Gate Insulator Structure Constructed Of Diverse Dielectrics (e.g., Mnos, Etc.) Or Of Nonsilicon Compound Patents (Class 438/287)
  • Patent number: 8871595
    Abstract: An embodiment of a method of integrating a non-volatile memory device into a logic MOS flow is described. Generally, the method includes: forming in a first region of a substrate a channel of a memory device from a semiconducting material overlying a surface of the substrate, the channel connecting a source and a drain of the memory device; forming a charge trapping dielectric stack over the channel adjacent to a plurality of surfaces of the channel, wherein the charge trapping dielectric stack includes a blocking layer on a charge trapping layer over a tunneling layer; and forming a MOS device over a second region of the substrate.
    Type: Grant
    Filed: March 31, 2012
    Date of Patent: October 28, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Fredrick Jenne, Sagy Levy
  • Publication number: 20140312409
    Abstract: A method for fabricating a memory device with a self-aligned trap layer and rounded active region corners is disclosed. In the present invention, an STI process is performed before any of the charge-trapping and top-level layers are formed. Immediately after the STI process, the sharp corners of the active regions are exposed. Because these sharp corners are exposed at this time, they are available to be rounded through any number of known rounding techniques. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, the charge-trapping structure and other layers can be formed by a self-aligned process.
    Type: Application
    Filed: January 29, 2014
    Publication date: October 23, 2014
    Applicant: SPANSION LLC
    Inventors: Tim Thurgate, Shenqing Fang, Kuo-Tung Chang, YouSeok Suh, Meng Ding, Hidehiko Shiraiwa, Amol Joshi, Hapreet Sachar, David Matsumoto, Lovejeet Singh, Chih-Yuh Yang
  • Publication number: 20140312408
    Abstract: A charge-trapping NOR (CT-NOR) memory device and methods of fabricating a CT-NOR memory device utilizing silicon-rich nitride (SiRN) in a charge-trapping (CT) layer of the CT-NOR memory device.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 23, 2014
    Applicant: Spansion LLC
    Inventor: Shenqing FANG
  • Publication number: 20140312407
    Abstract: A nonvolatile memory device comprises a substrate, a gate electrode, a single charge trapping sidewall and a source/drain region. The gate electrode is disposed on and electrically isolated from the substrate. The single charge trapping sidewall is disposed adjacent to a sidewall of the gate electrode and electrically isolated from the substrate and the gate electrode, so as to form a non-straight angle between the substrate and the single charge trapping sidewall. The source/drain region is disposed in the substrate and adjacent to the gate electrode.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 23, 2014
    Applicant: UNITED MICROLECTRONICS CORPORATION
    Inventors: Chih-Haw LEE, Tzu-Ping CHEN
  • Patent number: 8865551
    Abstract: A high mobility semiconductor layer is formed over a semiconductor substrate. An interfacial oxide layer is formed over the high mobility semiconductor layer. A high dielectric constant (high-k) dielectric layer is formed over the interfacial oxide layer. A stack is formed over the high-k dielectric layer. The stack comprises a lower metal layer, a scavenging metal layer comprising a scavenging metal, and an upper metal layer formed on the scavenging metal layer. A Gibbs free energy change of a chemical reaction, in which an atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer combines with a metal oxide material comprising the scavenging metal and oxygen to form the scavenging metal in elemental form and oxide of the atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer, is positive. A gate electrode and a gate dielectric are formed.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Martin M. Frank, Vijay Narayanan
  • Patent number: 8865554
    Abstract: A method for fabricating a nonvolatile memory device includes forming a structure having a plurality of first interlayer insulating layers and a plurality of sacrificial layers alternately stacked over a substrate, forming main channel holes configured to penetrate the structure, sequentially forming a preliminary charge trap layer, a tunnel insulating layer, and a channel layer on the inner walls of the main channel holes, forming a trench configured to penetrate the plurality of sacrificial layers on both sides of each of the main channel holes, and forming insulating oxide layers by oxidizing the preliminary charge trap layer on inner sides of the first interlayer insulating layers. In accordance with this technology, since the charge trap layer is separated for each memory cell, the spread of charges may be prevented and the reliability of a nonvolatile memory device may be improved.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: October 21, 2014
    Assignee: SK Hynix Inc.
