Packaging (e.g., With Mounting, Encapsulating, Etc.) Or Treatment Of Packaged Semiconductor Patents (Class 438/26)
  • Patent number: 9012949
    Abstract: A highly reliable light-emitting module or light-emitting device is provided. A method for manufacturing a highly reliable light-emitting module is provided. The light-emitting module includes, between a first substrate and a second substrate, a first electrode provided over the first substrate, a second electrode provided over the first electrode with a layer containing a light-emitting organic compound interposed therebetween, and a sacrifice layer formed using a liquid material provided over the second electrode.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Satoshi Seo, Hideto Ohnuma, Hajime Kimura, Yasuhiro Jinbo
  • Patent number: 9012264
    Abstract: An integrated circuit package is provided with a thin-film battery electrically connected to and encapsulated with an integrated circuit die. The battery can be fabricated on a dedicated substrate, on the die pad, or on the integrated circuit die itself.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: Michael J. Hundt, Haibin Du, Krishnan Kelappan, Frank Sigmund
  • Publication number: 20150102382
    Abstract: According to one embodiment, a semiconductor light emitting device includes a light emitting unit, a first metal layer, a second metal layer, and an intermediate layer. The light emitting unit includes a semiconductor light emitting layer. The first metal layer includes a first metal. The second metal layer is provided between the first metal layer and the light emitting unit and includes the first metal. The intermediate layer is provided between the first metal layer and the second metal layer and includes an intermetallic compound including a second metal.
    Type: Application
    Filed: March 10, 2014
    Publication date: April 16, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Takeyuki Suzuki
  • Publication number: 20150104890
    Abstract: A semiconductor light emitting device includes a substrate having first and second electrode patterns on at least one surface thereof, a light emitting structure on a surface of the substrate, a first electrode structure, a second electrode structure, an insulating layer, a first connection portion connecting the first electrode structure and the first electrode pattern, and a second connection portion connecting the second electrode structure extending outwardly from the light emitting structure and the second electrode pattern.
    Type: Application
    Filed: December 19, 2014
    Publication date: April 16, 2015
    Inventor: Yu Seung Kim
  • Patent number: 9006761
    Abstract: A light-emitting device includes a substrate (4), a light-emitting element (10) mounted on the substrate (4), a first resin (12) disposed to cover an upper portion of the light-emitting element (10), a second resin (14) disposed to cover a lower portion of the light-emitting element (10), a first phosphor (18) contained in the first resin (12), and a second phosphor (20) contained in the second resin (14). The first phosphor (18) converts light emitted directly from the light-emitting element (10) into a first phosphor-converted light having a wavelength longer than that of the light emitted directly from the light-emitting element (10) and emits the first phosphor-converted light, and the second phosphor (20) converts the light emitted directly from the light-emitting element (10) into a second phosphor-converted light having a wavelength longer than that of the first phosphor-converted light and emits the second phosphor-converted light.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: April 14, 2015
    Assignee: Citizen Electronics Co., Ltd.
    Inventor: Nodoka Oyamada
  • Patent number: 9006770
    Abstract: A light emitting diode (LED) carrier assembly includes an LED die mounted on a silicon submount, a middle layer that is thermally conductive and electrically isolating disposed below the silicon submount, and a printed circuit board (PCB) disposed below the middle layer. The middle layer is bonded with the silicon submount and the PCB.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: April 14, 2015
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Wei-Yu Yeh, Pei-Wen Ko, Chih-Hsuan Sun, Hsueh-Hung Fu
  • Patent number: 9006750
    Abstract: An optical semiconductor package has a base material that includes a principal surface, an optical semiconductor element that is located on the principal surface of the base material to project or receive light, and an optical transparency sealing layer that seals the optical semiconductor element while covering the principal surface of the base material. An air gap having a shape surrounding an optical axis of the optical semiconductor element is provided in the optical transparency sealing layer such that the light is reflected by an interface of a portion corresponding to an inner circumferential surface of the air gap in an interface formed by the air gap and the optical transparency sealing layer.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 14, 2015
    Assignee: OMRON Corporation
    Inventors: Satoshi Hirono, Manabu Ikoma, Naoto Inoue, Tsuyoshi Miyata, Kazunari Komai
  • Patent number: 9006005
    Abstract: A method of fabricating a light emitting diode device comprises depositing conductive material to cover a portion of surface of a conductive and reflective layer to form a first contact pad, and surfaces between adjacent first trenches to form a second contact pad; and depositing a first passivation layer over uncovered portion of surface of the conductive and reflective layer to form a first planar passivation contact surface between the first contact pad and the second trench and depositing bonding material to cover a portion of surface of the first contact pad, a portion of the second contact pad and a portion of the first planar passivation contact to form a first light emitting diode bonding pad on the first contact pad, a second light emitting diode bonding pad on the second contact pad, and a third light emitting diode bonding pad on the first planar passivation contact.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: April 14, 2015
    Assignee: Starlite Led Inc
    Inventors: Chang Han, Pao Chen
  • Patent number: 9006006
    Abstract: A light-emitting device production method includes a positioning step of positioning, in a light-emitting element, a sealing member at least containing a silicone resin semi-cured at a room temperature (T0) by primary cross-linking and a fluorescent material, the silicone resin decreasing in viscosity reversibly in a temperature region between the room temperature (T0) and a temperature lower than a secondary cross-linking temperature (T1), and being totally cured non-reversibly in a temperature region equal to or higher than the secondary cross-linking temperature (T1).
