Self-aligned Patents (Class 438/229)
-
Patent number: 11031396Abstract: A method for making a semiconductor includes patterning a first transistor having one or more gate stacks on a first source-drain area and second transistor comprising one or more gate stacks on a second source-drain area, forming dielectric spacers on gate stack side walls, depositing a first nitride liner on the first and second transistors. The method also includes masking the second transistor and etching to remove the first nitride material and the spacer from the first source-drain area and growing a first epitaxial layer on the first source-drain area by an epitaxial growth process. The method also includes depositing a second nitride liner on the first and second transistors. The method also includes masking the first transistor, and etching to remove the second nitride material from the second source-drain area and growing a second epitaxial layer on the second source-drain area by an epitaxial growth process.Type: GrantFiled: March 18, 2019Date of Patent: June 8, 2021Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventor: Soon-Cheon Seo
-
Patent number: 10460940Abstract: Embodiments described herein relate generally to methods for forming a mask for patterning a feature in semiconductor processing. In an embodiment, a dielectric layer is formed over a substrate. A mask is formed over the dielectric layer. Forming the mask includes depositing a first layer over the dielectric layer; implanting in a first implant process a dopant species through a patterned material and into the first layer at a first energy; after implanting in the first implant process, implanting in a second implant process the dopant species through the patterned material and into the first layer at a second energy greater than the first energy; and forming mask portions of the mask comprising selectively removing portions of the first layer that are not implanted with the dopant species.Type: GrantFiled: March 14, 2018Date of Patent: October 29, 2019Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Tien-Shun Chang, Chun-Feng Nieh, Huicheng Chang
-
Patent number: 10395994Abstract: A method for fabricating a semiconductor device having a uniform spacer thickness between field-effect transistors (FETs) associated with regions of the device is provided. A first semiconductor material is epitaxially grown in a first source/drain region within a first region of the device associated with a first FET. A capping layer is selectively formed on the first semiconductor material by forming a layer over the first and second regions that reacts with the first semiconductor material to form the capping layer. A second semiconductor material is epitaxially grown in a second source/drain region within a second region of the device associated with a second FET. The capping layer caps the growth of the first semiconductor material during the epitaxial growth of the second semiconductor material to provide the uniform spacer thickness between the first and second FETs.Type: GrantFiled: March 5, 2018Date of Patent: August 27, 2019Assignee: International Business Machines CorporationInventors: Heng Wu, Juntao Li, Peng Xu, Kangguo Cheng, Choonghyun Lee
-
Patent number: 10164060Abstract: A method of forming a semiconductor device that includes forming a sacrificial gate structure on a channel portion of a fin structure, wherein the angle at the intersection of the sidewall of the sacrificial gate structure and an upper surface of the channel portion of the fin structure is obtuse. Epitaxial source and drain region structures are formed on a source region portion and a drain region portion of the fin structure. At least one dielectric material is formed on the sidewall of the sacrificial gate structure. The sacrificial gate structure may be removed to provide an opening to the channel portion of the fin structure. A function gate structure is formed in the opening. At least one angle defined by the intersection of a sidewall of the functional gate structure and an upper surface of the channel portion of the fin structure is obtuse.Type: GrantFiled: June 15, 2016Date of Patent: December 25, 2018Assignee: International Business Machines CorporationInventors: Hong He, Junli Wang, Yongan Xu, Yunpeng Yin
-
Patent number: 10103224Abstract: A semiconductor structure includes a trench isolation structure and a trench capping layer positioned over the trench isolation structure, wherein the trench isolation layer includes a first electrically insulating material and the trench capping layer includes a second electrically insulating material that is different from the first electrically insulating material. The semiconductor structure also includes a gate structure having a gate insulation layer and a gate electrode positioned over the gate insulation layer, wherein the gate insulation layer includes a high-k material and the gate structure includes a first portion that is positioned over the trench capping layer. A sidewall spacer is positioned adjacent to the gate structure, wherein a portion of the sidewall spacer is positioned on the trench capping layer and contacts the trench capping layer laterally of the gate insulation layer.Type: GrantFiled: March 13, 2017Date of Patent: October 16, 2018Assignee: GLOBALFOUNDRIES Inc.Inventors: Elliot John Smith, Steffen Sichler
-
Patent number: 9893197Abstract: A thin film transistor (TFT) includes a substrate, a TFT formed on the substrate, and a passivation layer formed on the TFT. The TFT includes a gate, a source, a drain, and a channel layer. The source and the drain are respectively located at opposite sides of the channel layer. The channel layer includes oxygen ions which are implanted into the channel layer by an oxygen implanting process performed in an environment having an air pressure greater than a standard atmospheric pressure.Type: GrantFiled: June 26, 2015Date of Patent: February 13, 2018Assignee: HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Yi-Chun Kao, Hsin-Hua Lin, Chih-Lung Lee, Kuo-Lung Fang, Po-Li Shih