    Inventor: Hyun-Sik Doo
  • Patent number: 8865581
    Abstract: A method for manufacturing a dual workfunction semiconductor device using a hybrid gate last integration scheme is described. According to one embodiment, the method includes heat-treating a first high-k film at a first heat-treating temperature to diffuse a first chemical element from a first cap layer into the first high-k film in a device region to form a first modified high-k film. The method further includes a gate-last processing scheme to form recessed features defined by sidewall spacers in the device regions and depositing a second high-k film in the recessed features. Some embodiments include forming an oxygen scavenging layer on the first high-k film, where the heat-treating the first high-k film scavenges oxygen from an interface layer to eliminate or reduce the thickness of an interface layer.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: October 21, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Robert D. Clark
  • Patent number: 8865538
    Abstract: A semiconductor device and method of forming. According to one embodiment, the method includes providing a substrate with defined device regions and having an interface layer thereon, depositing a first high-k film on the interface layer, and performing a heat-treatment to form a modified interface layer. The method further includes depositing a first threshold voltage adjustment layer, removing the first threshold voltage adjustment layer from the second device region, depositing a second high-k film above the first high-k film, and depositing a gate electrode film on the second high-k film. A first gate stack is defined that contains the modified interface layer, the first high-k film, the first threshold voltage adjustment layer, the second high-k film, and the gate electrode film, and a second gate stack is defined that contains the modified interface layer, the first high-k film, the second high-k film, and the gate electrode film.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 21, 2014
    Assignee: Tokyo Electron Limited
    Inventor: Robert D Clark
  • Patent number: 8866210
    Abstract: A dielectric structure may be arranged having a thin nitrided surface of an insulator with a charge blocking insulator over the nitrided surface. The insulator may be formed of a number of different insulating materials such as a metal oxide, a metal oxycarbide, a semiconductor oxide, or oxycarbide. In an embodiment, the dielectric structure may be formed by nitridation of a surface of an insulator using ammonia and deposition of a blocking insulator having a larger band gap than the insulator. The dielectric structure may form part of a memory device, as well as other devices and systems.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 21, 2014
    Assignee: Micro Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20140308791
    Abstract: A non-volatile memory and a manufacturing method thereof are provided. In this method, a first oxide layer having a protrusion is formed on a substrate. A pair of doped regions is formed in the substrate at two sides of the protrusion. A pair of charge storage spacers is formed on the sidewalls of the protrusion. A second oxide layer is formed on the first oxide layer and the pair of charge storage spacers. A conductive layer is formed on the second oxide layer, wherein the conductive layer is located completely on the top of the pair of charge storage spacers.
    Type: Application
    Filed: June 25, 2014
    Publication date: October 16, 2014
    Inventors: Chih-Chieh Cheng, Shih-Guei Yan, Cheng-Hsien Cheng, Wen-Jer Tsai
  • Patent number: 8859371
    Abstract: Methods for manufacturing a semiconductor device having a dual gate dielectric layer may include providing a substrate including first and second regions, forming a first gate dielectric layer having a first thickness on the substrate, forming an interlayer insulating layer including first and second trenches exposing the first gate dielectric layer in the first and second regions, forming a sacrificial layer on the interlayer insulating layer and bottoms of the first and second trenches, forming a sacrificial pattern exposing the first gate dielectric layer of the bottom of the first trench, removing the first gate dielectric layer of the bottom of the first trench, forming a second gate dielectric layer having a second thickness on the bottom of the first trench, removing the sacrificial pattern, and forming a gate electrode on each of the first and second gate dielectric layers.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 14, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung Geun Song, Ki-Hyung Ko, Hayoung Jeon, Boun Yoon, Jeongnam Han
  • Patent number: 8859364
    Abstract: The present invention provides a manufacturing method of a non-volatile memory including forming a gate dielectric layer on a substrate; forming a floating gate on the gate dielectric layer; forming a first charge blocking layer on the floating gate; forming a nitride layer on the first charge blocking layer; forming a second charge blocking layer on the nitride layer; forming a control gate on the second charge blocking layer; and performing a treatment to the nitride layer to get a higher dielectric constant.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: October 14, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Shaw-Hung Ku, Chi-Pei Lu, Chun-Lien Su
  • Patent number: 8859374
    Abstract: Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the method comprises: (i) forming an oxide-nitride-oxide (ONO) dielectric stack on a surface of a semiconductor substrate in at least a first region in which a non-volatile memory transistor is to be formed, the ONO dielectric stack including a multi-layer charge storage layer; (ii) forming an oxide layer on the surface of the substrate in a second region in which a metal oxide semiconductor (MOS) logic transistor is to be formed; and (iii) forming a high work function gate electrode on a surface of the ONO dielectric stack. Other embodiments are also disclosed.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: October 14, 2014
    Assignee: Cypress Semiconductor Corporation
    Inventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar
  • Publication number: 20140302655
    Abstract: A non-volatile memory device includes a plurality of gate electrodes stacked over a semiconductor substrate and stretched in a first direction along the semiconductor substrate and a plurality of junction layers having a first region protruding from the semiconductor substrate and crossing the gate electrodes and a second region formed between the gate electrodes.