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: April 14, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masahiro Konishi
  • Publication number: 20150099316
    Abstract: A method of forming a metal bonding layer includes forming first and second bonding metal layers on one surfaces of first and second bonding objects, respectively. The second bonding object is disposed on the first bonding object such that the first bonding metal layer and the second bonding metal layer face each other. A eutectic metal bonding layer is formed through a reaction between the first and second bonding metal layers. At least one of the first bonding metal layer and the second bonding metal layer includes an oxidation prevention layer formed on an upper surface thereof. The oxidation prevention layer is formed of a metal having an oxidation reactivity lower than an oxidation reactivity of the bonding metal layer on the upper surface which the oxidation prevention layer is disposed.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Yung Ho RYU, Seung Woo CHOI, Tae Hun KIM, Gyeong Seon PARK, Jong Hoon LIM, Sung Joon KIM, Myong Soo CHO
  • Patent number: 9000426
    Abstract: A method of manufacturing an organic light-emitting display device includes providing a substrate which comprises thin-film transistors (TFTs), and forming a planarization layer over the substrate. The planarization layer comprises a first planarization portion and a plurality of second planarization portions. The method further includes forming a plurality of first electrodes over the planarization layer, forming an organic light-emitting layer over each of the first electrodes, and forming a second electrode over the organic light-emitting layer. The forming of the planarization layer includes forming the first planarization portion which defines a plurality of first openings and forming one of the second planarization portions in each of the first openings.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: April 7, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Kenji Takii
  • Patent number: 9000702
    Abstract: A packaged device includes a first die, a second die, and specially spaced and positioned sets of package terminals. The first die includes a pulse-width modulator (PWM), a processor, a timer, high-side drivers, low-side drivers, and a fault protection circuit. The second die includes ultra-high voltage high-side drivers. In an ultra-high voltage application, the PWM and external circuitry together form a switching power supply that generates a high voltage. The high voltage powers external high-side transistors. The processor and timer control the ultra-high voltage high-side drivers, that in turn supply drive signals to the external high-side transistors through the package terminals. External low-side transistors are driven directly by low-side drivers of the first die. If the fault protection circuit detects an excessive current, then the fault protection circuit supplies a disable signal to high-side and low-side drivers of both dice.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: April 7, 2015
    Assignee: Active-Semi, Inc.
    Inventors: Steven Huynh, Tsing Hsu
  • Patent number: 9000471
    Abstract: There is provided a manufacturing method of an LED module including: forming an insulating film on a substrate; forming a first ground pad and a second ground pad separated from each other on the insulating film; forming a first division film that fills a space between the first and second ground pads, a second division film deposited on a surface of the first ground pad, and a third division film deposited on a surface of the second ground pad; forming a first partition layer of a predetermined height on each of the division films; sputtering seed metal to the substrate on which the first partition layer is formed; forming a second partition layer of a predetermined height on the first partition layer; forming a first mirror connected with the first ground pad and a second mirror connected with the second ground pad by performing a metal plating process to the substrate on which the second partition layer is formed; removing the first and second partition layers; connecting a zener diode to the first mirror
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: April 7, 2015
    Assignee: Daewon Innost Co., Ltd.