-
Patent number: 9633857Abstract: A semiconductor structure includes a trench isolation structure, a trench capping layer, a gate structure and a sidewall spacer. The trench isolation structure includes a first electrically insulating material. The trench capping layer is provided over the trench isolation structure. The trench capping layer includes a second electrically insulating material that is different from the first electrically insulating material. The gate structure includes a gate insulation layer including a high-k material and a gate electrode over the gate insulation layer. The gate structure has a first portion over the trench capping layer. The sidewall spacer is provided adjacent the gate structure. A portion of the sidewall spacer is provided on the trench capping layer and contacts the trench capping layer laterally of the gate insulation layer.Type: GrantFiled: March 31, 2016Date of Patent: April 25, 2017Assignee: GLOBALFOUNDRIES Inc.Inventors: Elliot John Smith, Steffen Sichler
-
Patent number: 9525048Abstract: A technique relates to a dual epitaxial process a device. A first spacer is disposed on a substrate, dummy gate, and hardmask. A first area extends in a first direction from the gate and a second area extends in an opposite direction. A doped intermediate spacer is disposed on the first spacer. A first region is opened on the substrate by removing first spacer and intermediate spacer at the first region. A first epitaxial layer is disposed in the first region. The intermediate spacer is removed from first area. A second spacer is disposed on the intermediate spacer. A second region is opened on the substrate by removing the first spacer, intermediate spacer, and second spacer. A second epitaxial layer is disposed in second region. The width of the second epitaxial layer is enlarged by annealing causing dopant in the intermediate spacer layer to flow into the second epitaxial layer.Type: GrantFiled: June 24, 2015Date of Patent: December 20, 2016Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
-
Patent number: 9472463Abstract: After forming an organic planarization layer (OPL) atop a substrate which includes a plurality of semiconductor fins and a gate structure thereon, the OPL is recessed such that uppermost surfaces of remaining portions of the OPL are located below an uppermost surface of the gate structure but above top surfaces of the semiconductor fins. The remaining portions of the OPL are patterned to expose semiconductor fins in a pFinFET region for subsequent ion implantation. Portions of the OPL that remain on the semiconductor fins in an nFinFET region act as an implantation mask to shield the semiconductor fins in the nFinFET region from the ion implantation.Type: GrantFiled: August 28, 2015Date of Patent: October 18, 2016Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Huihang Dong, Wai-Kin Li
-
Patent number: 9450095Abstract: A method of forming a semiconductor device that includes forming a high-k dielectric fin liner on the first plurality of fin structures in a first device region and a second plurality of fin structures in a second device region, and forming a gate structure including a low-k dielectric gate sidewall spacer on the channel region of the first and second plurality of fin structures. A first epitaxial semiconductor material on the first plurality of fin structures from which the high-k dielectric fin liner has been removed. The first epitaxial semiconductor material is then oxidized, and a remaining portion of the high-k dielectric fin liner is removed. A second epitaxial semiconductor material is formed on the second plurality of fin structures.Type: GrantFiled: February 4, 2016Date of Patent: September 20, 2016Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Marc A. Bergendahl, Kangguo Cheng, Jessica Dechene, Fee Li Lie, Eric R. Miller, Jeffrey C. Shearer, John R. Sporre, Sean Teehan
-
Patent number: 9403365Abstract: A method for fabricating a fluid ejection device includes forming a drive circuitry layer on a substrate, fabricating at least one fluid ejection element on a top portion of the substrate, grinding the substrate from a bottom portion of the substrate up to a predetermined height, etching the top portion of the substrate to configure at least one slot within the top portion of the substrate, depositing a layer of an etch-stop material over the top portion of the substrate while filling the at least one slot with the etch-stop material, etching the bottom portion of the substrate to configure at least one fluid feed trench within the bottom portion of the substrate, removing the layer of the etch-stop material from the top portion of the substrate, and laminating a flow feature layer and a nozzle plate as a single unit over the top portion of the substrate.Type: GrantFiled: April 29, 2011Date of Patent: August 2, 2016Assignee: FUNAI ELECTRIC CO., LTD.Inventors: David Bernard, Andrew Mcnees, James Mrvos
-
Patent number: 9368599Abstract: A method for forming a field effect transistor (FET) includes depositing a channel material on a substrate, the channel material comprising one of graphene or a nanostructure; forming a gate over a first portion of the channel material; forming spacers adjacent to the gate; depositing a contact material over the channel material, gate, and spacers; depositing a dielectric material over the contact material; removing a portion of the dielectric material and a portion of the contact material to expose the top of the gate; recessing the contact material; removing the dielectric material; and patterning the contact material to form a self-aligned contact for the FET, the self-aligned contact being located over a source region and a drain region of the FET, the source region and the drain region comprising a second portion of the channel material.Type: GrantFiled: June 22, 2010Date of Patent: June 14, 2016Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Josephine Chang, Isaac Lauer, Jeffrey Sleight