    Type: Application
    Filed: June 20, 2014
    Publication date: October 9, 2014
    Inventor: Jung-Ryul AHN
  • Patent number: 8853751
    Abstract: A semiconductor structure includes a high mobility semiconductor, an interfacial oxide layer, a high dielectric constant (high-k) layer, a stack, a gate electrode, and a gate dielectric. The stack comprises a lower metal layer, a scavenging metal layer comprising a scavenging metal, and an upper metal layer formed on the scavenging metal layer. A Gibbs free energy change of a chemical reaction, in which an atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer combines with a metal oxide material comprising the scavenging metal and oxygen to form the scavenging metal in elemental form and oxide of the atom constituting the high mobility semiconductor layer that directly contacts the interfacial oxide layer, is positive.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Martin M. Frank, Vijay Narayanan
  • Patent number: 8853769
    Abstract: Some embodiments include a transistor having a first electrically conductive gate portion along a first segment of a channel region and a second electrically conductive gate portion along a second segment of the channel region. The second electrically conductive gate portion is a different composition than the first electrically conductive gate portion. Some embodiments include a method of forming a semiconductor construction. First semiconductor material and metal-containing material are formed over a NAND string. An opening is formed through the metal-containing material and the first semiconductor material, and is lined with gate dielectric. Second semiconductor material is provided within the opening to form a channel region of a transistor. The transistor is a select device electrically coupled to the NAND string.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: October 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Deepak Thimmegowda, Andrew R. Bicksler, Roland Awusie
  • Patent number: 8853036
    Abstract: In a power feeding region of a memory cell (MC) in which a sidewall-shaped memory gate electrode (MG) of a memory nMIS (Qnm) is provided by self alignment on a side surface of a selection gate electrode (CG) of a selection nMIS (Qnc) via an insulating film, a plug (PM) which supplies a voltage to the memory gate electrode (MG) is embedded in a contact hole (CM) formed in an interlayer insulating film (9) formed on the memory gate electrode (MG) and is electrically connected to the memory gate electrode (MG). Since a cap insulating film (CAP) is formed on an upper surface of the selection gate electrode (CG), the electrical conduction between the plug (PM) and the selection gate electrode (CG) can be prevented.
