Plural Doping Steps Patents (Class 438/232)
-
Patent number: 12111355Abstract: Systems and methods for improving substrate fabrication are provided. Subsets of dies of substrates may be inspected at various points in the fabrication process to generate spectra data. The spectra data can be used to generate data that are input to a machine learning model to predict yields for the substrates.Type: GrantFiled: November 22, 2021Date of Patent: October 8, 2024Assignee: ONTO INNOVATION INC.Inventors: Xin Song, Jian Lu
-
Patent number: 11637032Abstract: A tape expanding apparatus for expanding an expandable tape of a frame unit in which a workpiece is supported through the expandable tape to an annular frame includes a frame holding unit for holding the annular frame, a chuck table surrounded by the frame holding unit and having a holding surface for holding the workpiece through the expandable tape, and a position adjusting unit for adjusting a position of the workpiece with respect to the holding surface. The position adjusting unit includes a position detecting unit for detecting the position of the workpiece held on the holding surface and a position control unit having an abutting unit adapted to abut against an outer circumference of the annular frame supported by the frame holding unit and a moving mechanism for moving the abutting unit according to the position of the workpiece detected by the position detecting unit.Type: GrantFiled: June 19, 2019Date of Patent: April 25, 2023Assignee: DISCO CORPORATIONInventor: Atsushi Hattori
-
Patent number: 11476161Abstract: A wafer processing method includes a polyolefin sheet providing step of positioning a wafer in an inside opening of a ring frame and providing a polyolefin sheet on a back side or a front side of the wafer and on a back side of the ring frame, a uniting step of heating the polyolefin sheet as applying a pressure to the polyolefin sheet to thereby unite the wafer and the ring frame through the polyolefin sheet by thermocompression bonding, a dividing step of applying a laser beam to the wafer to form shield tunnels in the wafer, thereby dividing the wafer into individual device chips, and a pickup step of blowing air to each device chip from the polyolefin sheet side to push up each device chip through the polyolefin sheet and picking up each device chip from the polyolefin sheet.Type: GrantFiled: September 8, 2020Date of Patent: October 18, 2022Assignee: DISCO CORPORATIONInventors: Shigenori Harada, Minoru Matsuzawa, Hayato Kiuchi, Yoshiaki Yodo, Taro Arakawa, Masamitsu Agari, Emiko Kawamura, Yusuke Fujii, Toshiki Miyai, Makiko Ohmae
-
Patent number: 11325804Abstract: A tape attaching method for attaching a tape to a workpiece includes a placing step of placing the workpiece with respect to the tape, which has a base material and an adhesive layer on the base material, in such a manner that the adhesive layer is in contact with an attached face of the workpiece, and a close contact step of causing, after the placing step is performed, a ball to roll in contact with the base material of the tape, thereby to bring the tape in close contact with the workpiece.Type: GrantFiled: June 11, 2020Date of Patent: May 10, 2022Assignee: DISCO CORPORATIONInventors: Jinyan Zhao, Shigenori Harada
-
Patent number: 11181829Abstract: A method for determining a control parameter for an apparatus used in a semiconductor manufacturing process, the method including: obtaining performance data associated with a substrate subject to the semiconductor manufacturing process; obtaining die specification data including values of an expected yield of one or more dies on the substrate based on the performance data and/or a specification for the performance data; and determining the control parameter in dependence on the performance data and the die specification data. Advantageously, the efficiency and/or accuracy of processes is improved by determining how to perform the processes in dependence on dies within specification.Type: GrantFiled: July 30, 2018Date of Patent: November 23, 2021Assignee: ASML Netherlands B.V.Inventors: Cyrus Emil Tabery, Hakki Ergün Cekli, Simon Hendrik Celine Van Gorp, Chenxi Lin
-
Patent number: 10790296Abstract: A bonded structure may be formed by measuring die areas of first semiconductor dies on a wafer at a measurement temperature, generating a two-dimensional map of local target temperatures that are estimated to thermally adjust a die area of each of the first semiconductor dies to a target die area, loading the wafer to a bonding apparatus comprising at least one temperature sensor, and iteratively bonding a plurality of second semiconductor dies to a respective one of the first semiconductor dies by sequentially adjusting a temperature of the wafer to a local target temperature of a respective first semiconductor die that is bonded to a respective one of the second semiconductor dies. An apparatus for forming such a bonded structure may include a computer, a chuck for holding the wafer, a die attachment unit, and a temperature control mechanism.Type: GrantFiled: May 21, 2019Date of Patent: September 29, 2020Assignee: SANDISK TECHNOLOGIES LLCInventors: Takashi Yamaha, Katsuya Kato, Kazuto Watanabe, Hajime Yamamoto, Michiaki Sano, Koichi Ito, Ikue Yokomizo, Ryo Hiramatsu, Hiroshi Sasaki
