling the first region to the second region. Additionally, the memory cell may include a bias gate at least partially surrounding the second region and configured for operably coupling to a bias voltage. Furthermore, the memory cell may include a plurality of dielectric layers, wherein each outer vertical surface of the second region has a dielectric layer of the plurality adjacent thereto.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: July 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Mike N. Nguyen
  • Patent number: 8766348
    Abstract: A non-volatile semiconductor memory device comprises a semiconductor substrate and a plurality of gate structures formed on a cell region of the semiconductor substrate. The plurality of gate structures include a first select-gate and a second select-gate disposed on the cell region, the first select-gate and the second select-gate spaced apart from each other. A plurality of cell gate structures are disposed between the first select-gate and the second select-gate. The first select-gate and an adjacent cell gate structure have no air gap defined therebetween. At least a pair of adjacent cell gate structures have an air gap defined therebetween.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Kyung Kim, Woosung Choi
  • Patent number: 8748249
    Abstract: A vertical structure non-volatile memory device in which a gate dielectric layer is prevented from protruding toward a substrate; a resistance of a ground selection line (GSL) electrode is reduced so that the non-volatile memory device is highly integrated and has improved reliability, and a method of manufacturing the same are provided. The method includes: sequentially forming a polysilicon layer and an insulating layer on a silicon substrate; forming a gate dielectric layer and a channel layer through the polysilicon layer and the insulating layer, the gate dielectric layer and the channel layer extending in a direction perpendicular to the silicon substrate; forming an opening for exposing the silicon substrate, through the insulating layer and the polysilicon layer; removing the polysilicon layer exposed through the opening, by using a halogen-containing reaction gas at a predetermined temperature; and filling a metallic layer in the space formed by removing the polysilicon layer.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: June 10, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-kyu Yang, Ki-hyun Hwang, Phil-ouk Nam, Jae-young Ahn, Han-mei Choi, Dong-chul Yoo
  • Patent number: 8735291
    Abstract: A method of patterning a gate stack on a substrate is described. The method includes preparing a gate stack on a substrate, wherein the gate stack includes a high-k layer and a gate layer formed on the high-k layer. The method further includes transferring a pattern formed in the gate layer to the high-k layer using a pulsed bias plasma etching process, and selecting a process condition for the pulsed bias plasma etching process to achieve a silicon recess formed in the substrate having a depth less than 2 nanometer (nm).
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: May 27, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Alok Ranjan, Akiteru Ko
  • Patent number: 8728888
    Abstract: In a manufacturing method, gate electrode materials and a hard-mask material are deposited above a substrate. First mandrels are formed on the hard-mask material in a region of cell array. A second mandrel is formed on the hard-mask material in a region of a selection gate transistor. First sidewall-masks are formed on side-surfaces of the first mandrels. A second sidewall-mask is formed on a side-surface of the second mandrel. An upper side-surface of the second sidewall-mask is exposed. A sacrificial film is embedded between the first sidewall-masks. A sacrificial spacer is formed on the upper side-surface of the second sidewall-mask. A resist film covers the second mandrel. An outer edge of the resist film is located between the first mandrel closest to the second mandrel and the sacrificial spacer. The first mandrels are removed using the resist film as a mask. And, the sacrificial film and spacer are removed.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: May 20, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoyuki Iida, Satoshi Nagashima, Nagisa Takami, Hidefumi Mukai, Yoshihiro Yanai
  • Patent number: 8722490
    Abstract: A method of making a non-volatile MOS semiconductor memory device includes a formation phase, in a semiconductor material substrate, of isolation regions filled by field oxide and of memory cells separated each other by said isolation regions The memory cells include an electrically active region surmounted by a gate electrode electrically isolated from the semiconductor material substrate by a first dielectric layer; the gate electrode includes a floating gate defined. simultaneously to the active electrically region. A formation phase of said floating gate exhibiting a substantially saddle shape including a concavity is proposed.