    Inventors: Won Sang Lee, Young Keun Kim
  • Patent number: 9000590
    Abstract: A semiconductor package includes terminals extending from a bottom surface of the semiconductor package, and a layer of interconnection routings disposed within the semiconductor package. Each terminal includes a first plated section, a second plated section, and a portion of a sheet carrier from which the semiconductor package is built upon, wherein the portion is coupled between the first and second plated sections. Each interconnection routing is electrically coupled with a terminal and can extend planarly therefrom. The semiconductor package also includes at least one die coupled with the layer of interconnection routings. In some embodiments, the semiconductor package also includes at least one intermediary layer, each including a via layer and an associated routing layer. The semiconductor package includes a locking mechanism for fastening a package compound with the interconnection routings and the terminals.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: April 7, 2015
    Assignee: UTAC Thai Limited
    Inventors: Saravuth Sirinorakul, Suebphong Yenrudee
  • Publication number: 20150093842
    Abstract: A method and structure for receiving a micro device on a receiving substrate are disclosed. A micro device such as a micro LED device is punched-through a passivation layer covering a conductive layer on the receiving substrate, and the passivation layer is hardened. In an embodiment the micro LED device is punched-through a B-staged thermoset material. In an embodiment the micro LED device is punched-through a thermoplastic material.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: John A. Higginson, Andreas Bibl, Hsin-Hua Hu
  • Publication number: 20150091045
    Abstract: A display panel includes a first substrate and a second substrate sealed by sealant, and an inorganic material thin film is also formed outside the sealant. The display panel possesses a better characteristic of water and oxygen isolation in a lateral direction. A manufacturing method of a display panel and a display device including the display panel are further disclosed.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 2, 2015
    Inventor: Chia Hao Chang
  • Publication number: 20150093069
    Abstract: There is provided a semiconductor laser module with a semiconductor laser chip, in which a first optical waveguide is formed, flip-chip mounted on a silicon substrate with a mesa structure in which a second optical waveguide is formed. The optical axes of the first optical waveguide and the second optical waveguide make a specified angle with lines perpendicular to the respective cleavage planes. Alignment marks are provided on the silicon substrate and the semiconductor laser chip at at least two positioning locations to enable mounting of the semiconductor laser chip by passive alignment. The mounting position is decided so that laser light emitted in a direction of the optical axis of the first optical waveguide and refracted at the emission surface, is refracted at the incident surface of the second optical waveguide and becomes incident in the direction of the optical axis of the second optical waveguide.
    Type: Application
    Filed: June 19, 2014
    Publication date: April 2, 2015
    Applicants: OKI ELECTRIC INDUSTRY CO., LTD., Photonics Electronics Technology Research Association
    Inventor: Koji NAKAMURA
  • Patent number: 8993362
    Abstract: A method and structure for fabricating a monolithic integrated MEMS device. The method includes providing a substrate having a surface region and forming at least one conduction material and at least one insulation material overlying at least one portion of the surface region. At least one support structure can be formed overlying at least one portion of the conduction and insulation surface regions, and at least one MEMS device can be formed overlying the support structure(s) and the conduction and insulation surface regions. In a variety of embodiments, the support structure(s) can include dielectric or oxide materials. The support structure(s) can then be removed and a cover material can be formed overlying the MEMS device(s), the conduction and insulation materials, and the substrate. In various embodiments, the removal of the support structure(s) can be accomplished via a vapor etching process.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: March 31, 2015
    Assignee: mCube Inc.
    Inventor: Anthony F. Flannery, Jr.
  • Patent number: 8994046
    Abstract: A light emitting diode (LED) device comprises a first lead frame, a second lead frame, a LED die and at least one bump. The LED die is fixed on and electrically connected to the first lead frame. The second lead frame separated from the first lead frame with a distance is connected to the LED die. The bump disposed on at least one of the first lead frame and the second lead frame to identify a gripping space for allowing an electronic element inserted or gripped therein.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: March 31, 2015
    Assignee: Everlight Electronics Co., Ltd.
    Inventors: Shang-Lin Chen, Chih-Hung Hsu
  • Patent number: 8993358
    Abstract: A method for depositing a layer of phosphor-containing material on a plurality of LED dies includes disposing a template with a plurality of openings on an adhesive tape and disposing each of a plurality of LED dies in one of the plurality of openings of the template. The method also includes disposing a stencil over the template and the plurality of LED dies. The stencil has a plurality of openings configured to expose a top surface of each of the LED dies. Next, a phosphor-containing material is disposed on the exposed top surface of each the LED dies. The method further includes removing the stencil and the template.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: March 31, 2015
    Assignee: LedEngin, Inc.
