Buried Channel Patents (Class 438/282)
  • Patent number: 7939387
    Abstract: A process for treating a structure to prepare it for electronics or optoelectronics applications. The structure includes a bulk substrate, an oxide layer, and a semiconductor layer, and the process includes providing a masking to define on the semiconductor layer a desired pattern, and applying a thermal treatment for removing a controlled thickness of oxide in the regions of the oxide layer corresponding to the desired pattern to assist in preparing the structure.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: May 10, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventor: Oleg Kononchuk
  • Patent number: 7923286
    Abstract: A phase-change memory comprises a bottom electrode formed on a substrate. A first isolation layer is formed on the bottom electrode. A top electrode is formed on the isolation layer. A first phase-change material is formed in the first isolation layer, wherein the top electrode and the bottom electrode are electrically connected via the first phase-change material. Since the phase-change material can have a diameter less than the resolution limit of the photolithography process, an operating current for a state conversion of the phase-change material pattern may be reduced so as to decrease a power dissipation of the phase-change memory device.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: April 12, 2011
    Assignees: Nanya Technology Corporation, Windbond Electronics Crop.
    Inventors: Yi-Chan Chen, Wen-Han Wang
  • Patent number: 7910991
    Abstract: A disclosed power transistor, suitable for use in a switch mode converter that is operable with a switching frequency exceeding, for example, 5 MHz or more, includes a gate dielectric layer overlying an upper surface of a semiconductor substrate and first and second gate electrodes overlying the gate dielectric layer. The first gate electrode is laterally positioned overlying a first region of the substrate. The first substrate region has a first type of doping, which may be either n-type or p-type. A second gate electrode of the power transistor overlies the gate dielectric and is laterally positioned over a second region of the substrate. The second substrate region has a second doping type that is different than the first type. The transistor further includes a drift region located within the substrate in close proximity to an upper surface of the substrate and laterally positioned between the first and second substrate regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Hongning Yang, Jiang-Kai Zuo
  • Patent number: 7910413
    Abstract: A method of manufacturing a fin structure comprises forming a first structure of a first material type on a wafer and forming a buried channel of a second material adjacent sidewalls of the first structure. The second material type is different than the first material type. The structure includes a first structure and a buried channel.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: March 22, 2011
    Assignee: International Business Machines Corporation
    Inventor: Huilong Zhu
  • Patent number: 7867833
    Abstract: Known drawbacks associated with use of tungsten as a gate material in a semiconductor device are prevented. A gate oxide layer, a polysilicon layer, and a nitride layer are sequentially formed on a semiconductor substrate having a isolation layer for defining the active region. A groove is formed by etching the nitride layer. A metal nitride layer is formed to an U shape in the groove, and then a metal layer is formed to bury the groove. A hard mask layer is formed for defining a gate forming region on the nitride layer, the metal nitride layer, and the metal layer. A metal gate is formed by etching the nitride layer, the polysilicon layer, and the gate oxide layer using the hard mask layer as an etch barrier.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: January 11, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Tae Kyun Kim
  • Patent number: 7863077
    Abstract: An image sensor and method of manufacturing the same are disclosed. A semiconductor substrate can be prepared comprising a photodiode region, a transistor region, and a floating diffusion region. A gate dielectric can be disposed under a surface of the semiconductor substrate in the transistor region. A first dielectric pattern can be provided having a portion above and a portion below the surface of the semiconductor substrate in the photodiode and the floating diffusion regions. A second dielectric can be disposed under the gate dielectric. The second dielectric can extend the depth of the gate dielectric into the semiconductor substrate to space the movement path of photoelectrons from the photodiode region to the floating diffusion region.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 4, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Dong Bin Park
  • Patent number: 7829415
    Abstract: A method of fabricating a semiconductor device includes forming a plurality of pillar patterns on a substrate, filling a gap between the pillar patterns with a first conductive layer, forming a first hard mask layer pattern over the pillar patterns adjacent in one direction, etching the first conductive layer using the first hard mask layer pattern as an etch barrier, forming a second hard mask pattern over the pillar pattern adjacent in the other direction that crosses the one direction, and forming a gate electrode surrounding the pillar patterns by etching the first conductive layer etched using the second hard mask layer pattern as an etch barrier.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: November 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yun-Seok Cho, Young-Kyun Jung, Chun-Hee Lee