    Type: Grant
    Filed: December 21, 2013
    Date of Patent: October 7, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kota Funayama, Hiraku Chakihara, Yasushi Ishii
  • Publication number: 20140291749
    Abstract: A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack. The gate stack may include a first dielectric layer over the channel region, a first diffusion barrier layer over the first dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second dielectric layer over the first electrically conductive layer, a second diffusion barrier layer over the second dielectric layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Inventors: Prasanna KHARE, Stephane Allegret-Maret, Nicolas Loubet, Qing Liu, Hemanth Jagannathan, Lisa Edge, Kangguo Cheng, Bruce Doris
  • Publication number: 20140291752
    Abstract: A memory structure and a method for forming the same are provided. The memory structure comprises: a substrate; a plurality of channel structures formed on the substrate, in which the plurality of channel structures are parallel with each other, each channel structure comprises a plurality of single crystal semiconductor layers and a plurality of oxide layers alternately stacked in a direction perpendicular to the substrate, and at least one of the plurality of oxide layers is a single crystal oxide layer; and a plurality of gate structures matched with the plurality of channel structures, in which each gate structure comprises a gate dielectric layer immediately adjacent to the plurality of channel structures and a gate electrode layer immediately adjacent to the gate dielectric layer.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 2, 2014
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Libin Liu, Jing Wang, Renrong Liang
  • Publication number: 20140291750
    Abstract: A memory device may include a semiconductor substrate, and a memory transistor in the semiconductor substrate. The memory transistor may include source and drain regions in the semiconductor substrate and a channel region therebetween, and a gate stack having a first dielectric layer over the channel region, a second dielectric layer over the first dielectric layer, a first diffusion barrier layer over the second dielectric layer, a first electrically conductive layer over the first diffusion barrier layer, a second diffusion barrier layer over the first electrically conductive layer, and a second electrically conductive layer over the second diffusion barrier layer. The first and second dielectric layers may include different dielectric materials, and the first diffusion barrier layer may be thinner than the second diffusion barrier layer.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
    Inventors: Prasanna KHARE, Stephane Allegret-Maret, Nicolas Loubet, Qing Liu, Hemanth Jagannathan, Lisa Edge, Kangguo Cheng, Bruce Doris
  • Publication number: 20140295636
    Abstract: A method of making a semiconductor device includes forming a stack of alternating layers of a first material and a second material over a substrate, etching the stack to form at least one opening extending partially through the stack and forming a masking layer on a sidewall and bottom surface of the at least one opening. The method also includes removing the masking layer from the bottom surface of the at least one opening while leaving the masking layer on the sidewall of the at least one opening, and further etching the at least one opening to extend the at least one opening further through the stack while the masking layer remains on the sidewall of the at least one opening.
    Type: Application
    Filed: December 20, 2013
    Publication date: October 2, 2014
    Applicant: SanDisk Technologies, Inc.
    Inventors: Raghuveer S. Makala, Yao-Sheng Lee, Johann Alsmeier, Henry Chien, Masanori Terahara, Hirofumi Watatani
  • Publication number: 20140291747
    Abstract: A non-volatile memory device and a method for forming the non-volatile memory device are disclosed. During fabrication of the memory device, a tungsten salicide is utilized as an etch-stop layer in place of a conventionally used aluminum oxide to form channel pillars having a high aspect ratio. Use of the tungsten salicide is useful for eliminating an undesired etch-stop recess and an undesired floating gate that is formed when an Al oxide etch-stop layer is conventionally used.
    Type: Application
    Filed: March 28, 2013
    Publication date: October 2, 2014
    Inventors: Fatma A. Simsek-Ege, Krishna K. Parat
  • Patent number: 8846479
    Abstract: A semiconductor device includes: a first semiconductor layer formed over a substrate; a second semiconductor layer formed over the first semiconductor layer; an insulating film including a first insulating film formed over the second semiconductor layer, a second insulating film, and a third insulating film stacked sequentially over the first insulating film, and an electrode formed over the insulating film, wherein, in the first insulating film, a region containing halogen ions is formed under a region provided with the electrode, and the third insulating film contains a halogen.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: September 30, 2014
    Assignee: Fujitsu Limited
    Inventor: Masahito Kanamura
  • Publication number: 20140284688
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a memory element region and a capacitance element region. The capacitance region including: a second stacked body, each of a plurality of second electrode layers and each of a plurality of second insulating layers being stacked alternately; a plurality of conductive layers; and a second insulating film provided between each of the plurality of conductive layers and each of the plurality of second electrode layers. In the capacitance element region, a first capacitor is made of one of the plurality of second insulating layers and a pair of the second electrode layers sandwiching the one of the plurality of second insulating layers, and a second capacitor is made of the second insulating film, and one of the plurality of second electrode layers and one of the plurality of conductive layers sandwiching the second insulating film.