-
Patent number: 9349862Abstract: A method of fabricating a semiconductor device is provided. The method includes forming a gate having a first material on a substrate and a layer of a second material overlaying the gate. Sidewall spacers are formed on opposite sides of the gate. A characteristic of a portion of the substrate between adjacent sidewall spacers is changed using the layer of second material and the sidewall spacers as a mask. An isotropic wet etch process is performed to remove the substrate portion with a changed characteristic to form a recess in the substrate. An orientation selective wet etching process is performed on the recess to shape the inner walls of the recess into sigma-shape. Changing a substrate characteristic in conjunction with isotropic wet etching prevents the substrate from being damaged, and therefore can obtain defect free epitaxial SiGe growth performance.Type: GrantFiled: November 9, 2011Date of Patent: May 24, 2016Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATIONInventors: Yiying Zhang, Qiyang He
-
Patent number: 9324623Abstract: Provided is a method of manufacturing a semiconductor device. The method of manufacturing the semiconductor includes preparing a substrate on which a first region and a second region are defined, forming a first active fin and a second active fin in the first and second regions, respectively, forming a first gate structure and a second gate structure on the substrate in a direction that crosses the first and second active fins, forming a first recess in the first active fin that is adjacent to one side surface of the first gate structure, forming a first epitaxial layer in the first recess, forming a first silicide layer on the first epitaxial layer, forming a second recess in the second active fin that is adjacent to one side surface of the second gate structure, and forming a second silicide layer in the second recess, wherein the second silicide layer includes nickel (Ni) and platinum (Pt).Type: GrantFiled: November 26, 2014Date of Patent: April 26, 2016Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Jin-Bum Kim, Ha-Kyu Seong
-
Patent number: 9269811Abstract: A manufacturing method for a semiconductor device includes providing a substrate having at least agate structure formed thereon and a first spacer formed on sidewalls of the gate structure, performing an ion implantation to implant dopants into the substrate, forming a disposal spacer having at least a carbon-containing layer on the sidewalls of the gate structure, the carbon-containing layer contacting the first spacer, and performing a thermal treatment to form a protecting layer between the carbon-containing layer and the first spacer.Type: GrantFiled: December 26, 2014Date of Patent: February 23, 2016Assignee: UNITED MICROELECTRONICS CORP.Inventors: Ling-Chun Chou, I-Chang Wang, Ching-Wen Hung
-
Patent number: 9219144Abstract: A semiconductor device includes a semiconductor substrate. A first trench extends into or through the semiconductor substrate from a first side. A semiconductor layer adjoins the semiconductor substrate at the first side. The semiconductor layer caps the first trench at the first side. The semiconductor device further includes a contact at a second side of the semiconductor substrate opposite to the first side.Type: GrantFiled: August 10, 2012Date of Patent: December 22, 2015Assignee: Infineon Technologies Austria AGInventors: Anton Mauder, Reinhard Ploss, Hans-Joachim Schulze
-
Patent number: 9171927Abstract: A method comprising steps of removing a first dielectric material, including a hard mask layer and one or more spacer material layers, from a semiconductor device having a sacrificial gate whose sidewalls being covered by said spacer material layers, and a raised source and a raised drain region with both, together with said sacrificial gate, being covered by said hard mask layer, wherein the removing is selective to the sacrificial gate, raised source region and raised drain region and creates a void between each of the raised source region, raised drain region and sacrificial gate. The method includes depositing a conformal layer of a second dielectric material to the semiconductor device, wherein the second material conforms in a uniform layer to the raised source region, raised drain region and sacrificial gate, and fills the void between each of the raised source region, raised drain region and sacrificial gate.Type: GrantFiled: March 26, 2013Date of Patent: October 27, 2015Assignee: GLOBALFOUNDRIES, INC.Inventors: Sanjay C. Mehta, Shom S. Ponoth, Muthumanickam Sankarapandian, Theodorus E. Standaert, Tenko Yamashita
-
Patent number: 9132639Abstract: A method for fabricating an ejection chip of a fluid ejection device includes forming a drive circuitry layer on a substrate, fabricating at least one fluid ejection element on the substrate, forming at least one slot within a top portion of the substrate, filling each slot of the at least one slot with a protective material, grinding the substrate from a bottom portion of the substrate up to a predetermined height, removing the protective material from the each slot of the at least one slot, and laminating a flow feature layer and a nozzle plate over the substrate having the at least one slot.Type: GrantFiled: April 29, 2011Date of Patent: September 15, 2015Assignee: Funai Electric Co., Ltd.Inventors: David Bernard, Andrew McNees, James Mrvos
-