  • Patent number: 7803675
    Abstract: The gate-all-around (GAA) type semiconductor device may include source/drain layers, a nanowire channel, a gate electrode and an insulation layer pattern. The source/drain layers may be disposed at a distance in a first direction on a semiconductor substrate. The nanowire channel may connect the source/drain layers. The gate electrode may extend in a second direction substantially perpendicular to the first direction. The gate electrode may have a height in a third direction substantially perpendicular to the first and second directions and may partially surround the nanowire channel. The insulation layer pattern may be formed between and around the source/drain layers on the semiconductor substrate and may cover the nanowire channel and a portion of the gate electrode. Thus, a size of the gate electrode may be reduced, and/or a gate induced drain leakage (GIDL) and/or a gate leakage current may be reduced.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: September 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Dae Suk, Dong-Won Kim, Kyoung-Hwan Yeo
  • Patent number: 7790551
    Abstract: A transistor having a recess gate structure and a method for fabricating the same. The transistor includes a gate insulating layer formed on the inner walls of first trenches formed in a semiconductor substrate; a gate conductive layer formed on the gate insulating layer for partially filling the first trenches; gate electrodes formed on the gate conductive layer for completely filling the first trenches, and surrounded by the gate conductive layer; channel regions formed in the semiconductor substrate along the first trenches; and source/drain regions formed in a shallow portion of the semiconductor substrate.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 7, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kyoung Bong Rouh, Seung Woo Jin, Min Yong Lee, Yong Soo Jung
  • Patent number: 7718498
    Abstract: A semiconductor device suitable for a source-follower circuit, provided with a gate electrode formed on a semiconductor substrate via a gate insulation film, a first conductivity type layer formed in the semiconductor substrate under a conductive portion of the gate electrode and containing a first conductivity type impurity, first source/drain regions of the first conductivity type impurity formed in the semiconductor substrate and extended from edge portions of the gate electrode, and second source/drain regions having a first conductivity type impurity concentration lower than that in the first source/drain regions and formed adjoining the gate insulation film and the first source/drain regions in the semiconductor substrate so as to overlap portions of the conductive portion of the gate electrode.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: May 18, 2010
    Assignee: Sony Corporation
    Inventor: Kazuichiro Itonaga
  • Patent number: 7691734
    Abstract: A far subcollector, or a buried doped semiconductor layer located at a depth that exceeds the range of conventional ion implantation, is formed by ion implantation of dopants into a region of an initial semiconductor substrate followed by an epitaxial growth of semiconductor material. A reachthrough region to the far subcollector is formed by outdiffusing a dopant from a doped material layer deposited in the at least one deep trench that adjoins the far subcollector. The reachthrough region may be formed surrounding the at least one deep trench or only on one side of the at least one deep trench. If the inside of the at least one trench is electrically connected to the reachthrough region, a metal contact may be formed on the doped fill material within the at least one trench. If not, a metal contact is formed on a secondary reachthrough region that contacts the reachthrough region.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bradley A. Orner, Robert M. Rassel, David C. Sheridan, Steven H. Voldman
  • Patent number: 7692251
    Abstract: Disclosed herein is a transistor for a semiconductor device and a method of forming the same. According to the present invention, a novel transistor structure combining a plane channel transistor and a fin-type channel transistor formed on the semiconductor substrate is provided to secure a sufficient channel width as compared to that of the plane channel transistor, thereby satisfying drive current regulated for the transistor.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: April 6, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Woong Chung, Sang Don Lee
  • Patent number: 7687354
    Abstract: In a semiconductor fabrication process, an epitaxial layer is formed overlying a substrate, wherein there is a lattice mismatch between the epitaxial layer and the substrate. A hard mask having an opening is formed overlying the epitaxial layer. A recess is formed through the epitaxial layer and into the substrate. The recess is substantially aligned to the opening in the hard mask. A channel region of a semiconductor device is formed in the recess.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: March 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul A. Grudowski, Veeraraghavan Dhandapani, Stefan Zollner
  • Patent number: 7682887