-
Patent number: 10734260Abstract: A die sorting apparatus includes a fixing mechanism for fixing a wafer having a plurality of dies, a positioning mechanism including an indicator for selecting a die of the wafer using die coordinates, an ejection mechanism below the wafer for applying a force to the selected die, a moving mechanism mechanically coupled to the positioning mechanism and the ejection mechanism for aligning the positioning mechanism with the ejection mechanism according to the die coordinates. The ejection mechanism includes an ejection shaft, a pin driven by the ejection shaft to apply the force to the selected die, and a pin driving device for moving the pin up and down through the ejection shaft. The die sorting apparatus also includes a die pickup device mounted in parallel to or integrated in the positioning mechanism for picking up the selected die that is separated form the wafer through the pin.Type: GrantFiled: August 25, 2017Date of Patent: August 4, 2020Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATIONInventors: Chen Yang, Xin Xing Bai
-
Patent number: 10649026Abstract: A method in which connectivity tests of integrated circuit structures in a die are performed. The connectivity tests are performed at a first level of the die. Potential defect locations are identified in the die indicating via locations susceptible to systematic failure due to via opens or via shorts. The potential defect locations are translated to via locations for a second level of the die. The second level is below the first level. After translating the hot spot, the second level is inspected for defects. The via locations on the first level are inspected for defects. All defects for the second level are translated to the via locations for the first level. A net trace of defects is created using prior level subtraction of the translated defects for the second level and the defects for the first level.Type: GrantFiled: March 30, 2017Date of Patent: May 12, 2020Assignee: GLOBALFOUNDRIES INC.Inventors: Oliver D. Patterson, Peter Lin, Weihong Gao
-
Patent number: 10134905Abstract: A method of forming a wrap around contact, includes forming a plurality of semiconductor layers on a plurality of fin structures, forming a sacrificial gate on the plurality of semiconductor layers, forming an epitaxial layer on the plurality of fin structures and on a sidewall of the plurality of semiconductor layers, forming a gate structure by replacing the sacrificial gate and the plurality of semiconductor layers with a metal layer, and forming a wrap around contact on the epitaxial layer.Type: GrantFiled: June 30, 2016Date of Patent: November 20, 2018Assignee: International Business Machines CorporationInventors: Michael A. Guillorn, Nicolas Jean Loubet
-
Patent number: 9741622Abstract: One illustrative method disclosed herein includes, among other things, recessing first and second fins to define replacement fin cavities in a layer of insulating material, forming an initial strain relaxed buffer layer such that it only partially fills the replacement fin cavities, implanting carbon into the initial strain relaxed buffer layer in the NMOS region, forming a channel semiconductor material on the initial strain relaxed buffer layer within the replacement fin cavities in both the NMOS region and the PMOS region to thereby define an NMOS fin comprised of the channel semiconductor material and a carbon-doped strain relaxed buffer layer and a PMOS fin comprised of the channel semiconductor material and the initial strain relaxed buffer layer and forming gate structures for the NMOS and PMOS devices.Type: GrantFiled: January 29, 2015Date of Patent: August 22, 2017Assignee: GLOBALFOUNDRIES Inc.Inventor: Ajey Poovannummoottil Jacob
-
Patent number: 9373697Abstract: A method comprising steps of removing a first dielectric material, including a hard mask layer and one or more spacer material layers, from a semiconductor device having a sacrificial gate whose sidewalls being covered by said spacer material layers, and a raised source and a raised drain region with both, together with said sacrificial gate, being covered by said hard mask layer, wherein the removing is selective to the sacrificial gate, raised source region and raised drain region and creates a void between each of the raised source region, raised drain region and sacrificial gate. The method includes depositing a conformal layer of a second dielectric material to the semiconductor device, wherein the second material conforms in a uniform layer to the raised source region, raised drain region and sacrificial gate, and fills the void between each of the raised source region, raised drain region and sacrificial gate.Type: GrantFiled: October 8, 2014Date of Patent: June 21, 2016Assignee: GlobalFoundries, Inc.Inventors: Sanjay C. Mehta, Shom S. Ponoth, Muthumanickam Sankarapandian, Theodorus E. Standaert, Tenko Yamashita