    Type: Application
    Filed: August 20, 2013
    Publication date: September 25, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takahiro HIRAI, Masaru Kito
  • Publication number: 20140284691
    Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor memory device. The method includes forming a first stopper film forming a lower gate layer, making a recess in the lower gate layer, filling a sacrificial film into the recess, forming a second stopper film, making an opening in the second stopper film, forming a stacked body. The stacked body includes electrode films and insulating films. The method includes, making a slit in the stacked body, making a hole in the stacked body, removing the sacrificial film via the hole, forming a memory film including a charge storage film. The method includes forming a channel body on a side wall of the memory film. An etching rate of the first stopper film and the second stopper film is lower than an etching rate of the electrode films and the insulating films.
    Type: Application
    Filed: September 4, 2013
    Publication date: September 25, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazuhide Takamura, Ryota Katsumata, Masaru Kidoh, Yoshihiro Uozumi, Daigo Ichinose, Toru Matsuda
  • Publication number: 20140284694
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes: a stacked body, each of a plurality of electrode layers and each of a plurality of insulating layers being stacked alternately in the stacked body; an interlayer insulating film provided on the stacked body; a gate electrode provided on the interlayer insulating film; a semiconductor layer extending from an upper end of the gate electrode to a lower face of the stacked body; a first insulating film provided between the semiconductor layer and each of the plurality of electrode layers and including at least one layer of a nitride film; and a second insulating film provided between the gate electrode and the semiconductor layer and including at least one layer of a nitride film, a film thickness of at least a part of the second insulating film being thinner than a film thickness of the first insulating film.
    Type: Application
    Filed: September 6, 2013
    Publication date: September 25, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Soichirou Kitazaki, Mitsuru Sato
  • Publication number: 20140284699
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a channel body, a memory film, first and second insulating separation films, a first and a second inter-layer insulating films, a selection gate, a conductive layer, and resistance elements. The substrate includes a memory cell array region and a peripheral region. The stacked body includes electrode films and insulating films. The channel body extends in a stacking direction. The memory film includes a charge storage film. The first insulating separation films divide the stacked body. The first and the second inter-layer insulating films are on the stacked body and on the conductive layer, respectively. The selection gate is on the first inter-layer insulating film. The conductive layer is on the peripheral region. The resistance elements are on the second inter-layer insulating film. The second insulating separation films divide the conductive layer.
    Type: Application
    Filed: September 5, 2013
    Publication date: September 25, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hiroyasu TANAKA
  • Publication number: 20140284693
    Abstract: According one embodiment, a nonvolatile semiconductor memory device, includes: a stacked body, and each of a plurality of electrode layers and each of a plurality of insulating layers being stacked alternately in the a stacked body; a first interlayer insulating film on the stacked body; a gate electrode on the first interlayer insulating film; a second interlayer insulating film on the gate electrode; a semiconductor layer extended from an upper end of the second interlayer insulating film to a lower end of the stacked body; a first insulating film between the semiconductor layer and each of the plurality of electrode layers; and a second insulating film between the semiconductor layer and the gate electrode, a thickness of the semiconductor layer provided above an upper end of the gate electrode being thicker than a thickness of the semiconductor layer provided below the upper end of the gate electrode.
    Type: Application
    Filed: September 6, 2013
    Publication date: September 25, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Mitsuru SATO, Soichiro KITAZAKI, Ryu KATO, Masaru KITO, Ryota KATSUMATA
  • Publication number: 20140284692
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes: a stacked body including a plurality of electrode layers and a plurality of first insulating layers; a first channel body layer penetrating the stacked body; a memory film; an interlayer insulating film provided on the stacked body; a selection gate electrode provided on the interlayer insulating film; a second channel body layer penetrating the selection gate electrode and the interlayer insulating film and connected to the first channel body; a gate insulating film provided between the selection gate electrode and the second channel body layer; a second insulating layer provided on the gate insulating film and on the selection gate electrode; a contact layer provided on the second insulating layer; and a diffusion layer provided between the contact layer and the second insulating layer and connected to the second channel body layer and the contact layer.