    Abstract: Methods and resulting structure of forming a transistor having a high mobility channel are disclosed. In one embodiment, the method includes providing a gate electrode including a gate material area and a gate dielectric, the gate electrode being positioned over a channel in a silicon substrate. A dielectric layer is formed about the gate electrode, and the gate material area and the gate dielectric are removed from the gate electrode to form an opening into a portion of the silicon substrate that exposes source/drain extensions. A high mobility semiconductor material, i.e., one having a carrier mobility greater than doped silicon, is then formed in the opening such that it laterally contacts the source/drain extensions. The gate dielectric and the gate material area may then be re-formed. This invention eliminates the high temperature steps after the formation of high mobility channel material used in related art methods.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Omer H. Dokumaci, Woo-Hyeong Lee
  • Patent number: 7670871
    Abstract: A phase-change memory comprises a bottom electrode formed on a substrate. A first isolation layer is formed on the bottom electrode. A top electrode is formed on the isolation layer. A first phase-change material is formed in the first isolation layer, wherein the top electrode and the bottom electrode are electrically connected via the first phase-change material. Since the phase-change material can have a diameter less than the resolution limit of the photolithography process, an operating current for a state conversion of the phase-change material pattern may be reduced so as to decrease a power dissipation of the phase-change memory device.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: March 2, 2010
    Inventors: Yi-Chan Chen, Wen-Han Wang
  • Publication number: 20100015818
    Abstract: A method for producing a buried stop zone in a semiconductor body and a semiconductor component having a stop zone, the method including providing a semiconductor body having a first and a second side and a basic doping of a first conduction type. The method further includes irradiating the semiconductor body via one of the sides with protons, as a result of which protons are introduced into a first region of the semiconductor body situated at a distance from the irradiation side. The method also includes carrying out a thermal process in which the semiconductor body is heated to a predetermined temperature for a predetermined time duration, the temperature and the duration being chosen such that hydrogen-induced donors are generated both in the first region and in a second region adjacent to the first region in the direction of the irradiation side.
    Type: Application
    Filed: August 31, 2009
    Publication date: January 21, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Reiner Barthelmess, Anton Mauder, Franz-Josef Niedernostheide, Hans-Joachim Schulze
  • Patent number: 7645672
    Abstract: A mask ROM, a method for fabricating the same and a method for coding the same are disclosed. The method for forming the mask ROM maximizes packing density and integration of a device. The mask ROM includes a semiconductor substrate having a device isolation region and an active region, BN junction regions formed in predetermined portions of the active region, an insulating film, first electrode layers formed on predetermined portions of the insulating film, spacers formed at sides of the first electrode layers, and second electrode layers between the spacers.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: January 12, 2010
    Assignee: Dongbu Electronics, Inc.
    Inventor: Heung Jin Kim
  • Patent number: 7638397
    Abstract: The present invention relates to a method of forming a quantum wire gate device. The method includes patterning a first oxide upon a substrate. Preferably the first oxide pattern is precisely and uniformly spaced to maximize quantum wire numbers per unit area. The method continues by forming a first nitride spacer mask upon the first oxide and by forming a first oxide spacer mask upon the first nitride spacer mask. Thereafter, the method continues by forming a second nitride spacer mask upon the first oxide spacer mask and by forming a plurality of channels in the substrate that are aligned to the second nitride spacer mask. A dielectric is formed upon the channel length and the method continues by forming a gate layer over the plurality of channels. Because of the inventive method and the starting scale, each of the plurality of channels is narrower than the mean free path of semiconductive electron flow therein.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: December 29, 2009
    Assignee: Intel Corporation
    Inventor: Brian Doyle
  • Patent number: 7618866
    Abstract: A multilayer embedded stressor having a graded dopant profile for use in a semiconductor structure for inducing strain on a device channel region is provided. The inventive multilayer stressor is formed within areas of a semiconductor structure in which source/drain regions are typically located. The inventive multilayer stressor includes a first conformal epi semiconductor layer that is undoped or lightly doped and a second epi semiconductor layer that is highly dopant relative to the first epi semiconductor layer. The first and second epi semiconductor layers each have the same lattice constant, which is different from that of the substrate they are embedded in. The structure including the inventive multilayer embedded stressor achieves a good balance between stress proximity and short channel effects, and even eliminates or substantially reduces any possible defects that are typically generated during formation of the deep source/drain regions.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: November 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Zhijiong Luo, Ricky S. Amos, Nivo Rovedo, Henry K. Utomo