    Inventors: Zequn Mei, Xiantao Yan
  • Publication number: 20150084012
    Abstract: An organic light emitting display apparatus includes a substrate, a display unit on the substrate, a dispersion layer on the display unit, and a thin film encapsulation layer sealing the display unit and the dispersion layer. The dispersion layer has a diffusion coefficient in a horizontal direction that is greater than a diffusion coefficient in a vertical direction.
    Type: Application
    Filed: May 30, 2014
    Publication date: March 26, 2015
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jin-Kwang KIM, Jae-Hyun KIM, Hang-Ki RO, Chang-Woo SHIM, Suk-Won JUNG, Sun-Taek JEONG, Myung-Soo HUH
  • Publication number: 20150084078
    Abstract: A light emitting diode having a diamond-like carbon layer is disclosed, which includes: a substrate; a semiconductor epitaxial multilayer structure deposited over the substrate and including a first semiconductor epitaxial layer and a second semiconductor epitaxial layer, wherein the first and second semiconductor epitaxial layers are stacked with each other; an insulating diamond-like carbon covering partial surface of the semiconductor epitaxial multilayer structure; a first electrode provided with an electrical connection to the first semiconductor epitaxial layer; and a second electrode provided with an electrical connection to the second semiconductor epitaxial layer. A manufacturing method and application of the light-emitting diode are also disclosed.
    Type: Application
    Filed: March 24, 2014
    Publication date: March 26, 2015
    Inventor: Chien-Min Sung
  • Publication number: 20150084009
    Abstract: An organic light-emitting display apparatus includes: a pixel electrode on a substrate; an environmental element on the pixel electrode; a protection insulating layer between the pixel electrode and the environmental element and at a location corresponding to the environmental element; an opposing electrode facing the pixel electrode; and an intermediate layer between the pixel electrode and the opposing electrode and including an organic emission layer.
    Type: Application
    Filed: April 24, 2014
    Publication date: March 26, 2015
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventor: Chun-Gi You
  • Publication number: 20150084010
    Abstract: An organic light-emitting display apparatus includes a substrate, an organic light-emitting device on the substrate, and a thin film encapsulation layer including a first inorganic film, a first organic film, and fine particles including silica with platinum particles. The fine particles are dispersed on the first organic film, and the thin film encapsulation layer is on the organic light-emitting device.
    Type: Application
    Filed: May 8, 2014
    Publication date: March 26, 2015
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventor: Sung-Ho Noh
  • Patent number: 8987020
    Abstract: A method for manufacturing a semiconductor light-emitting device includes forming a multilayer body including a first semiconductor layer having a first major surface and a second major surface which is an opposite side from the first major surface, a second semiconductor layer including a light-emitting layer laminated on the second major surface of the first semiconductor layer, and electrodes formed on the second major surface of the first semiconductor layer and on a surface of the second semiconductor layer on an opposite side from the first semiconductor layer. The method includes forming a groove through the first semiconductor layer. The method includes forming a phosphor layer on the first major surface and on a side surface of the first semiconductor layer in the groove.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiro Kojima, Yoshiaki Sugizaki
  • Patent number: 8987019
    Abstract: A method of manufacturing an opto-electric device is disclosed, comprising the steps of providing a substrate (10), overlying a first main side of the substrate with an electrically interconnected open shunting structure (20), embedding the electrically interconnected open shunting structure in a transparent layer (30), removing the substrate from the embedded electrically interconnected open shunting structure, depositing a functional layer structure (40) over a free surface (31) formed after removal of the substrate.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: March 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Antonius Maria Bernardus van Mol, Joanne Sarah Wilson, Chia-Chen Fan, Herbert Lifka, Edward Willem Albert Young, Hieronymus A.J.M. Andriessen
  • Patent number: 8987017
    Abstract: This disclosure discloses a method of manufacturing a light-emitting device, comprising proving a single growth substrate having a first major surface and a second major surface; forming a plurality of light-emitting stacks on the first major surface, wherein the light-emitting stacks are electrically connected to each other in series via a first electrical connecting structure; forming an electronic device on the second major surface; and forming a second electrical connecting structure extending from the first major surface to the second major surface and electrically connecting the first light-emitting stacks and the electronic device, wherein the electronic device comprises a resistance, an inductance, capacitance, or a rectifying device, and wherein the material of the resistance comprises tantalum nitride (TaN), silicon-chromium alloy (SiCr), or nickel-chromium alloy (NiCr).