-
Patent number: 9087858Abstract: Provided is a manufacturing method of a semiconductor device including providing a substrate including a first region and a second region, forming active fins in the first region and the second region, forming gate electrodes which intersect the active fins and have surfaces facing side surfaces of the active fins, forming an off-set zero (OZ) insulation layer covering the active fins, forming a first residual etch stop layer and a first hard mask pattern which cover the first region, injecting first impurities into the active fins of the second region, removing the first hard mask pattern and the first residual etch stop layer, forming second residual etch stop layer and a second hard mask pattern which cover the second region, injecting a second impurities into the active fins of the first region, and removing the second residual etch stop layer and the second hard mask pattern.Type: GrantFiled: July 15, 2014Date of Patent: July 21, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Seung-Han Yoo, Dong-Kyu Lee
-
Publication number: 20150145058Abstract: A method of fabricating a CMOS integrated circuit (IC) includes implanting a first n-type dopant at a first masking level that exposes a p-region of a substrate surface having a first gate stack thereon to form NLDD regions for forming n-source/drain extension regions for at least a portion of a plurality of n-channel MOS (NMOS) transistors on the IC. A p-type dopant is implanted at a second masking level that exposes an n-region in the substrate surface having a second gate stack thereon to form PLDD regions for at least a portion of a plurality of p-channel MOS (PMOS) transistors on the IC. A second n-type dopant is retrograde implanted including through the first gate stack to form a deep nwell (DNwell) for the portion of NMOS transistors. A depth of the DNwell is shallower below the first gate stack as compared to under the NLDD regions.Type: ApplicationFiled: February 5, 2015Publication date: May 28, 2015Inventor: Mahalingam Nandakumar
-
Patent number: 9006059Abstract: The invention provides a method for fabricating a CMOS transistor and a method for fabricating an array substrate. The method for fabricating a CMOS transistor comprises a step of forming channels, which comprises: depositing an amorphous silicon layer on a substrate, and crystallizing the amorphous silicon layer into a poly-silicon layer; implanting boron atoms into the poly-silicon layer and then forming an N channel region and a P channel region by etching the poly-silicon layer implanted with the boron atoms; forming a photoresist-partially-retained region corresponding to the N channel region and a photoresist-completely-retained region corresponding to the P channel region through a single patterning process; and removing the photoresist in the photoresist-partially-retained-region and retaining a part of the photoresist in the photoresist-completely-retained region using an ashing process, implanting phosphorus atoms through ion implantation thereby forming an N channel and a P channel.Type: GrantFiled: September 6, 2013Date of Patent: April 14, 2015Assignee: Boe Technology Group Co., LtdInventor: Bing Sun
-
Patent number: 8994117Abstract: A semiconductor chip having a P? substrate and an N+ epitaxial layer grown on the P? substrate is shown. A P? circuit layer is grown on top of the N+ epitaxial layer. A first moat having an electrically quiet ground connected to a first N+ epitaxial region is created by isolating the first N+ epitaxial region with a first deep trench. The first moat is surrounded, except for a DC path, by a second moat with a second N+ epitaxial region, created by isolating the second N+ epitaxial region with a second deep trench. The second moat may be arranged as a rectangular spiral around the first moat.Type: GrantFiled: December 18, 2012Date of Patent: March 31, 2015Assignee: International Business Machines CorporationInventors: Joel T. Ficke, David M. Friend, James D. Strom, Erik S. Unterborn
-
Patent number: 8987081Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).Type: GrantFiled: September 9, 2014Date of Patent: March 24, 2015Assignee: Renesas Electronics CorporationInventors: Kazunobu Ota, Hirokazu Sayama, Hidekazu Oda
-
Patent number: 8962419Abstract: A process of forming a CMOS integrated circuit by forming a first stressor layer over two MOS transistors of opposite polarity, removing a portion of the first stressor layer from the first transistor, and forming a second stressor layer over the two transistors. A source/drain anneal is performed, crystallizing amorphous regions of silicon in the gates of the two transistors, and subsequently removing the stressor layers. A process of forming a CMOS integrated circuit by forming two transistors of opposite polarity, forming a two stressor layers over the transistors, annealing the integrated circuit, removing the stressor layers, and siliciding the transistors. A process of forming a CMOS integrated circuit with an NMOS transistor and a PMOS transistor using a stress memorization technique, by removing the stressor layers with wet etch processes.Type: GrantFiled: September 26, 2014Date of Patent: February 24, 2015Assignee: Texas Instruments IncorporatedInventors: Russell Carlton McMullan, Dong Joo Bae