  • Patent number: 7595010
    Abstract: Adding at least one non-silicon precursor (such as a germanium precursor, a carbon precursor, etc.) during formation of a silicon nitride, silicon oxide, silicon oxynitride or silicon carbide film improves the deposition rate and/or makes possible tuning of properties of the film, such as tuning of the stress of the film. Also, in a doped silicon oxide or doped silicon nitride or other doped structure, the presence of the dopant may be used for measuring a signal associated with the dopant, as an etch-stop or otherwise for achieving control during etching.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 29, 2009
    Assignee: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Judson Holt, Kevin K. Chan, Sadanand V. Deshpande, Rangarajan Jagannathan
  • Patent number: 7595243
    Abstract: A semiconductor technology combines a normally off n-channel channel-junction insulated-gate field-effect transistor (“IGFET”) (104) and an n-channel surface-channel IGFET (100 or 160) to reduce low-frequency 1/f noise. The channel-junction IGFET is normally fabricated to be of materially greater gate dielectric thickness than the surface-channel IGFET so as to operate across a greater voltage range than the surface-channel IGFET. A p-channel surface-channel IGFET (102 or 162), which is typically fabricated to be of approximately the same gate-dielectric thickness as the n-channel surface-channel IGFET, is preferably combined with the two n-channel IGFETs to produce a complementary-IGFET structure. A further p-channel IGFET (106, 180, 184, or 192), which is typically fabricated to be of approximately the same gate dielectric thickness as the n-channel channel-junction IGFET, is also preferably included. The further p-channel IGFET can be a surface-channel or channel-junction device.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: September 29, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, Philipp Lindorfer
  • Publication number: 20090221119
    Abstract: In a semiconductor fabrication process, an epitaxial layer is formed overlying a substrate, wherein there is a lattice mismatch between the epitaxial layer and the substrate. A hard mask having an opening is formed overlying the epitaxial layer. A recess is formed through the epitaxial layer and into the substrate. The recess is substantially aligned to the opening in the hard mask. A channel region of a semiconductor device is formed in the recess.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Inventors: Paul A. Grudowski, Veeraraghavan Dhandapani, Stefan Zollner
  • Patent number: 7569845
    Abstract: A phase-change memory comprises a bottom electrode formed on a substrate. A first isolation layer is formed on the bottom electrode. A top electrode is formed on the isolation layer. A first phase-change material is formed in the first isolation layer, wherein the top electrode and the bottom electrode are electrically connected via the first phase-change material. Since the phase-change material can have a diameter less than the resolution limit of the photolithography process, an operating current for a state conversion of the phase-change material pattern may be reduced so as to decrease a power dissipation of the phase-change memory device.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: August 4, 2009
    Assignees: Industrial Technology Research Institute, Powerchip Semiconductor Corp., Nanya Technology Corporation, ProMOS Technologies Inc., Winbond Electronics Corp.
    Inventors: Yi-Chan Chen, Wen-Han Wang
  • Patent number: 7563677
    Abstract: A recessed gate electrode structure includes a first recess and a second recess in communication with the first recess both formed in a substrate. The second recess is larger than the first recess. A gate dielectric layer is formed on a top surface of the substrate and on an inner surface of the first and second recesses. A first polysilicon layer fills the first recess and is doped with impurities at a first impurity density. A second polysilicon layer fills the second recess and is doped with the impurities at a second impurity density. A void is defined within the second polysilicon layer. A third polysilicon layer is formed on the gate dielectric and first polysilicon layers and is doped with the impurities at a third impurity density. Due to impurities in the second polysilicon layer, migration of the void within the second recess may be substantially prevented.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: July 21, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Han Yoo, Kong-Soo Lee, Chang-Hoon Lee, Yong-Woo Hyung, Hyeon-Deok Lee, Hyo-Jung Kim, Jung-Hwan Oh, Young-Sub You
  • Publication number: 20090159987
    Abstract: A semiconductor device includes a semiconductor substrate having an active region having a plurality of recessed channel areas extending across the active region and a plurality of junction areas also extending across the active region. Gates are formed in and over the recessed channel areas of the active region. A device isolation structure is formed in the semiconductor substrate to delimit the active region, and the device isolation structure has recessed portions, each of which is formed near a junction area of the active region. Landing plugs are formed over each junction area in the active region and extend to fill the recessed portion of the device isolation structure outside the active region. The semiconductor device suppresses interference caused by an adjoining gate leading to a decrease in leakage current from a cell transistor.