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: March 24, 2015
    Assignee: Epistar Corporation
    Inventor: Chia-Liang Hsu
  • Patent number: 8987750
    Abstract: A LED chip packaging structure, its manufacturing method, and a display device are disclosed. A conductive unit is formed at two opposite sides of a LED chip unit, and comprises a first conductive layer formed at a side of, and electrically connected to, a first electrode, a second conductive layer formed at a side of, and electrically connected to, a second electrode, and an intermediate isolation layer formed at a side of a GaN layer. The LED chip unit and the conductive unit are connected laterally to form an electrical-connection channel as a whole, without welding a gold wire for the conductive channel as in a traditional LED. Thus, the method is able to reduce the total thickness of the LED chip device, increase the thermal conductivity effect of the LED chip and the overall stability, and improve the light-extraction effect of the surface of the LED chip.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: March 24, 2015
    Assignees: Boe Technology Group Co., Ltd., Beijing Boe Chatani Electronics Co., Ltd.
    Inventors: Weixin Zheng, Guoheng Ma, Dongsheng Yang, Zhonglian Qiao
  • Patent number: 8987711
    Abstract: Provided is an organic electroluminescence element containing a light transmissive base material laminated thereon a transparent electrode, a light emitting layer and a counter electrode in this order, wherein the light transmissive base material contains a light transmissive resin substrate (resin substrate B) provided with a hard coat layer on both surfaces of the light transmissive resin substrate, the hard coat layers containing metal oxide nano particles; and the transparent electrode is formed on one hard coat layer (H1); and a rugged structure is formed on one surface of the other hard coat layer (H2), the one surface being opposite to another surface of the other hard coat layer (H2) which is contacted with the light transmissive resin substrate (resin substrate B).
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: March 24, 2015
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Kunimasa Hiyama, Toshiya Kondo, Takeshi Ono
  • Patent number: 8987021
    Abstract: A manufacturing method of a light-emitting device includes: a die-bonding process in which a semiconductor light emitting element is placed on a bonding target member via an adhesive containing a silicone resin so that a surface opposite to an exposure surface faces the bonding target member, and the adhesive is heated to bond the semiconductor light emitting element to the bonding target member; and a wire-bonding process in which a wire is connected to the exposure surface. The semiconductor light emitting element includes a laminated semiconductor layer having a light emitting layer and an electrode including a metal layer containing Au and provided on the laminated semiconductor layer and a covering layer containing Ni or Ta and covering the metal layer, the thickness of the covering layer being set smaller than 100 nm and the exposure surface to expose the covering layer to the outside being formed.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: March 24, 2015
    Assignee: Toyoda Gosei Co., Ltd.
    Inventor: Mineo Okuyama
  • Patent number: 8987018
    Abstract: A method for manufacturing a light-emitting case includes forming a flat panel light emitting diode, and covering the flat panel light emitting diode with transparent plastic material. The transparent plastic material has properties of flexibility, high gas-resistance and water-resistance. When the light-emitting case is forced, the shape of the light-emitting case can be changed.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: March 24, 2015
    Assignees: Lite-On Electronics (Guangzhou) Limited, Lite-On Technology Corporation
    Inventor: Chih-Kang Chen
  • Publication number: 20150076464
    Abstract: Provided is a long-life organic electroluminescent illumination panel which is flexible and, even when a load is applied by bending, impact or vibration, can suppress the occurrence of defects in an electrode layer and an organic layer containing an organic electroluminescent material, and which can suppress the occurrence of dark spots due to short circuiting. This organic electroluminescent illumination panel includes: a pair of electrode layers, at least one of which is transparent, between a flexible film substrate and a flexible film sealing material, at least one of which is transparent; and an organic layer containing an organic electroluminescent material which is sandwiched between the pair of electrode layers. This organic electroluminescent illumination panel has multiple spacers which are disposed on an electrode layer laminated on the flexible film substrate so as to pass through the organic layer and another electrode layer.