-
Publication number: 20140377920Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).Type: ApplicationFiled: September 9, 2014Publication date: December 25, 2014Applicant: Renesas Electronics CorporationInventors: Kazunobu OTA, Hirokazu Sayama, Hidekazu Oda
-
Publication number: 20140370672Abstract: In a method for fabricating a semiconductor device, a first gate electrode and a second gate electrode are provided on a substrate, the first gate electrode and the second gate electrode being formed in a first region and a second region of the substrate, respectively. A conductive buffer layer is formed along sidewalls of the first gate electrode and the second gate electrode and on upper surfaces of the first gate electrode and second gate electrode. A first mask pattern covering the first region of the substrate on the buffer layer is formed. A first impurity region is formed in the substrate at sides of the second gate electrode using the first mask pattern as a mask of an ion implantation process.Type: ApplicationFiled: January 31, 2014Publication date: December 18, 2014Inventors: Ju-Youn Kim, Sang-Duk Park, Jae-Kyung Seo, Kwang-Sub Yoon, In-Gu Yoon
-
Patent number: 8900943Abstract: A process for fabrication of a power semiconductor device is disclosed in which a single photomask is used to define each of p-conductivity well regions and n-conductivity type source regions. In the process a single photomask is deposited on a layer of polysilicon on a wafer, the polysilicon layer is removed from first regions of the power semiconductor device where the p-conductivity well regions and the n-conductivity type source regions are to be formed, and both p-conductivity type and n-conductivity type dopants are introduced into the wafer through the first regions.Type: GrantFiled: May 31, 2014Date of Patent: December 2, 2014Assignee: IXYS CorporationInventors: Kyoung Wook Seok, Jae Yong Choi, Vladimir Tsukanov
-
Patent number: 8877581Abstract: An integrated circuit (IC) includes a plurality of strained metal oxide semiconductor (MOS) devices that include a semiconductor surface having a first doping type, a gate electrode stack over a portion of the semiconductor surface, and source/drain recesses that extend into the semiconductor surface and are framed by semiconductor surface interface regions on opposing sides of the gate stack. A first epitaxial strained alloy layer (rim) is on the semiconductor surface interface regions, and is doped with the first doping type. A second epitaxial strained alloy layer is on the rim and is doped with a second doping type that is opposite to the first doping type that is used to form source/drain regions.Type: GrantFiled: August 13, 2010Date of Patent: November 4, 2014Assignee: Texas Instruments IncorporatedInventors: Amitabh Jain, Deborah J. Riley
-
Patent number: 8871587Abstract: A process of forming a CMOS integrated circuit by forming a first stressor layer over two MOS transistors of opposite polarity, removing a portion of the first stressor layer from the first transistor, and forming a second stressor layer over the two transistors. A source/drain anneal is performed, crystallizing amorphous regions of silicon in the gates of the two transistors, and subsequently removing the stressor layers. A process of forming a CMOS integrated circuit by forming two transistors of opposite polarity, forming a two stressor layers over the transistors, annealing the integrated circuit, removing the stressor layers, and siliciding the transistors. A process of forming a CMOS integrated circuit with an NMOS transistor and a PMOS transistor using a stress memorization technique, by removing the stressor layers with wet etch processes.Type: GrantFiled: July 21, 2009Date of Patent: October 28, 2014Assignee: Texas Instruments IncorporatedInventors: Russell Carlton McMullan, Dong Joo Bae
-
Publication number: 20140308783Abstract: A first transistor includes a first impurity layer of a first conduction type formed in a first region of a semiconductor substrate, a first epitaxial semiconductor layer formed above the first impurity layer, a first gate insulating film formed above the first epitaxial semiconductor layer, a first gate electrode formed above the first gate insulating film, and first source/drain regions of a second conduction type formed in the first epitaxial semiconductor layer and in the semiconductor substrate in the first region.Type: ApplicationFiled: June 26, 2014Publication date: October 16, 2014Inventors: Taiji Ema, Kazushi Fujita
-
Patent number: 8859360Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).Type: GrantFiled: December 24, 2013Date of Patent: October 14, 2014Assignee: Renesas Electronics CorporationInventors: Kazunobu Ota, Hirokazu Sayama, Hidekazu Oda
-