Patent number: 9082717Abstract: An isolation region is provided. The isolation region includes a first groove and an insulation layer filling the first groove. The first groove is embedded into a semiconductor substrate and includes a first sidewall, a bottom surface and a second sidewall that extends from the bottom surface and joins to the first sidewall. An angle between the first sidewall and a normal line of the semiconductor substrate is larger than a standard value. A method for forming an isolation region is further provided. The method includes: forming a first trench on a semiconductor substrate, wherein an angle between a sidewall of the first trench and a normal line of the semiconductor substrate is larger than a standard value; forming a mask on the sidewall to form a second trench on the semiconductor substrate by using the mask; and forming an insulation layer to fill the first and second trenches. A semiconductor device and a method for forming the same are still further provided.Type: GrantFiled: February 18, 2011Date of Patent: July 14, 2015Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCESInventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
-
Patent number: 9024388Abstract: One illustrative method disclosed herein includes forming replacement gate structures for an NMOS transistor and a PMOS transistor by forming gate insulation layers and a first metal layer for the devices from the same materials and selectively forming a metal-silicide material layer only on the first metal layer for the NMOS device but not on the PMOS device. One example of a novel integrated circuit product disclosed herein includes an NMOS device and a PMOS device wherein the gate insulation layers and the first metal layer of the gate structures of the devices are made of the same material, the gate structure of the NMOS device includes a metal silicide material positioned on the first metal layer of the NMOS device, and a second metal layer that is positioned on the metal silicide material for the NMOS device and on the first metal layer for the PMOS device.Type: GrantFiled: June 17, 2013Date of Patent: May 5, 2015Assignee: GLOBALFOUNDRIES Inc.Inventors: Kisik Choi, Ruilong Xie
-
Patent number: 9012277Abstract: Generally, the present disclosure is directed to methods for forming dual embedded stressor regions in semiconductor devices such as transistor elements and the like, using in situ doping and substantially diffusionless annealing techniques. One illustrative method disclosed herein includes forming first and second cavities in PMOS and NMOS device regions, respectively, of a semiconductor substrate, and thereafter performing first and second epitaxial deposition processes to form in situ doped first and second embedded material regions in the first and second cavities, respectively. The method further includes, among other things, performing a single heat treating process to activate dopants in the in situ doped first and second embedded material regions.Type: GrantFiled: January 9, 2012Date of Patent: April 21, 2015Assignee: GLOBALFOUNDRIES Inc.Inventors: Stefan Flachowsky, Ralf Illgen
-
Publication number: 20150104913Abstract: A method includes forming a first gate stack and a second gate stack over a first portion and a second portion, respectively, of a semiconductor substrate, masking the first portion of the semiconductor substrate, and with the first portion of the semiconductor substrate being masked, implanting the second portion of the semiconductor substrate with an etch-tuning element. The first portion and the second portion of the semiconductor substrate are etched simultaneously to form a first opening and a second opening, respectively, in the semiconductor substrate. The method further includes epitaxially growing a first semiconductor region in the first opening, and epitaxially growing a second semiconductor region in the second opening.Type: ApplicationFiled: October 11, 2013Publication date: April 16, 2015Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Eric Chih-Fang Liu, Srisuda Thitinun, Dai-Lin Wu, Ryan Chia-Jen Chen, Chao-Cheng Chen
-
Patent number: 9006789Abstract: A semiconductor device including a first lattice dimension III-V semiconductor layer present on a semiconductor substrate, and a second lattice dimension III-V semiconductor layer that present on the first lattice dimension III-V semiconductor layer, wherein the second lattice dimension III-V semiconductor layer has a greater lattice dimension than the first lattice dimension III-V semiconductor layer, and the second lattice dimension III-V semiconductor layer has a compressive strain present therein. A gate structure is present on a channel portion of the second lattice dimension III-V semiconductor layer, wherein the channel portion of second lattice dimension III-V semiconductor layer has the compressive strain. A source region and a drain region are present on opposing sides of the channel portion of the second lattice dimension III-V semiconductor layer.Type: GrantFiled: January 8, 2013Date of Patent: April 14, 2015Assignee: International Business Machines CorporationInventors: Thomas N. Adam, Kangguo Cheng, Bruce B. Doris, Pouya Hashemi, Ali Khakifirooz, Alexander Reznicek
-
Publication number: 20150099336Abstract: Methods of manufacturing semiconductor integrated circuits having FinFET structures with epitaxially formed source and drain regions are disclosed. A method of fabricating an integrated circuit includes forming a plurality of silicon fin structures on a semiconductor substrate, epitaxially growing a silicon material on the fin structures, wherein a merged source/drain region is formed on the fin structures, and anisotropically etching at least one of the merged source drain regions to form an un-merged source/drain region.Type: ApplicationFiled: December 15, 2014Publication date: April 9, 2015Inventors: Hoong Shing Wong, Min-hwa Chi
-