    Type: Grant
    Filed: August 26, 2011
    Date of Patent: May 13, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Giorgio Servalli, Daniela Brazzelli
  • Patent number: 8716695
    Abstract: A method of fabricating a FET device is provided which includes the following steps. Nanowires/pads are formed in a SOI layer over a BOX layer, wherein the nanowires are suspended over the BOX. A HSQ layer is deposited that surrounds the nanowires. A portion(s) of the HSQ layer that surround the nanowires are cross-linked, wherein the cross-linking causes the portion(s) of the HSQ layer to shrink thereby inducing strain in the nanowires. One or more gates are formed that retain the strain induced in the nanowires. A FET device is also provided wherein each of the nanowires has a first region(s) that is deformed such that a lattice constant in the first region(s) is less than a relaxed lattice constant of the nanowires and a second region(s) that is deformed such that a lattice constant in the second region(s) is greater than the relaxed lattice constant of the nanowires.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Michael A. Guillorn, Conal E. Murray
  • Patent number: 8698222
    Abstract: A memory device is described, including a tunnel dielectric layer over a substrate, a gate over the tunnel dielectric layer, at least one charge storage layer between the gate and the tunnel dielectric layer, two doped regions in the substrate beside the gate, and a word line that is disposed on and electrically connected to the gate and has a thickness greater than that of the gate.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: April 15, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Guei Yan, Wen-Jer Tsai, Cheng-Hsien Cheng
  • Patent number: 8692316
    Abstract: One illustrative device disclosed herein includes a plurality of fins separated by a trench formed in a semiconducting substrate, a first layer of insulating material positioned in the trench, the first layer of insulating material having an upper surface that is below an upper surface of the substrate, an isolation layer positioned within the trench above the first layer of insulating material, the isolation layer having an upper surface that is below the upper surface of the substrate, a second layer of insulating material positioned within the trench above the isolation layer, the second layer of insulating material having an upper surface that is below the upper surface of the substrate, and a gate structure positioned above the second layer of insulating material.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 8, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ruilong Xie
  • Patent number: 8685813
    Abstract: Embodiments of a method of integration of a non-volatile memory device into a MOS flow are described. Generally, the method includes: forming a dielectric stack on a surface of a substrate, the dielectric stack including a tunneling dielectric overlying the surface of the substrate and a charge-trapping layer overlying the tunneling dielectric; forming a cap layer overlying the dielectric stack; patterning the cap layer and the dielectric stack to form a gate stack of a memory device in a first region of the substrate and to remove the cap layer and the charge-trapping layer from a second region of the substrate; and performing an oxidation process to form a gate oxide of a MOS device overlying the surface of the substrate in the second region while simultaneously oxidizing the cap layer to form a blocking oxide overlying the charge-trapping layer. Other embodiments are also disclosed.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: April 1, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventor: Krishnaswamy Ramkumar
  • Patent number: 8685815
    Abstract: Embodiments of a dielectric layer containing a hafnium tantalum titanium oxide film structured as one or more monolayers include the dielectric layer disposed in a transistor. An embodiment may include forming a hafnium tantalum titanium oxide film using a monolayer or partial monolayer sequencing process such as reaction sequence atomic layer deposition.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: April 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 8673719
    Abstract: A semiconductor nanowire is formed integrally with a wraparound semiconductor portion that contacts sidewalls of a conductive cap structure located at an upper portion of a deep trench and contacting an inner electrode of a deep trench capacitor. The semiconductor nanowire is suspended from above a buried insulator layer. A gate dielectric layer is formed on the surfaces of the patterned semiconductor material structure including the semiconductor nanowire and the wraparound semiconductor portion. A wraparound gate electrode portion is formed around a center portion of the semiconductor nanowire and gate spacers are formed. Physically exposed portions of the patterned semiconductor material structure are removed, and selective epitaxy and metallization are performed to connect a source-side end of the semiconductor nanowire to the conductive cap structure.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Jeffrey W. Sleight
  • Patent number: 8674414
    Abstract: Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: March 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoungkeun Son, Hansoo Kim, Jinho Kim, Kihyun Kim
  • Patent number: 8674424
    Abstract: A memory device is described, including a gate over a substrate, a gate dielectric between the gate and the substrate, and two charge storage layers. The width of the gate is greater than that of the gate dielectric, so that two gaps are present at both sides of the gate dielectric and between the gate and the substrate. Each charge storage layer includes a body portion in one of the gaps, a first extension portion connected with the body portion and protruding out of the corresponding sidewall of the gate, and a second extension portion connected to the first extension portion and extending along the sidewall of the gate, wherein the edge of the first extension portion protrudes from the sidewall of the second extension portion.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: March 18, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Shih-Guei Yan, Wen-Jer Tsai, Chih-Chieh Cheng