Publication number: 20140273369Abstract: In one example, the method disclosed herein includes forming at least one fin for a FinFET device in a semiconducting substrate, performing at least one process operation to form a region in the at least one fin that contains a metal diffusion inhibiting material, depositing a layer of metal on the region in the at least one fin and forming a metal silicide region on the at least one fin.Type: ApplicationFiled: March 13, 2013Publication date: September 18, 2014Applicant: GLOBALFOUNDRIES INC.Inventors: Andy C. Wei, Shao Ming Koh
-
Publication number: 20140273370Abstract: When forming semiconductor devices including transistors with different threshold voltages, the different threshold voltages of transistors of the same conductivity type are substantially defined by performing different halo implantations. As the other implantations performed typically in the same manufacturing step, such as pre-amorphization, source and drain extension implantation and extra diffusion engineering implantations, may be identical for different threshold voltages, these implantations, in addition to a common halo base implantation, may be performed for all transistors of the same conductivity type in a common implantation sequence. Higher threshold voltages of specific transistors may be subsequently achieved by an additional low-dose halo implantation while the other transistors are covered by a resist mask. Thus, the amount of atoms of the implant species in the required resist masks is reduced so that removal of the resist masks is facilitated.Type: ApplicationFiled: March 13, 2013Publication date: September 18, 2014Applicant: GLOBAL FOUNDRIES INC.Inventors: Martin Gerhardt, Stefan Flachowsky, Matthias Kessler
-
Publication number: 20140264623Abstract: A method of fabricating a CMOS integrated circuit (IC) includes implanting a first n-type dopant at a first masking level that exposes a p-region of a substrate surface having a first gate stack thereon to form NLDD regions for forming n-source/drain extension regions for at least a portion of a plurality of n-channel MOS (NMOS) transistors on the IC. A p-type dopant is implanted at a second masking level that exposes an n-region in the substrate surface having a second gate stack thereon to form PLDD regions for at least a portion of a plurality of p-channel MOS (PMOS) transistors on the IC. A second n-type dopant is retrograde implanted including through the first gate stack to form a deep nwell (DNwell) for the portion of NMOS transistors. A depth of the DNwell is shallower below the first gate stack as compared to under the NLDD regions.Type: ApplicationFiled: March 14, 2013Publication date: September 18, 2014Applicant: TEXAS INSTRUMENTS INCORPORATEDInventor: MAHALINGAM NANDAKUMAR
-
Patent number: 8835330Abstract: A method includes providing a substrate having an N+ type layer; forming a P type region in the N+ type layer disposed within the N+ type layer; forming a first deep trench isolation structure extending through a silicon layer and into the N+ type layer to a depth that is greater than a depth of the P type layer; forming a dynamic RAM FET in the silicon layer, forming a first logic/static RAM FET in the silicon layer above the P type region, the P type region being functional as a P-type back gate of the first logic/static RAM FET; and forming a first contact through the silicon layer and an insulating layer to electrically connect to the N+ type layer and a second contact through the silicon layer and the insulating layer to electrically connect to the P type region.Type: GrantFiled: September 19, 2012Date of Patent: September 16, 2014Assignee: International Business Machines CorporationInventors: Kangguo Chen, Bruce B. Doris, Terence B. Hook, Ali Khakifirooz, Pranita Kulkarni
-
Patent number: 8828820Abstract: The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a source region and a drain region located in the semiconductor substrate and on respective sides of the gate, wherein at least one of the source region and the drain region comprises at least one dislocation; an epitaxial semiconductor layer containing silicon located on the source region and the drain region; and a metal silicide layer on the epitaxial semiconductor layer.Type: GrantFiled: August 7, 2013Date of Patent: September 9, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Huilong Zhu, Zhijong Luo
-
Patent number: 8822298Abstract: Sophisticated transistors for semiconductor devices may be formed on the basis of a superior process sequence in which an increased space between closely spaced gate electrode structures may be obtained in combination with a reduced material loss in the active regions. To this end, an offset spacer conventionally used for laterally profiling the drain and source extension regions is omitted and the spacer for the deep drain and source areas may be completely removed.Type: GrantFiled: March 15, 2012Date of Patent: September 2, 2014Assignee: GLOBALFOUNDRIES Inc.Inventors: Stefan Flachowsky, Jan Hoentschel
-