Patent number: 9000522Abstract: An improved finFET and method of fabrication using a silicon-on-nothing process flow is disclosed. Nitride spacers protect the fin sides during formation of cavities underneath the fins for the silicon-on-nothing (SON) process. A flowable oxide fills the cavities to form an insulating dielectric layer under the fins.Type: GrantFiled: January 9, 2013Date of Patent: April 7, 2015Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Balasubramanian S. Haran, Shom Ponoth, Theodorus Eduardus Standaert, Tenko Yamashita
-
Patent number: 9000501Abstract: A semiconductor integrated circuit includes a first semiconductor substrate in which a part of an analog circuit is formed between the analog circuit and a digital circuit which subjects an analog output signal output from the analog circuit to digital conversion; a second semiconductor substrate in which the remaining part of the analog circuit and the digital circuit are formed; and a substrate connection portion which connects the first and second semiconductor substrates to each other. The substrate connection portion transmits an analog signal which is generated by a part of the analog circuit of the first semiconductor substrate to the second semiconductor substrate.Type: GrantFiled: August 26, 2011Date of Patent: April 7, 2015Assignee: Sony CorporationInventor: Yoshiharu Kudoh
-
Patent number: 8993384Abstract: A semiconductor device includes a fin structure, an isolation structure, a gate structure and an epitaxial structure. The fin structure protrudes from the surface of the substrate and includes a top surface and two sidewalls. The isolation structure surrounds the fin structure. The gate structure overlays the top surface and the two sidewalls of a portion of the fin structure, and covers a portion of the isolation structure. The isolation structure under the gate structure has a first top surface and the isolation structure at two sides of the gate structure has a second top surface, wherein the first top surface is higher than the second top surface. The epitaxial layer is disposed at one side of the gate structure and is in direct contact with the fin structure.Type: GrantFiled: June 9, 2013Date of Patent: March 31, 2015Assignee: United Microelectronics Corp.Inventors: Yu-Hsiang Hung, Ssu-I Fu, Chung-Fu Chang, Cheng-Guo Chen, Chien-Ting Lin
-
Patent number: 8987081Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).Type: GrantFiled: September 9, 2014Date of Patent: March 24, 2015Assignee: Renesas Electronics CorporationInventors: Kazunobu Ota, Hirokazu Sayama, Hidekazu Oda
-
Publication number: 20150069517Abstract: Provided are a complementary metal oxide semiconductor (CMOS) device and a method of manufacturing the same. In the CMOS device, a buffer layer is disposed on a silicon substrate, and a first layer including a group III-V material is disposed on the buffer layer. A second layer including a group IV material is disposed on the buffer layer or the silicon substrate while being spaced apart from the first layer.Type: ApplicationFiled: April 23, 2014Publication date: March 12, 2015Inventors: Moon-seung YANG, Mohammad Rakib UDDIN, Myoung-jae LEE, Sang-moon LEE, Sung-hun LEE, Seong-ho CHO
-
Publication number: 20150069518Abstract: A semiconductor device and method of forming the same includes a substrate having a NMOS region and a PMOS region. The method includes forming a dummy gate structure having a stacked sacrificial dielectric layer and a sacrificial gate material layer on the NMOS and PMOS regions. The method further includes concurrently removing the stacked sacrificial dielectric layer and a sacrificial gate material layer to form a groove, and forming a high-K dielectric layer and a first metal gate layer in the grove. The method also includes forming a hard mask over the NMOS region, removing the first metal gate layer and the high-K dielectric layer in the PMOS region to form a channel groove, forming a second high-K dielectric layer and a second metal gate layer in the channel grove, and removing the hard mask. The work function metal layer in the NMOS and PMOS regions can be independently controlled.Type: ApplicationFiled: June 16, 2014Publication date: March 12, 2015Inventor: QIUHUA HAN
-
Publication number: 20150064863Abstract: Embodiments of present invention provide a method of forming silicide contacts of transistors. The method includes forming a first set of epitaxial source/drain regions of a first set of transistors; forming a sacrificial epitaxial layer on top of the first set of epitaxial source/drain regions; forming a second set of epitaxial source/drain regions of a second set of transistors; converting a top portion of the second set of epitaxial source/drain regions into a metal silicide and the sacrificial epitaxial layer into a sacrificial silicide layer in a silicidation process wherein the first set of epitaxial source/drain regions underneath the sacrificial epitaxial layer is not affected by the silicidation process; removing selectively the sacrificial silicide layer; and converting a top portion of the first set of epitaxial source/drain regions into another metal silicide.Type: ApplicationFiled: August 29, 2013Publication date: March 5, 2015Applicant: International Business Machines CorporationInventors: Praneet Adusumilli, Emre Alptekin, Kangguo Cheng, Shom Ponoth, Balasubramanian Pranatharthiharan
-
Publication number: 20150061028Abstract: A method is provided for fabricating a transistor. The method includes providing a semiconductor substrate having a first region; and forming a first gate structure on a surface of the semiconductor substrate in the first region. The method also includes forming trenches in the semiconductor substrate at both sides of the first gate structure; and forming a first stress layer with one surface lower than the surface of the semiconductor substrate in the trenches. Further, the method includes forming a second stress layer containing carbon atoms with a surface leveling with or higher than the surface of the semiconductor substrate on the first stress layer; and forming a source region and a drain region in the semiconductor substrate at both sides of the first gate structure.Type: ApplicationFiled: December 31, 2013Publication date: March 5, 2015Applicant: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING ) CORPORATIONInventor: YONGGEN HE