    Type: Application
    Filed: February 19, 2008
    Publication date: June 25, 2009
    Inventor: Tae Kyung OH
  • Publication number: 20090127635
    Abstract: A transistor including an active region and methods thereof. The active region may include corners with at least one of a rectangular, curved or rounded shape. The methods may include isotropically etching at least a portion of the active region such that the portion includes a desired shape.
    Type: Application
    Filed: October 27, 2008
    Publication date: May 21, 2009
    Inventors: Ji-Young Kim, Chang-Sub Lee, Sang-Jun Park, Hyo-June Kim
  • Patent number: 7534685
    Abstract: A method for fabrication of a monolithically integrated SOI substrate capacitor has the steps of: forming an insulating trench (14), which reaches down to the insulator (11) and surrounds a region (13?) of the monocrystalline silicon (13) of a SOI structure, doping the monocrystalline silicon region, forming an insulating, which can be nitride, layer region (17?) on a portion of the monocrystalline silicon region, forming a doped silicon layer region (18) on the insulating layer region (17?), and forming an insulating outside sidewall spacer (61) on the monocrystalline silicon region, where the outside sidewall spacer surrounds the doped silicon layer region to provide an isolation between the doped silicon layer region and exposed portions of the monocrystalline silicon region. The monocrystalline silicon region (13?), the insulating layer region (17?), and the doped silicon layer region (18) constitute a lower electrode, a dielectric, and an upper electrode of the capacitor.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: May 19, 2009
    Assignee: Infineon Technologies AG
    Inventor: Ted Johansson
  • Patent number: 7531414
    Abstract: A method according to some embodiments of the invention includes defining an active region by forming a trench device isolation region on an integrated substrate, forming a mask pattern that exposes a channel sub-region of the active region and the trench device isolation region adjacent to the channel sub-region, etching the trench device isolation region, which is exposed by the mask pattern, to be recessed to a first depth using the mask pattern as an etch mask, etching the channel sub-region to form a gate trench having a second depth that is deeper than the first depth using the mask pattern as an etch mask, and forming a recess gate that fills the gate trench.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: May 12, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Chul Park, Jun Seo, Tae-Hyuk Ahn, Hyuk-Jin Kwon, Jong-Heui Song, Dae-Keun Kang
  • Patent number: 7510955
    Abstract: A multi-fin field effect transistor includes a substrate, an oxide layer, a conductive layer, a gate oxide layer, and a doped region is provided. The substrate is surrounded by a trench, and there are at least two fin-type silicon layers formed in the substrate in a region prepared to form a gate thereon. The oxide layer is disposed in the trench and the top surface of the oxide layer is lower than that of the fin-type silicon layers. The conductive layer is disposed in the region prepared to form a gate. The top surface of the conductive layer is higher than that of the fin-type silicon layers. The gate oxide layer is disposed between the conductive layer and the fin-type silicon layers and disposed between the conductive layer and the substrate. The doped region is disposed in the substrate on both sides of the conductive layer.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 31, 2009
    Assignee: ProMOS Technologies Inc.
    Inventor: Hsiao-Che Wu
  • Patent number: 7494880
    Abstract: An oxide film is formed on an SOI layer, an isolation oxide film and a gate electrode. A nitride film is formed on the oxide film. Next, anisotropic etching is performed only on the nitride film to form sidewalls on opposite side surfaces of the gate electrode. Thus, the oxide film is not etched. Next, an N-type impurity is implanted through the oxide film to form source/drain regions in an upper portion of the SOI layer In this step, adjusting the implantation energy so that the impurity reaches the buried oxide film provides the source/drain regions in contact with the buried oxide film.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: February 24, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Takashi Ipposhi
  • Publication number: 20090047766
    Abstract: A method for fabricating recess channel MOS transistors of the present invention utilizes a lithography process to form trenches in the recess channel MOS transistors after finishing a STI process. Furthermore, the method of the present invention can make the critical dimension variation to be controlled in a range required in the precision semiconductor process. Therefore, the short problem between the transistors can be avoided.
    Type: Application
    Filed: January 7, 2008
    Publication date: February 19, 2009
    Inventor: Shian-Jyh Lin
  • Patent number: 7491611
    Abstract: A control circuit with a high voltage sense device. In one embodiment, a circuit includes a first transistor disposed in a first substrate having first, second and third terminals. A first terminal of the first transistor is coupled to an external voltage. A voltage provided at a third terminal of the first transistor is substantially proportional to a voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is less than a pinch-off voltage of the first transistor. The voltage provided at the third terminal of the first transistor is substantially constant and less than the voltage between the first and second terminals of the first transistor when the voltage between the first and second terminals of the first transistor is greater than the pinch-off voltage of the first transistor. The circuit also includes a control circuit disposed in the first substrate and coupled to the third terminal of the first transistor.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: February 17, 2009
    Assignee: Power Integrations, Inc.