Patent number: 8822297Abstract: Provided is a method of fabricating a MOS device including the following steps. At least one gate structure is formed on a substrate, wherein the gate structure includes a gate conductive layer and a hard mask layer disposed on the gate conductive layer. A first implant process is performed to form source and drain extension regions in the substrate, wherein the gate conductive layer is covered by the hard mask layer. A process is of removing the hard mask layer is performed to expose the surface of the gate conductive layer. A second implant process is performed to form pocket doped regions in the substrate, wherein the gate conductive layer is not covered by the hard mask layer.Type: GrantFiled: January 23, 2013Date of Patent: September 2, 2014Assignee: United Microelectronics Corp.Inventors: Tsung-Han Lee, Cheng-Tung Huang, Yi-Han Ye
-
Publication number: 20140220748Abstract: Disclosed herein is a method for fabricating a complementary tunneling field effect transistor based on a standard CMOS IC process, which belongs to the field of logic devices and circuits of field effect transistors in ultra large scaled integrated (ULSI) circuits. In the method, an intrinsic channel and body region of a TFET are formed by means of complementary P-well and N-well masks in the standard CMOS IC process to form a well doping, a channel doping and a threshold adjustment by implantation. Further, a bipolar effect in the TFET can be inhibited via a distance between a gate and a drain on a layout so that a complementary TFET is formed. In the method according to the invention, the complementary tunneling field effect transistor (TFET) can be fabricated by virtue of existing processes in the standard CMOS IC process without any additional masks and process steps.Type: ApplicationFiled: June 14, 2012Publication date: August 7, 2014Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
-
Patent number: 8765544Abstract: An apparatus is disclosed to increase a breakdown voltage of a semiconductor device. The semiconductor device includes an enhanced well region to effectively increase a voltage at which punch-through occurs when compared to a conventional semiconductor device. The enhanced well region includes a greater number of excess carriers when compared to a well region of the conventional semiconductor device. These larger number of excess carriers attract more carriers allowing more current to flow through a channel region of the semiconductor device before depleting the enhanced well region of the carriers. As a result, the semiconductor device may accommodate a greater voltage being applied to its drain region before the depletion region of the enhanced well region and a depletion region of a well region surrounding the drain region merge into a single depletion region.Type: GrantFiled: September 5, 2012Date of Patent: July 1, 2014Assignee: Broadcom CorporationInventor: Akira Ito
-
Patent number: 8754482Abstract: A semiconductor device and its manufacturing method are provided. The semiconductor device comprises: a semiconductor substrate of a first semiconductor material, a gate structure on the semiconductor substrate, a crystal lattice dislocation line in a channel under the gate structure for generating channel stress, wherein the crystal lattice dislocation line being at an angle to the channel.Type: GrantFiled: November 25, 2011Date of Patent: June 17, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
-
Publication number: 20140151815Abstract: A read-only memory includes a plurality of storage units arranged in an array. The read-only memory includes two kinds of storage units with different structures, the two kinds of storage units with different structures are a first MOS transistor and a second MOS transistor. A source and a drain of the first MOS transistor have the same type, a source and a drain of the second MOS transistor have inverse type. These two kinds of MOS transistors can be used to store binary 0 and 1 respectively. In the manufacturing method of the read-only memory, the same type of drain and source can be manufactured simultaneously, no extra mask plate is needed, so the extra mask plate of a conventional read-only memory can be saved.Type: ApplicationFiled: August 2, 2012Publication date: June 5, 2014Applicant: CSMC TECHNOLOGIES FAB2 CO., LTD.Inventors: Kai HUANG, Peng DU, Jianxiang CAI, Tsung-nten HSU
-
Patent number: 8741709Abstract: A process for fabrication of a power semiconductor device is disclosed in which a single photomask is used to define each of p-conductivity well regions and n-conductivity type source regions. In the process a single photomask is deposited on a layer of polysilicon on a wafer, the polysilicon layer is removed from first regions of the power semiconductor device where the p-conductivity well regions and the n-conductivity type source regions are to be formed, and both p-conductivity type and n-conductivity type dopants are introduced into the wafer through the first regions.Type: GrantFiled: May 23, 2011Date of Patent: June 3, 2014Assignee: IXYS CorporationInventors: Kyoung Wook Seok, Jae Yong Choi, Vladimir Tsukanov