-
Publication number: 20150048458Abstract: Provided are a semiconductor device and a method for manufacturing the same. The method may include: forming source/drain regions in a semiconductor substrate; forming an interfacial oxide layer on the semiconductor substrate; forming a high K gate dielectric layer on the interfacial oxide layer; forming a first metal gate layer on the high K gate dielectric layer; implanting dopant to the first metal gate layer through conformal doping; and performing annealing to change an effective work function of a gate stack comprising the first metal gate layer, the high K gate dielectric layer, and the interfacial oxide layer.Type: ApplicationFiled: December 7, 2012Publication date: February 19, 2015Inventors: Huilong Zhu, Qiuxia Xu, Yanbo Zhang, Hong Yang
-
Publication number: 20150041909Abstract: In general, aspects of the present invention relate to approaches for forming a semiconductor device such as a FET having complete middle of line integration. Specifically, a hard mask layer and set of spacers are removed from the gate stacks leaving behind (among other things) a set of dummy gates. A liner layer is formed over the set of dummy gates and over a source-drain region adjacent to the set of dummy gates. The liner layer is then removed from a top surface (or at least a portion thereof) of the set of dummy gates and the source-drain region. An inter-layer dielectric (ILD) is then deposited over the set of dummy gates and over the source-drain region, and the set of dummy gates are then removed. The result is an environment in which a self-aligned contact to the source-drain region can be deposited.Type: ApplicationFiled: August 7, 2013Publication date: February 12, 2015Applicant: GLOBALFOUNDRIES Inc.Inventors: Guillaume Bouche, Haiting Wang
-
Publication number: 20150044830Abstract: An integrated circuit is formed to include a first polarity MOS transistor and a second, opposite, polarity MOS transistor. A hard mask of silicon-doped boron nitride (SixBN) with 1 atomic percent to 30 atomic percent silicon is formed over the first polarity MOS transistor and the second polarity MOS transistor. The hard mask is removed from source/drain regions of the first polarity MOS transistor and left in place over the second polarity MOS transistor. Semiconductor material is epitaxially grown at the source/drain regions of the first polarity MOS transistor while the hard mask is in place. Subsequently, the hard mask is removed from the second polarity MOS transistor.Type: ApplicationFiled: August 6, 2013Publication date: February 12, 2015Applicant: Texas Instruments IncorporatedInventors: David Gerald Farber, Tom Lii, Brian K. Kirkpatrick
-
Publication number: 20150041926Abstract: The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of gates within non-planar NMOS transistors, wherein an NMOS work-function material, such as a composition of aluminum, titanium, and carbon, may be used in conjunction with a titanium-containing gate fill barrier to facilitate the use of a tungsten-containing conductive material in the formation of a gate electrode of the non-planar NMOS transistor gate.Type: ApplicationFiled: September 30, 2011Publication date: February 12, 2015Inventors: Sameer S. Pradhan, Daniel B. Bergstrom, Julia Chiu
-
Patent number: 8927364Abstract: A method of forming a complementary metal oxide semiconductor (CMOS) device including an n-type field effect transistor (NFET) and an p-type field effect transistor (PFET) having fully silicided gates electrode in which an improved dual stress buried insulator is employed to incorporate and advantageous mechanical stress into the device channel of the NFET and PFET. The method can be imposed on a bulk substrate or extremely thin silicon on insulator (ETSOI) substrate. The device includes a semiconductor substrate, a plurality of shallow trench isolations structures formed in the ETSOI layer, NFET having a source and drain region and a gate formation, a PFET having a source and drain region, and a gate formation, an insulator layer, including a stressed oxide or nitride, deposited inside the substrate of the NFET, and a second insulator layer, including either an stressed oxide or nitride, deposited inside the substrate of the PFET.Type: GrantFiled: April 10, 2012Date of Patent: January 6, 2015Assignee: International Business Machines CorporationInventors: Ming Cai, Dechao Guo, Liyang Song, Chun-Chen Yeh
-
Patent number: 8927356Abstract: Methods for opening polysilicon NFET and PFET gates for a replacement gate process are disclosed. Embodiments include providing a polysilicon gate with a nitride cap; defining PFET and NFET regions of the polysilicon gate, creating a nitride bump on the nitride cap; covering the nitride cap to a top of the nitride bump with a PMD; performing a 1:1 dry etch of the PMD and the nitride bump; and performing a second dry etch, selective to the nitride cap, down to the top surface of the polysilicon gate. Other embodiments include, after creating a nitride bump on the nitride cap, recessing the PMD to expose the nitride cap; covering the nitride cap and the nitride bump with a nitride fill, forming a planar nitride surface; and removing the nitride fill, nitride bump, and nitride cap down to the polysilicon gate.Type: GrantFiled: June 17, 2013Date of Patent: January 6, 2015Assignee: GLOBALFOUNDRIES Inc.Inventors: Tsung-Liang Chen, Hsin-Neng Tai, Huey-Ming Wang, Puneet Khanna
-