    Type: Application
    Filed: March 22, 2013
    Publication date: March 19, 2015
    Inventor: Yoshikazu Sakaguchi
  • Publication number: 20150076463
    Abstract: In an organic EL device, a risk of a short circuit between adjacent terminals in a connection space on a substrate can be reduced. An organic EL device includes a substrate, one or a plurality of organic EL elements formed on the substrate, a plurality of connection terminals provided on the substrate and electrically connected to electrodes of the organic EL elements, an insulating cover layer that covers the connection terminals and the substrate between the connection terminals, and a mounted component mounted via an anisotropic conducive layer and including terminals to be connected electrically connected to the connection terminals. The anisotropic conductive layer includes conductive particulates that electrically connect the connection terminals and the terminals to be connected. The conductive particulates electrically connect the connection terminals and the terminals to be connected piercing through the cover layer.
    Type: Application
    Filed: March 1, 2012
    Publication date: March 19, 2015
    Applicants: Tohoku Pioneer Corporation, Pioneer Corporation
    Inventor: Hidetaka Ohazama
  • Publication number: 20150076530
    Abstract: A light-emitting device package is disclosed. The light-emitting device package includes a metal substrate. An insulating layer is on the metal substrate, wherein the insulating layer has at least one opening to expose the metal substrate. At least one light-emitting device is disposed in the at least one opening of the insulating layer. A sidewall of the at least one opening of the insulating layer is covered by an optical spacer. The disclosure also provides a method for manufacturing the light-emitting device package.
    Type: Application
    Filed: March 12, 2014
    Publication date: March 19, 2015
    Applicant: LEXTAR ELECTRONICS CORPORATION
    Inventor: Su-Hon LIN
  • Publication number: 20150079707
    Abstract: A manufacturing method of an organic light emitting diode (OLED) display is disclosed. The manufacturing method in accordance with an exemplary embodiment includes: preparing a flexible substrate and a display panel including a thin film encapsulation (TFE) layer for covering and protecting an OLED formed on the flexible substrate; attaching a first protection film to the TFE layer by using a first adhesive to be opposite to the TFE layer; heating a second protection film; and pressing and attaching a second protection film onto the flexible substrate by using a second adhesive.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 19, 2015
    Applicant: Samsung Display Co., Ltd.
    Inventors: Keun Soo LEE, Young Gu Kim, Hyun Jun Cho, Young Ji Kim, Jeong Yong Eom
  • Publication number: 20150079708
    Abstract: When a coating film 4 is formed on a substrate 1, on which elements 3 are formed, by an ALD film forming method or the like, the coating film 4 is partially removed in a simple step. A method for manufacturing an electronic device includes a step of coating the substrate 1 partially with a partially coating member 2, a step of forming the elements 3 on the substrate 1, a step of forming the coating film 4 on the substrate 1 to cover the elements 3 and the partially coating member 2, and a step of forming a crack 4A in the coating film 4 on the partially coating member 2.
    Type: Application
    Filed: March 27, 2012
    Publication date: March 19, 2015
    Applicants: TOHOKU PIONEER CORPORATION, PIONEER CORPORATION
    Inventors: Jun Sugahara, Hidetaka Ohazawa, Shinsuke Tanaka, Hiromu Nara, Hiroki Tan
  • Publication number: 20150076552
    Abstract: A silicone resin composition contains a polysiloxane containing at least one pair of condensable substituted groups capable of condensation by heating and at least one pair of addable substituted groups capable of addition by an active energy ray.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 19, 2015
    Applicant: NITTO DENKO CORPORATION
    Inventors: Haruka ONA, Hiroyuki KATAYAMA, Sadahiro NAKANISHI
  • Patent number: 8980728
    Abstract: A method of manufacturing a semiconductor apparatus is disclosed. A first-type doped layer, a second-type doped layer, and an internal electrical connection layer are formed. The internal electrical connection layer is deposited and electrically coupled between the first-type doped layer and the second-type doped layer. In one embodiment, the internal electrical connection layer is formed by using a group IV based precursor and nitrogen based precursor. In another embodiment, the internal electrical connection layer is formed by a mixture comprising a carbon-contained doping source, and the internal electrical connection layer has a carbon concentration greater than 1017 atoms/cm3. In a further embodiment, the internal electrical connection layer is formed at a temperature lower than those of the first-type doped layer and the second-type doped layer.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: March 17, 2015
    Assignee: Phostek, Inc.