  • Patent number: 8664059
    Abstract: A method includes forming a shallow trench isolation (STI) region in a substrate; depositing a first material such that the first material overlaps the STI region and a portion of a top surface of the STI region is exposed; etching a recess in the STI region by a first etch, the recess having a bottom and sides; depositing a second material over the first material and on the sides and bottom of the recess in the STI region; and etching the first and second material by a second etch to form a floating gate of the device, wherein the floating gate extends into the recess.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 4, 2014
    Assignee: International Business Machines Corporation
    Inventor: Erwan Dornel
  • Patent number: 8659081
    Abstract: According to an exemplary embodiment, a method for fabricating a MOS transistor, such as an LDMOS transistor, includes forming a self-aligned lightly doped region in a first well underlying a first sidewall of a gate. The method further includes forming a self-aligned extension region under a second sidewall of the gate, where the self-aligned extension region extends into the first well from a second well. The method further includes forming a drain region spaced apart from the second sidewall of the gate. The method further includes forming a source region in the self-aligned lightly doped region and the first well. The self-aligned lightly doped region and the self-aligned extension region define a channel length of the MOS transistor, such as an LDMOS transistor.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 25, 2014
    Assignee: Broadcom Corporation
    Inventors: Xiangdong Chen, Wei Xia, Henry Kuo-Shun Chen
  • Patent number: 8647940
    Abstract: A semiconductor memory device includes a first select transistor, first stepped portion, and a first contact plug. The first select transistor is formed on a side of an upper surface of a substrate and has a first multi-layer gate. The first stepped portion is formed by etching the substrate adjacent to the first multi-layer gate of the first select transistor such that the first stepped portion forms a cavity in the upper surface of the substrate. The first contact plug is formed in the first stepped portion.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshitake Yaegashi
  • Patent number: 8642458
    Abstract: A method of fabricating a nonvolatile memory device includes providing an intermediate structure in which a floating gate and an isolation film are disposed adjacent to each other on a semiconductor substrate and a gate insulating film is disposed on the floating gate and the isolation film, forming a conductive film on the gate insulating film, and annealing the conductive film so that part of the conductive film on an upper portion of the floating gate flows down onto a lower portion of the floating gate and an upper portion of the isolation film.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Hong Chung, Young-Hee Kim, In-Sun Yi, Han-Mei Choi
  • Patent number: 8633072
    Abstract: Provided is a method of manufacturing a semiconductor device. The method may include etching a first conductive type semiconductor substrate to form a first trench, forming a second trench extending from the first trench, diffusing impurities into inner walls of the second trench to form a second conductive type impurity region surrounding the second trench, forming a floating dielectric layer covering inner walls of the second trench and a floating electrode filling the second trench, and forming a gate dielectric layer covering inner walls of the first trench and a gate electrode filling the first trench.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 21, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Kyoung Il Na
  • Patent number: 8629427
    Abstract: A Topological INsulator-based field-effect transistor (TINFET) is disclosed. The TINFET includes a first and second gate dielectric layers separated by a topological insulator (TI) layer. A first gate contact is connected to the first gate dielectric layer on the surface that is opposite the TI layer. A second gate contact may be connected to the second gate dielectric layer on the surface that is opposite the TI layer. A first TI surface contact is connected to one surface of the TI layer, and a second TI surface contact is connected to the second surface of the TI layer.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: January 14, 2014
    Assignee: Texas A&M University
    Inventors: Sanjay K. Banerjee, Leonard Franklin Register, II, Allan MacDonald, Bhagawan R. Sahu, Priyamvada Jadaun, Jiwon Chang
  • Patent number: 8624314
    Abstract: According to one embodiment, a semiconductor device comprises an active area extending in a first direction, a contact plug located on a first portion of the active area, and a transistor located on a second portion adjacent to the first portion of the active area in the first direction. A width of a top surface area of the first portion in a second direction perpendicular to the first direction is smaller than that of a top surface area of the second portion in the second direction.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: January 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Aya Minemura, Kenji Sawamura, Mitsuhiro Noguchi
  • Patent number: 8617951