Patent number: 8921136Abstract: The present disclosure relates to methods of forming a self-aligned contact and related apparatus. In some embodiments, the method forms a plurality of gate lines interspersed between a plurality of dielectric lines, wherein the gate lines and the dielectric lines extend in a first direction over an active area. One or more of the plurality of gate lines are into a plurality of gate line sections aligned in the first direction. One or more of the plurality of dielectric lines are cut into a plurality of dielectric lines sections aligned in the first direction. A dummy isolation material is deposited between adjacent dielectric sections in the first direction and between adjacent gate line sections in the first direction. One or more self-aligned metal contacts are then formed by replacing a part of one or more of the plurality of dielectric lines over the active area with a contact metal.Type: GrantFiled: January 17, 2013Date of Patent: December 30, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Neng-Kuo Chen, Shao-Ming Yu, Gin-Chen Huang, Chia-Jung Hsu, Sey-Ping Sun, Clement Hsingjen Wann
-
Patent number: 8912056Abstract: A dual epitaxial integration process for FinFET devices. First and second pluralities of fins and gates are formed, with some of the fins and gates being for NFETs and some of the fins and gates being for PFETs. A first layer of a hard mask material selected from the group consisting of titanium nitride, tungsten nitride, tantalum nitride, amorphous carbon and titanium carbide is deposited over the NFETs and PFETs. The hard mask material is removed from one of the NFETs and PFETs and a first source and drain material is epitaxially deposited on the fins. A second layer of the hard mask material is deposited over the NFETs and PFETs. The first and second layers of the hard mask material are removed from the other of the NFETs and PFETs and a second source and drain material is deposited on the fins.Type: GrantFiled: April 11, 2013Date of Patent: December 16, 2014Assignee: International Business Machines CorporationInventors: Veeraraghavan S. Basker, Effendi Leobandung, Xinhui Wang, Tenko Yamashita
-
Patent number: 8900940Abstract: In general, aspects of the present invention relate to approaches for forming a semiconductor device such as a FET with reduced gate stack height variance. Specifically, when a gate stack height variance is detected/identified between a set of gate stacks, a hard mask layer and sets of spacers are removed from the uneven gate stacks leaving behind (among other things) a set of dummy gates. A liner layer and an inter-layer dielectric are formed over the set of dummy gates. The liner layer is then removed from a top surface (or at least a portion thereof) of the set of dummy gates, and the set of dummy gates are then removed. The result is a set of gate regions having less height variance/disparity.Type: GrantFiled: January 10, 2013Date of Patent: December 2, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Ashish K. Jha, Tae-Hoon Kim, Tae Hoon Lee, Chang Ho Maeng, Songkram Srivathanakul, Haiting Wang
-
SRAM WELL-TIE WITH AN UNINTERRUPTED GRATED FIRST POLY AND FIRST CONTACT PATTERNS IN A BIT CELL ARRAY
Publication number: 20140327082Abstract: An integrated circuit containing an SRAM may be formed using one or more periodic photolithographic patterns for elements of the integrated circuit such as gates and contacts, which have alternating line and space configurations in SRAM cells. Strap rows of the SRAM containing well ties and/or substrate taps which have SRAM cells on two opposite sides are configured so that the alternating line and space configurations are continuous across the regions containing the well ties and substrate taps.Type: ApplicationFiled: May 1, 2013Publication date: November 6, 2014Applicant: Texas Instruments IncorporatedInventors: Anand SESHADRI, Steve PRINS, Russell MCMULLAN -
Patent number: 8877581Abstract: An integrated circuit (IC) includes a plurality of strained metal oxide semiconductor (MOS) devices that include a semiconductor surface having a first doping type, a gate electrode stack over a portion of the semiconductor surface, and source/drain recesses that extend into the semiconductor surface and are framed by semiconductor surface interface regions on opposing sides of the gate stack. A first epitaxial strained alloy layer (rim) is on the semiconductor surface interface regions, and is doped with the first doping type. A second epitaxial strained alloy layer is on the rim and is doped with a second doping type that is opposite to the first doping type that is used to form source/drain regions.Type: GrantFiled: August 13, 2010Date of Patent: November 4, 2014Assignee: Texas Instruments IncorporatedInventors: Amitabh Jain, Deborah J. Riley
-
Patent number: 8859360Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).Type: GrantFiled: December 24, 2013Date of Patent: October 14, 2014Assignee: Renesas Electronics CorporationInventors: Kazunobu Ota, Hirokazu Sayama, Hidekazu Oda
-
Publication number: 20140299938Abstract: Methods and devices for enhancing mobility of charge carriers. An integrated circuit may include semiconductor devices of two types. The first type of device may include a metallic gate and a channel strained in a first manner. The second type of device may include a metallic gate and a channel strained in a second manner. The gates may include, collectively, three or fewer metallic materials. The gates may share a same metallic material. A method of forming the semiconductor devices on an integrated circuit may include depositing first and second metallic layers in first and second regions of the integrated circuit corresponding to the first and second gates, respectively.Type: ApplicationFiled: April 3, 2013Publication date: October 9, 2014Applicant: STMicroelectronics, Inc.Inventor: STMicroelectronics, Inc.