    Inventor: Donald R. Disney
  • Publication number: 20090026554
    Abstract: A method for forming a semiconductor device is provided. The method includes forming a semiconductor layer. The method further includes forming a gate structure overlying the semiconductor layer. The method further includes forming a high-k sidewall spacer adjacent to the gate structure. The method further includes forming a recess in the semiconductor layer, the recess aligned to the high-k sidewall spacer. The method further includes forming an in-situ doped epitaxial material in the recess, the epitaxial material having a natural lattice constant different from a lattice constant of the semiconductor layer to create stress in a channel region of the semiconductor device.
    Type: Application
    Filed: July 23, 2007
    Publication date: January 29, 2009
    Inventors: Brian A. Winstead, Vishal P. Trivedi, Da Zhang
  • Patent number: 7482230
    Abstract: The recess channel transistor includes: a semiconductor substrate including a device insulation layer defining an activation region in which recesses are formed; insulation buffer patterns, each of which is formed at an opening of the recess on a surface of the substrate; gates, each of which includes a recess gate formed in the recess and a top gate formed on the substrate; spacers, each of which is formed at both sides of the gate; and a source region and a drain region formed at both sides of each gate on the surface of the substrate, where the source and drain regions have an even doping profile due to the existence of insulation buffer patterns. Accordingly, characteristics of the transistor can be prevented from deteriorating due to misalignment of the top gate with the recess gate.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: January 27, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Gyu Seog Cho, Yong Taik Kim
  • Publication number: 20090020837
    Abstract: A long channel semiconductor device and a manufacturing method thereof are provided. The method for forming a long channel semiconductor device includes: providing a substrate; forming a trench in the substrate with a trench bottom defining a first channel length; forming a spacer on a sidewall of the trench; recessing the trench bottom to form a recessed bottom defining a second channel length longer than the first channel length; forming a gate dielectric layer on the recessed bottom; forming a gate conductor on the gate dielectric layer; and forming source/drain regions in the substrate adjacent to the spacer.
    Type: Application
    Filed: January 17, 2008
    Publication date: January 22, 2009
    Inventor: Shian-Jyh Lin
  • Publication number: 20090020807
    Abstract: Disclosed are a semiconductor device and a method for fabrication of the same. The fabrication method may include selectively forming an oxide layer pattern on a semiconductor substrate, forming an insulation layer pattern on the same substrate to cover edge portions of the oxide layer pattern, etching the oxide layer pattern and the substrate to form a recess as well as first and second oxide layer patterns corresponding to the edge portions of the oxide layer pattern, forming a third oxide layer pattern on the substrate in the recess to produce a gate insulation layer comprising the first, second, and third oxide layer patterns, and forming a gate pattern in the recess. The fabricated semiconductor device minimizes occurrence of current leakage such as gate induction drain leakage, among other things, thereby improving transistor performance.
    Type: Application
    Filed: July 21, 2008
    Publication date: January 22, 2009
    Applicant: DONGBU HITEK CO., LTD.
    Inventor: Je Yong YOON
  • Patent number: 7470587
    Abstract: A flash memory device includes trenches that are formed at regions on a semiconductor substrate spaced apart from one another at predetermined distances, buried floating gates buried into the trenches, a plurality of isolation structures formed between the buried floating gates, and a dielectric film and a control gate formed on the buried floating gates.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: December 30, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ki Seog Kim
  • Publication number: 20080318384
    Abstract: The present invention relates to a method of forming a quantum wire gate device. The method includes patterning a first oxide upon a substrate. Preferably the first oxide pattern is precisely and uniformly spaced to maximize quantum wire numbers per unit area. The method continues by forming a first nitride spacer mask upon the first oxide and by forming a first oxide spacer mask upon the first nitride spacer mask. Thereafter, the method continues by forming a second nitride spacer mask upon the first oxide spacer mask and by forming a plurality of channels in the substrate that are aligned to the second nitride spacer mask. A dielectric is formed upon the channel length and the method continues by forming a gate layer over the plurality of channels. Because of the inventive method and the starting scale, each of the plurality of channels is narrower than the mean free path of semiconductive electron flow therein.