-
Patent number: 8735238Abstract: Methods and devices for forming both high-voltage and low-voltage transistors on a common substrate using a reduced number of processing steps are disclosed. An exemplary method includes forming at least a first high-voltage transistor well and a first low-voltage transistor well on a common substrate separated by an isolation structure extending a first depth into the substrate, using a first mask and first implantation process to simultaneously implant a doping material of a first conductivity type into a channel region of the low-voltage transistor well and a drain region for the high-voltage transistor well.Type: GrantFiled: March 3, 2011Date of Patent: May 27, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: ChanSam Chang, Shigenobu Maeda, HeonJong Shin, ChangBong Oh
-
Patent number: 8735234Abstract: An improved method of doping a substrate is disclosed. The method is particularly beneficial to the creation of interdigitated back contact (IBC) solar cells. A paste having a dopant of a first conductivity is applied to the surface of the substrate. This paste serves as a mask for a subsequent ion implantation step, allowing ions of a dopant having an opposite conductivity to be introduced to the portions of the substrate which are exposed. After the ions are implanted, the mask can be removed and the dopants may be activated. Methods of using an aluminum-based and phosphorus-based paste are disclosed.Type: GrantFiled: February 16, 2011Date of Patent: May 27, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Atul Gupta, Nicholas Bateman
-
Patent number: 8710569Abstract: A semiconductor device includes a semiconductor substrate including a DRAM portion and a logic portion thereon, an interlayer film covering the DRAM portion and logic portion of the semiconductor substrate, and plural contact plugs formed in the interlayer film in the DRAM portion and the logic portion, the plural contact plugs being in contact with a metal suicide layer on a highly-doped region of source and drain regions of first, second and third transistors in the DRAM portion and the logic portion, an interface between the plural contact plugs and the metal silicide layer being formed at a main surface in the DRAM portion and the logic portion.Type: GrantFiled: January 5, 2012Date of Patent: April 29, 2014Assignee: Renesas Electronics CorporationInventors: Ken Inoue, Masayuki Hamada
-
Publication number: 20140087532Abstract: The invention provides a method for fabricating a CMOS transistor and a method for fabricating an array substrate. The method for fabricating a CMOS transistor comprises a step of forming channels, which comprises: depositing an amorphous silicon layer on a substrate, and crystallizing the amorphous silicon layer into a poly-silicon layer; implanting boron atoms into the poly-silicon layer and then forming an N channel region and a P channel region by etching the poly-silicon layer implanted with the boron atoms; forming a photoresist-partially-retained region corresponding to the N channel region and a photoresist-completely-retained region corresponding to the P channel region through a single patterning process; and removing the photoresist in the photoresist-partially-retained-region and retaining a part of the photoresist in the photoresist-completely-retained region using an ashing process, implanting phosphorus atoms through ion implantation thereby forming an N channel and a P channel.Type: ApplicationFiled: September 6, 2013Publication date: March 27, 2014Applicant: Boe Technology Group Co., Ltd.Inventor: Bing SUN
-
Publication number: 20140061816Abstract: A method of manufacturing a semiconductor device includes the steps of: providing a supply of molecules containing a plurality of dopant atoms into an ionization chamber, ionizing said molecules into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ions by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant molecules contain n dopant atoms, where n is an integer number greater than 10. This method enables increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy, while reducing the charge per dopant atom by the factor n.Type: ApplicationFiled: November 6, 2013Publication date: March 6, 2014Applicant: SemEquip, Inc.Inventors: Thomas N. Horsky, Dale C. Jacobson
-
Publication number: 20140038374Abstract: A CMOS transistor and a method for manufacturing the same are disclosed. A semiconductor substrate having at least a PMOS transistor and an NMOS transistor is provided. The source/drain of the PMOS transistor comprises SiGe epitaxial layer. A carbon implantation process is performed to form a carbon-doped layer in the top portion of the source/drain of the PMOS transistor. A silicide layer is formed on the source/drain. A CESL is formed on the PMOS transistor and the NMOS transistor. The formation of the carbon-doped layer is capable of preventing Ge out-diffusion.Type: ApplicationFiled: October 22, 2013Publication date: February 6, 2014Applicant: UNITED MICROELECTRONICS CORP.Inventors: Yi-Wei Chen, Teng-Chun Tsai, Chien-Chung Huang, Jei-Ming Chen, Tsai-Fu Hsiao