-
Patent number: 8847315Abstract: A complementary metal-oxide-semiconductor (CMOS) device and methods of formation thereof are disclosed. In a particular embodiment, a CMOS device includes a silicon substrate, a dielectric insulator material on the silicon substrate, and an extension layer on the dielectric insulator material. The CMOS device further includes a gate in contact with a channel and in contact with an extension region. The CMOS device also includes a source in contact with the extension region and a drain in contact with the extension region. The extension region includes a first region in contact with the source and the gate and includes a second region in contact with the drain and the gate.Type: GrantFiled: May 7, 2012Date of Patent: September 30, 2014Assignee: QUALCOMM IncorporatedInventors: Bin Yang, Xia Li, Jun Yuan
-
Patent number: 8815736Abstract: Disclosed herein are various methods of forming metal silicide regions on semiconductor devices by using different temperatures during the silicidation processes. In one example, the method includes forming a plurality of N-doped source/drain regions and a plurality of P-doped source/drain regions in a semiconducting substrate and performing a first heating process at a first temperature to initially form a first metal silicide region in each of the P-doped source/drain regions. The method further includes performing a second heating process at a second temperature to initially form a second metal silicide region in each of the N-doped source/drain regions, wherein the second temperature is less than the first temperature and performing a third heating process at a third temperature to complete the formation of the first and second metal silicide regions, wherein the third temperature is greater than the first temperature.Type: GrantFiled: August 25, 2011Date of Patent: August 26, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Thilo Scheiper, Peter Javorka, Stefan Flachowsky, Clemens Fitz
-
Patent number: 8796130Abstract: A method patterns a polysilicon gate over two immediately adjacent, opposite polarity transistor devices. The method patterns a mask over the polysilicon gate. The mask has an opening in a location where the opposite polarity transistor devices abut one another. The method then removes some (a portion) of the polysilicon gate through the opening to form at least a partial recess (or potentially a complete opening) in the polysilicon gate. The recess separates the polysilicon gate into a first polysilicon gate and a second polysilicon gate. After forming the recess, the method dopes the first polysilicon gate using a first polarity dopant and dopes the second polysilicon gate using a second polarity dopant having an opposite polarity of the first polarity dopant.Type: GrantFiled: January 18, 2012Date of Patent: August 5, 2014Assignee: International Business Machines CorporationInventors: Jeffrey P. Gambino, Russell T. Herrin, Mark D. Jaffe, Laura J. Schutz
-
Patent number: 8778753Abstract: A substrate including an NMOS transistor region and a PMOS transistor region is prepared. A silicon-germanium layer is formed on the PMOS transistor region. Nitrogen atoms are injected in an upper portion of the silicon-germanium layer. A first gate dielectric layer is formed on the NMOS transistor region and the PMOS transistor region. The nitrogen atoms are injected into the upper portion of the silicon-germanium layer before forming the first gate dielectric layer.Type: GrantFiled: March 19, 2012Date of Patent: July 15, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Jinho Do, Hajin Lim, WeonHong Kim, Kyungil Hong, Moonkyun Song
-
Patent number: RE45462Abstract: A semiconductor device includes a first pMISFET region having an Si channel, a second pMISFET region having an Si channel and an nMISFET region having an Si channel. First SiGe layers which apply first compression strain to the Si channel are embedded and formed in the first pMISFET region to sandwich the Si channel thereof and second SiGe layers which apply second compression strain different from the first compression strain to the Si channel are embedded and formed in the second pMISFET region to sandwich the Si channel thereof.Type: GrantFiled: August 8, 2012Date of Patent: April 14, 2015Assignee: Kabushiki Kaisha ToshibaInventors: Shinji Mori, Tsutomu Sato, Koji Matsuo