    Type: Application
    Filed: August 25, 2008
    Publication date: December 25, 2008
    Inventor: Brian Doyle
  • Publication number: 20080296622
    Abstract: A semiconductor-containing heterostructure including, from bottom to top, a III-V compound semiconductor buffer layer, a III-V compound semiconductor channel layer, a III-V compound semiconductor barrier layer, and an optional, yet preferred, III-V compound semiconductor cap layer is provided. The barrier layer may be doped, or preferably undoped. The III-V compound semiconductor buffer layer and the III-V compound semiconductor barrier layer are comprised of materials that have a wider band gap than that of the III-V compound semiconductor channel layer. Since wide band gap materials are used for the buffer and barrier layer and a narrow band gap material is used for the channel layer, carriers are confined to the channel layer under certain gate bias range. The inventive heterostructure can be employed as a buried channel structure in a field effect transistor.
    Type: Application
    Filed: July 28, 2008
    Publication date: December 4, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward W. Kiewra, Steven J. Koester, Devendra K. Sadana, Ghavam Shahldi, Yanning Sun
  • Publication number: 20080277743
    Abstract: A semiconductor device includes a substrate having a recess in an area where a gate is to be formed, spacers formed over sidewalls of the recess, and a first gate electrode filling in the recess. The spacers include material having the first work function or insulation material. The first gate electrode includes material having a second work function, wherein the second work function is higher than that of the spacers.
    Type: Application
    Filed: December 29, 2007
    Publication date: November 13, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventors: Heung-Jae CHO, Hong-Seon YANG, Se-Aug JANG
  • Patent number: 7435637
    Abstract: The present invention relates to a method of forming a quantum wire gate device. The method includes patterning a first oxide upon a substrate. Preferably the first oxide pattern is precisely and uniformly spaced to maximize quantum wire numbers per unit area. The method continues by forming a first nitride spacer mask upon the first oxide and by forming a first oxide spacer mask upon the first nitride spacer mask. Thereafter, the method continues by forming a second nitride spacer mask upon the first oxide spacer mask and by forming a plurality of channels in the substrate that are aligned to the second nitride spacer mask. A dielectric is formed upon the channel length and the method continues by forming a gate layer over the plurality of channels. Because of the inventive method and the starting scale, each of the plurality of channels is narrower than the mean free path of semiconductive electron flow therein.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: October 14, 2008
    Assignee: Intel Corporation
    Inventor: Brian Doyle
  • Publication number: 20080246087
    Abstract: The invention is related to a MOS transistor and its fabrication method to reduce short-channel effects. Existing process has the problem of high complexity and high cost to reduce short-channel effects by using epitaxial technique to produce an elevated source and drain structure. In the invention, the MOS transistor, fabricated on a silicon substrate after an isolation module is finished, includes a gate stack, a gate sidewall spacer, and source and drain areas. The silicon substrate has a groove and the gate stack is formed in the groove.
    Type: Application
    Filed: April 4, 2008
    Publication date: October 9, 2008
    Applicant: SHANGHAI IC R&D CENTER
    Inventor: Xiaoxu KANG
  • Publication number: 20080203483
    Abstract: A semiconductor device includes RCA MISFETs formed in active regions of a semiconductor substrate, the active regions being defined by shallow-trench-isolation (STI) structure. The top surface of the insulating film is flush with the top surface of the active regions. The gate electrode of each MISFET includes a first portion at extends over the top surface of the insulating film of the STI structure, and a second portion embedded in a gate trench formed in the active region.