    Abstract: A method of manufacturing a semiconductor memory device which includes forming a conductive layer for a floating gate above a semiconductor layer intervening a gate insulating film therebetween, then, forming, over the conductive layer, a first spacer comprising a first silicon oxide material and a second spacer adjacent with the first spacer and comprising a second silicon oxide material, the second silicon oxide material having an etching rate lower than that of the first silicon oxide material, selectively removing the conductive layer by using the first and the second spacers as a mask, and removing the first spacer to expose a portion of the conductive layer. Since the etching rate for the second spacer is lower compared with the etching rate for the first spacer, the etching amount of the second spacer caused upon removal of the first spacer can be suppressed and, as a result, the productivity and the reliability of the semiconductor memory device can be improved.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: December 31, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Tomokazu Matsuzaki, Makoto Sasaki, Masakuni Shimizu
  • Patent number: 8592269
    Abstract: In a method for manufacturing a semiconductor device, a silicon oxide layer is formed on a substrate. The silicon oxide layer is treated with a solution comprising ozone. Then, a conductive layer is formed on the silicon oxide layer treated with the solution.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki-Hyun Hwang, Won-Jun Jang, Jae-Young Ahn, Chang-Sup Mun, Jung-Hyun Park
  • Patent number: 8592272
    Abstract: A method of manufacturing a non-volatile semiconductor memory device of an embodiment includes: forming, on a semiconductor substrate, an element isolation region to be filled with a first insulating film; forming memory cell gate electrodes on element regions; etching the first insulating film so that the first insulating film remains in the element isolation region of a region in which a select gate electrode is to be formed; forming a second insulating film on the memory cell gate electrodes so that an air gap is created between the memory cell gate electrodes; forming two select gate electrodes; forming carbon side walls on the select gate electrodes; implanting ions of an impurity between the two select gate electrodes with the side walls as a mask; and removing the carbon side walls.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koichi Matsuno
  • Patent number: 8575017
    Abstract: A non-volatile semiconductor memory device comprises a plurality of memory cells, each including a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a floating gate formed on the semiconductor substrate with the inclusion of the first insulating film, a second insulating film formed on the floating gate, and a control gate formed on the floating gate with the inclusion of the second insulating film; an element isolation insulating film formed in the semiconductor substrate and extending in a gate-length direction to isolate between memory cells adjoining in a gate-width direction; and an air gap formed on the element isolation insulating film and between floating gates adjoining in the gate-width direction.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takuji Kuniya
  • Patent number: 8574987
    Abstract: A first dielectric layer is formed over a semiconductor layer in an NVM region and a logic region. A charge storage layer is formed over the first dielectric layer in the NVM and logic regions. The charge storage layer is patterned to form a dummy gate in the logic region and a charge storage structure in the NVM region. A second dielectric layer is formed over the semiconductor layer in the NVM and logic regions which surrounds the charge storage structure and the dummy gate. The dummy gate is replaced with a logic gate. The second dielectric layer is removed from the NVM region while protecting the second dielectric layer in the logic region. A third dielectric layer is formed over the charge storage structure, and a control gate layer is formed over the third dielectric layer.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: November 5, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Mark D. Hall
  • Patent number: 8575679
    Abstract: Provided is an electrically erasable and programmable nonvolatile semiconductor memory device having a tunnel region; the tunnel region and the peripheral of the tunnel region are dug down to be made lower, and a depletion electrode, to which an arbitral potential is given to deplete a part of the tunnel region through a depletion electrode insulating film, is arranged in the lowered drain region.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Hiroaki Takasu
  • Patent number: 8574986
    Abstract: A method for fabricating a nonvolatile memory device includes forming a substrate structure having a tunnel dielectric layer and a floating-gate conductive layer formed over an active region defined by a first isolation layer forming a first inter-gate dielectric layer and a first control-gate conductive layer over the substrate structure, forming a trench by etching the first control-gate conductive layer, the first inter-gate dielectric layer, the floating-gate conductive layer, the tunnel dielectric layer, and the active region to a given depth, forming a second isolation layer to fill the trench; and forming a second control-gate conductive layer over the resultant structure having the second isolation layer formed therein.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Ho Yang
  • Patent number: 8569126
    Abstract: A semiconductor device includes a silicon substrate in which active regions of a memory cell are defined, a gate electrode formed on a device isolation insulating film to extend in a first direction, a first insulating film formed on the silicon substrate and the gate electrode, a first plug formed to penetrate the first insulating film, to overlap with the gate electrode and the first active region, and to extend in a second direction perpendicular to the first direction, a second plug penetrating the first insulating film above the second active region, a second insulating film formed on the first insulating film, and an interconnection buried in the second insulating film, and formed to recede from a side surface of the first plug in the second direction and to cover only part of an upper surface of the first plug.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 29, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Yoshihiro Takao