    Inventors: Yen-Chang Hsieh, Jinn Kong Sheu, Heng Liu, Chun-Chao Li, Ya-Hsuan Shih, Chia-Nan Chen
  • Patent number: 8980659
    Abstract: A LED package is formed of a substrate, an LED chip, an insulated layer, and a fluorescent adhesive layer. The substrate includes a positive contact and a negative contact. The LED chip is fixed to the substrate and includes a positive terminal and a negative terminal, the former of which is electrically connected with the positive contact and latter is electrically connected with the negative contact. The insulated layer is mounted to the surface of the substrate and surrounds the LED chip. The fluorescent adhesive layer is mounted to a surface of the insulated layer and covers the LED chip. In this way, the LED package can reduce the production cost and the whole size.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: March 17, 2015
    Assignee: Lingsen Precision Industries, Ltd.
    Inventor: Wei-Jen Chen
  • Patent number: 8981399
    Abstract: Disclosed are a method of fabricating a light emitting diode package with a surface treated resin encapsulant and a package fabricated by the method. According to the method of fabricating a light emitting diode package, a resin encapsulant encapsulating a light emitting diode chip is surface treated using plasma. Thus, a bonding force between the surface treated resin encapsulant and a resin molding member covering it is increased.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: March 17, 2015
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Do Choul Woo, Min Hong Kim, Mi Gyeong Ko
  • Patent number: 8981401
    Abstract: The present invention is a package for optical semiconductor devices, and an optical semiconductor device using the package, which can prevent discoloration of a plating layer formed on a lead frame even when a silicone resin is used as a sealing resin for an optical semiconductor device, and which enables high luminous efficiency for a long time. Specifically, in the package for semiconductor devices, a plating laminate 15, wherein a pure Ag plating layer 4, a thin reflective plating layer 6 serving as the uppermost layer for improving the light reflection ratio, and a resistant plating layer 5 serving as an intermediate layer therebetween and having chemical resistance against at least either metal chlorides or metal sulfides are laminated, is formed on at least the surface of a lead electrode. The reflective plating layer 4 is composed of a pure Ag thin film, and the resistant plating layer 5 is composed of a complete solid solution Au—Ag alloy plating layer.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 17, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Tomoyuki Yamada, Tomohiro Futagami
  • LED
    Patent number: 8981419
    Abstract: An LED includes a base, a pair of leads fixed on the base, a housing fixed on the leads, a chip mounted on one lead and an encapsulant sealing the chip. The housing defines a cavity in a central area thereof and a chamber adjacent to a circumferential periphery thereof. Top faces of the leads are exposed in the chamber. A blocking wall is formed in the chamber to contact the exposed top faces of the leads. A bonding force between the blocking wall and the leads is larger than that between the leads and the housing.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: March 17, 2015
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Hsin-Chiang Lin, Pin-Chuan Chen
  • Publication number: 20150069349
    Abstract: Provided is a method of preparing an organic electroluminescent element. The method includes: a roughening step of roughening a surface of a moisture-proof substrate; a composite substrate-forming step of placing a resin film on the roughened surface of the moisture-proof substrate to form a composite substrate; an electroluminescent laminate-forming step of forming an organic electroluminescent laminate on a surface of the composite substrate; and a covering step of covering the organic electroluminescent laminate with a covering substrate that is larger than the resin film in a plan view. It gives a highly reliable organic electroluminescent element superior in light-outcoupling efficiency that is effectively resistant to water penetration and to degradation.
    Type: Application
    Filed: March 7, 2013
    Publication date: March 12, 2015
    Applicant: PANASONIC CORPORATION
    Inventors: Shintaro Hayashi, Kazuyuki Yamae, Masuyuki Ota
  • Publication number: 20150072452
    Abstract: One or more masks may be used to control the application of protective (e.g., moisture-resistant, etc.) coatings to one or more portions of various components of an electronic device during assembly of the electronic device. A method for applying a protective coating to an electronic device includes assembling two or more components of the electronic device with one another. A mask may then be applied to the resulting electronic assembly. The mask may shield selected portions of the electronic assembly, while other portions of the electronic assembly, i.e., those to which a protective coating is to be applied, may remain exposed through the mask. With the mask in place, application of a protective coating to portions of the electronic assembly exposed through the mask may commence. After application of the protective coating, the mask may be removed from the electronic assembly. Embodiments of masked electronic assemblies are also disclosed.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Blake Stevens, Max Sorenson, Sidney Edward Martin, III
  • Publication number: 20150072451
    Abstract: A method for producing an electronic component and an electronic component, having barrier layers for the encapsulation of the component. The method involves providing a substrate (1) with at least one functional layer (22), and an electronic component, applying at least one first barrier layer (3) on the functional layer (22) by way of plasmaless atomic layer deposition (PLALD), and applying at least one second barrier layer (4) on the functional layer (22) by way of plasma-enhanced chemical v0apor deposition (PECVD).