    Type: Application
    Filed: February 25, 2008
    Publication date: August 28, 2008
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Keiji KUROKI
  • Patent number: 7402483
    Abstract: A multi-bridge-channel MOSFET (MBCFET) may be formed by forming a stacked structure on a substrate that includes channel layers and interchannel layers interposed between the channel layers. Trenches are formed by selectively etching the stacked structure. The trenches run across the stacked structure parallel to each other and separate a first stacked portion including channel patterns and interchannel patterns from second stacked portions including channel and interchannel layers remaining on both sides of the first stacked portion. First source and drain regions are grown using selective epitaxial growth. The first source and drain regions fill the trenches and connect to second source and drain regions defined by the second stacked portions. Marginal sections of the interchannel patterns of the first stacked portion are selectively exposed. Through tunnels are formed by selectively removing the interchannel patterns of the first stacked portion beginning with the exposed marginal sections.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: July 22, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-jung Yun, Sung-min Kim, Sung-young Lee
  • Publication number: 20080164522
    Abstract: To provide a semiconductor device that has a three dimensional gate dielectric film, is easily manufactured, and a gate structure thereof can be easily miniaturize. A semiconductor device comprises: a three-dimensional gate dielectric film formed on a semiconductor substrate; a gate electrode that contacts the gate dielectric film and protrudes from the semiconductor substrate; a source electrode and a drain electrode that are formed in a diffusion layer region of the semiconductor substrate around the gate dielectric film; a protective dielectric film that covers a top face of the semiconductor substrate around the gate electrode and a side face of the gate electrode protruding from the semiconductor substrate; and an inter-layer dielectric film that is laminated over the protective dielectric film.
    Type: Application
    Filed: January 7, 2008
    Publication date: July 10, 2008
    Applicant: Elpida Memory, Inc.
    Inventor: Noriaki Mikasa
  • Publication number: 20080157132
    Abstract: A method of forming a gate of a transistor can include forming a nitride film over a semiconductor substrate; forming a photoresist pattern defining a gate channel region of a transistor over the nitride film; forming a nitride pattern by etching the nitride film using the photoresist pattern as a mask; removing the photoresist pattern; forming an oxide film over the semiconductor substrate using a thermal oxidation process; removing the nitride pattern to expose a portion of the surface of the semiconductor substrate corresponding to the removed nitride pattern; and then forming a recessed pattern corresponding to the gate channel region in the exposed semiconductor substrate.
    Type: Application
    Filed: December 10, 2007
    Publication date: July 3, 2008
    Inventor: Dae-Young Kim
  • Publication number: 20080157232
    Abstract: A method of forming a semiconductor device that can include forming a channel region in a semiconductor substrate; forming a first gate electrode and a second gate electrodes over the semiconductor substrate, the first gate electrode and the second gate electrode being spaced apart from each other at a predetermined distance; forming spacers on sidewalls of the first gate electrode and the second gate electrode and over the semiconductor substrate; forming source/drain regions in the semiconductor substrate; forming a first interlayer insulating layer and a second interlayer insulating over the semiconductor substrate; forming a plurality of contact holes in the first interlayer insulating layer and the second interlayer insulating; and then forming a contact plug in the plurality of contact holes.
    Type: Application
    Filed: December 11, 2007
    Publication date: July 3, 2008
    Inventor: Jung-Ho Ahn
  • Patent number: 7391098
    Abstract: The present invention relates to a semiconductor substrate, a semiconductor device with high carrier mobility and a method of manufacturing the same. According to the present invention, there are provided a semiconductor substrate comprising a silicon substrate, a single crystal germanium layer formed on the silicon substrate, and a silicon layer formed on the single crystal germanium layer; a semiconductor device comprising a gate electrode formed on the semiconductor substrate, and junctions formed in the substrate at both sides of the gate electrode; and a method of manufacturing the semiconductor device. Therefore, carrier mobility of channels can be enhanced since the channels of semiconductor devices are placed within the germanium layer. Further, since the silicon layer is formed on the germanium layer, the reliable gate insulation film can be formed and a leakage current produced in a junction layer can also be reduced.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: June 24, 2008
    Assignee: Jusung Engineering Co., Ltd.
    Inventor: Chul Ju Hwang
  • Patent number: 7344947
    Abstract: Methods fabricate DEMOS devices having varied channel lengths and substantially similar threshold voltages. A threshold voltage is selected for first and second devices. First and second well regions are formed. First and second drain extension regions are formed within the well regions. First and second back gate regions are formed within the well regions according to the selected threshold voltage. First and second gate structures are formed over the first and second well regions having varied channel lengths. A first source region is formed in the first back gate region and a first drain region is formed in the first drain extension region. A second source region is formed in the second back gate region and a second drain region is formed in the drain extension region.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: March 18, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Victor Ivanov, Jozef Czeslaw Mitros
  • Patent number: 7338873
    Abstract: Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: March 4, 2008
    Assignee: Intel Corporation
    Inventors: Anand S. Murthy, Robert S. Chau, Patrick Morrow, Chia-Hong Jan, Paul Packan