  • Patent number: 8558294
    Abstract: A semiconductor device includes a semiconductor substrate formed with an active element, an oxidation resistant film formed over the semiconductor substrate so as to cover the active element, a ferroelectric capacitor formed over the oxidation resistance film, the ferroelectric capacitor having a construction of consecutively stacking a lower electrode, a ferroelectric film and an upper electrode, and an interlayer insulation film formed over the oxidation resistance film so as to cover the ferroelectric capacitor, wherein there are formed, in the interlayer insulation film, a first via-plug in a first contact hole exposing the first electrode and a second via-plug in a second contact hole exposing the lower electrode, and wherein there is formed another conductive plug in the interlayer insulation film in an opening exposing the oxidation resistant film.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 15, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Naoya Sashida
  • Patent number: 8558302
    Abstract: Provided is an electrically erasable and programmable nonvolatile semiconductor memory device having a small hole in a second conductivity-type drain region, a tunnel insulating film formed on the surface of the hole, and a protrusion extended from the floating gate electrode and arranged to fill the hole. Further a tunneling restriction region which is an electrically floating first conductivity type region arranged in a vicinity of the surface of the drain region around the hole to define the size of the tunnel region through which the tunnel current flows.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: October 15, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Hiroaki Takasu
  • Patent number: 8557650
    Abstract: A dummy gate stack is created in an area different from a region where the non-volatile memory (NVM) array is located. The dummy gate stack is used to simulate an actual NVM gate stack used in the NVM array. During an etch of the NVM gate stack, the dummy gate stack is also etched so that the end of both the stack etches occur at the same time. This allows for improved end point detection of the NVM gate stack etch due to increased endpoint material being exposed at the end of the etch. Also other tiling features may be formed during the etch of the dummy gate stack.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: October 15, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Mehul D. Shroff
  • Patent number: 8551839
    Abstract: Shallow trench isolation regions are positioned between NAND strings (or other types of non-volatile storage). These isolation regions include sections that form concave cut-out shapes in the substrate for the NAND string (or other types of non-volatile storage). The floating gates (or other charge storage devices) of the NAND strings hang over the sections of the isolation region that form the concave cut-out shape in the substrate. To manufacture such a structure, a two step etching process is used to form the isolation regions. In the first step, isotropic etching is used to remove substrate material in multiple directions, including removing substrate material underneath the floating gates. In the second step, anisotropic etching is used to create the lower part of the isolation region.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 8, 2013
    Assignee: SanDisk Technologies Inc.
    Inventor: Masaaki Higashitani
  • Patent number: 8551838
    Abstract: A nonvolatile semiconductor memory device that have a new structure are provided, in which memory cells are laminated in a three dimensional state so that the chip area may be reduced. The nonvolatile semiconductor memory device of the present invention is a nonvolatile semiconductor memory device that has a plurality of the memory strings, in which a plurality of electrically programmable memory cells is connected in series. The memory strings comprise a pillar shaped semiconductor; a first insulation film formed around the pillar shaped semiconductor; a charge storage layer formed around the first insulation film; the second insulation film formed around the charge storage layer; and first or nth electrodes formed around the second insulation film (n is natural number more than 1). The first or nth electrodes of the memory strings and the other first or nth electrodes of the memory strings are respectively the first or nth conductor layers that are spread in a two dimensional state.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: October 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Hideaki Aochi, Ryota Katsumata, Akihiro Nitayama, Masaru Kidoh, Hiroyasu Tanaka, Yoshiaki Fukuzumi, Yasuyuki Matsuoka, Mitsuru Sato
  • Patent number: 8547739
    Abstract: Methods, devices, and systems are disclosed for a memory cell having a floating body. A memory cell may include a transistor over an insulation layer, the transistor including a source, and a drain. The memory cell may also include a floating body including a first region positioned between the source and the drain, a second region positioned remote from each of the source and drain, and a passage extending through the insulation layer and coupling the first region to the second region. Additionally, the memory cell may include a bias gate at least partially surrounding the second region and configured for operably coupling to a bias voltage. Furthermore, the memory cell may include a plurality of dielectric layers, wherein each outer vertical surface of the second region has a dielectric layer of the plurality adjacent thereto.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: October 1, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Mike N. Nguyen