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: Christian Schmid, Tilman Schlenker, Heribert Zull, Ralph Paetzold, Markus Klein, Karsten Heuser
  • Publication number: 20150069403
    Abstract: A flexible semiconductor device includes a wire embedded layer that has flexibility and has a first principal surface and a second principal surface, a thick wire embedded in the wire embedded layer so as to be substantially flush with the first principal surface of the wire embedded layer, and a thin film transistor element electrically connected to the thick wire. The thin film transistor element is disposed on the first principal surface of the wire embedded layer. The flexible semiconductor device is suitable for increasing the area and can be manufactured with a high productivity. A display device including the flexible semiconductor device and a method for manufacturing the flexible semiconductor device are also disclosed.
    Type: Application
    Filed: August 8, 2014
    Publication date: March 12, 2015
    Inventors: TAKESHI SUZUKI, YOSHIHIRO TOMITA, KOICHI HIRANO
  • Patent number: 8975101
    Abstract: An element-connecting board is a lead frame for allowing a light emitting diode element to be connected to one side thereof in a thickness direction. The element-connecting board includes the lead frame which is provided with a plurality of leads disposed with spaces from each other and a first insulating resin portion which is light reflective and fills the spaces.
    Type: Grant
    Filed: June 26, 2014
    Date of Patent: March 10, 2015
    Assignee: Nitto Denko Corporation
    Inventors: Yasunari Ooyabu, Kazuhiro Fuke, Daisuke Tsukahara, Takashi Kondo
  • Patent number: 8975660
    Abstract: An organic light emitting diode (OLED) display includes: a substrate; an organic light emitting diode formed on the substrate; a first inorganic layer formed on the substrate and covering the organic light emitting diode; an intermediate layer formed on the first inorganic layer and covering an area relatively smaller than the first inorganic layer; and a second inorganic layer formed on the first inorganic layer and the intermediate layer, and contacting the first inorganic layer at an edge thereof while covering a relatively larger area than the intermediate layer. A third inorganic layer may be formed on the second inorganic layer so as to contact the second inorganic layer at an edge thereof. At least one of the first, second and third inorganic layers is formed by an atomic layer deposition (ALD) method.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: March 10, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Kwang Kim, Sang-Joon Seo, Seung-Hun Kim
  • Patent number: 8975102
    Abstract: A method for producing an optoelectronic device is provided, in which a luminescent diode chip (10) is mounted on a base surface (8) on the first terminal area (1) of a carrier (3). An electrically insulating layer (4) is applied to side faces (17) of the luminescent diode chip (10). An electrically conductive layer (5), which leads from a second terminal contact (12) of the luminescent diode chip (10) over the electrically insulating layer (4) to a second terminal area (2) on the carrier (3), is subsequently applied. A photoresist layer (7) is applied to the electrically conductive layer (5), which photoresist layer (7) is exposed by application of an electrical voltage to the luminescent diode chip (10) so that the luminescent diode chip (10) emits radiation (23). After development of the photoresist layer (7), a portion of the electrically conductive layer (5) arranged on the radiation exit surface (9) is removed by means of an etching process, in which the photoresist layer (7) serves as a mask.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 10, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Tobias Gebuhr, Hans-Christoph Gallmeier
  • Patent number: 8975100
    Abstract: A method for manufacturing an optical-semiconductor device, including forming a plurality of first and second electrically conductive members that are disposed separately from each other on a support substrate; providing a base member formed from a light blocking resin between the first and second electrically conductive members; mounting an optical-semiconductor element on the first and/or second electrically conductive member; covering the optical-semiconductor element by a sealing member formed from a translucent resin; and obtaining individual optical-semiconductor devices after removing the support substrate.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: March 10, 2015
    Assignee: Nichia Corporation
    Inventors: Masato Fujitomo, Hiroto Tamaki, Shinji Nishijima, Yuichiro Tanda, Tomohide Miki