-
Patent number: 8642418Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).Type: GrantFiled: August 12, 2013Date of Patent: February 4, 2014Assignee: Renesas Electronics CorporationInventors: Kazunobu Ota, Hirokazu Sayama, Hidekazu Oda
-
Publication number: 20130323894Abstract: The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a source region and a drain region located in the semiconductor substrate and on respective sides of the gate, wherein at least one of the source region and the drain region comprises at least one dislocation; an epitaxial semiconductor layer containing silicon located on the source region and the drain region; and a metal silicide layer on the epitaxial semiconductor layer.Type: ApplicationFiled: August 7, 2013Publication date: December 5, 2013Inventors: Haizhou Yin, Huilong Zhu, Zhijong Luo
-
Patent number: 8592268Abstract: An improved semiconductor device manufactured using, for example, replacement gate technologies. The method includes forming a dummy gate structure having a gate stack and spacers. The method further includes forming a dielectric material adjacent to the dummy gate structure. The method further includes removing the spacers to form gaps, and implanting a halo extension through the gaps and into an underlying diffusion region.Type: GrantFiled: April 15, 2013Date of Patent: November 26, 2013Assignee: International Business Machines CorporationInventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin
-
Patent number: 8541272Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).Type: GrantFiled: March 15, 2013Date of Patent: September 24, 2013Assignee: Renesas Electronics CorporationInventors: Kazunobu Ota, Hirokazu Sayama, Hidekazu Oda
-
Patent number: 8536681Abstract: A MOS integrated circuit including an N-type silicide MOS transistor, an N-type non-silicide MOS transistor simultaneously formed with the N-type silicide MOS transistor, and an isolation film having an N conductivity type impurity formed on the N-type non-silicide MOS transistor.Type: GrantFiled: October 28, 2010Date of Patent: September 17, 2013Assignee: Rohm Co., Ltd.Inventor: Hiroshi Oji
-
Publication number: 20130203223Abstract: A method of manufacturing a semiconductor device with NMOS and PMOS transistors is provided. The semiconductor device can lessen a short channel effect, can reduce gate-drain current leakage, and can reduce parasitic capacitance due to gate overlaps, thereby inhibiting a reduction in the operating speed of circuits. An N-type impurity such as arsenic is ion implanted to a relatively low concentration in the surface of a silicon substrate (1) in a low-voltage NMOS region (LNR) thereby to form extension layers (61). Then, a silicon oxide film (OX2) is formed to cover the whole surface of the silicon substrate (1). The silicon oxide film (OX2) on the side surfaces of gate electrodes (51-54) is used as an offset sidewall. Then, boron is ion implanted to a relatively low concentration in the surface of the silicon substrate (1) in a low-voltage PMOS region (LPR) thereby to form P-type impurity layers (621) later to be extension layers (62).Type: ApplicationFiled: March 15, 2013Publication date: August 8, 2013Applicant: Renesas Electronics CorporationInventor: Renesas Electronics Corporation
-
Patent number: 8501571Abstract: A semiconductor device includes a MOS transistor, a source electrode and a drain electrode on the MOS transistor each include a first carbon doped silicon layer including carbon at a first carbon concentration and phosphorus at a first phosphorus concentration and a second carbon doped silicon layer over the first silicon carbide layer, which includes phosphorus at a second phosphorus concentration higher than the first phosphorus concentration, and which includes carbon at a second carbon concentration less than or equal to the first carbon concentration.Type: GrantFiled: March 14, 2012Date of Patent: August 6, 2013Assignee: Fujitsu Semiconductor LimitedInventor: Naoyoshi Tamura
-
Patent number: 8492849Abstract: A high side semiconductor structure is provided. The high side semiconductor structure includes a substrate, a first deep well, a second deep well, a first active element, a second active element and a doped well. The first deep well and the second deep well are formed in the substrate, wherein the first deep well and the second deep well have identical type of ion doping. The first active element and the second active element are respectively formed in the first deep well and the second deep well. The doped well is formed in the substrate and is disposed between the first deep well and the second deep well. The doped well, the first deep well and the second deep well are interspaced, and the type of ion doping of the first deep well and the second deep well is complementary with that of the doped well.Type: GrantFiled: July 8, 2010Date of Patent: July 23, 2013Assignee: System General Corp.Inventors: Han-Chung Tai, Hsin-Chih Chiang