    Type: Application
    Filed: September 6, 2013
    Publication date: September 25, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro AKUTSU, Hiroshi SHINOHARA, Ryota KATSUMATA
  • Publication number: 20140264542
    Abstract: Vertical memories and methods of making the same are discussed generally herein. In one embodiment, a vertical memory can include a vertical pillar extending to a source, an etch stop tier over the source, and a stack of alternating dielectric tiers and conductive tiers over the etch stop tier. The etch stop tier can comprise a blocking dielectric adjacent to the pillar. In another embodiment, the etch stop tier can comprise a blocking dielectric adjacent to the pillar, and a plurality of dielectric films horizontally extending from the blocking dielectric into the etch stop tier.
    Type: Application
    Filed: April 17, 2013
    Publication date: September 18, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Fatma Arzum Simsek-Ege, John Hopkins, Srikant Jayanti
  • Publication number: 20140264550
    Abstract: A nonvolatile charge trap memory device is described. The device includes a substrate having a channel region. A gate stack is disposed above the substrate over the channel region. The gate stack includes a multi-layer charge-trapping region having a first deuterated layer. The multi-layer charge-trapping region may further include a deuterium-free charge-trapping layer.
    Type: Application
    Filed: March 25, 2014
    Publication date: September 18, 2014
    Applicant: Cypress Semiconductor Corporation
    Inventors: Sagy Charel Levy, Frederick B. Jenne, Krishnaswamy Ramkumar
  • Publication number: 20140269103
    Abstract: A nonvolatile memory device and method of manufacturing the same are provided. In the nonvolatile memory device, a blocking insulation layer is provided between a trap insulation layer and a gate electrode. A fixed charge layer spaced apart from the gate electrode is provided in the blocking insulation layer. Accordingly, the reliability of the nonvolatile memory device is improved.
    Type: Application
    Filed: May 30, 2014
    Publication date: September 18, 2014
    Applicant: SAMSUNG Electronics Co., Ltd.
    Inventors: Sung-il CHANG, Changseok KANG, Jungdal CHOI
  • Publication number: 20140264545
    Abstract: A semiconductor element and a manufacturing method of the same are provided. The semiconductor element includes a substrate, a plurality of doping strips, a memory material layer, a plurality of conductive damascene structures, and a dielectric structure. The doping strips are formed in the substrate. The memory material layer is formed on the substrate, and the memory material layer comprises a memory area located on two sides of the doping strips. The conductive damascene structures are formed on the memory material layer. The dielectric structure is formed on the doping strips and between the conductive damascene structures. The conductive damascene structures are extended in a direction perpendicular to a direction which the doping strips are extended in.
    Type: Application
    Filed: May 10, 2013
    Publication date: September 18, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Ching-Hung Wang, Jyun-Siang Huang, Chien-Hung Liu, Chia-Wen Cheng, Ying-Tso Chen
  • Publication number: 20140264543
    Abstract: A semiconductor structure uses its control gate to be the wordline for receiving an operation voltage for the semiconductor structure. The semiconductor structure has a first and a second doped region and a buried channel between the first and the second doped region, wherein the buried channel has a first length along the first direction. The semiconductor structure further has a charge trapping layer stack on the buried channel and a conductive layer on the charge trapping layer stack, wherein the conductive layer extends along the first direction. The conductive layer is configured as both the control gate and the wordline of the semiconductor structure.
    Type: Application
    Filed: April 24, 2013
    Publication date: September 18, 2014
    Applicant: Macronix International Co., Ltd.
    Inventors: Shih-Guei Yan, Wen-Jer Tsai, Chih-Chieh Cheng
  • Publication number: 20140264547
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device comprises a semiconductor substrate, a first layer, a first conductive layer, a second conductive layer, an insulating layer, a block insulating layer formed on an inner surface of a pair of through holes formed in the insulating layer, the second conductive layer, and the first conductive layer, and on an inner surface of a connecting hole formed in the first layer and configured, a charge storage layer formed on the block insulating layer, a tunnel insulating layer formed on the charge storage layer, and a semiconductor pillar formed on the tunnel insulating layer. The semiconductor pillar includes a doped silicide layer which is formed in the insulating layer, a silicon layer formed in the second conductive layer and the first conductive layer, and a silicide layer formed in first layer.
    Type: Application
    Filed: September 5, 2013
    Publication date: September 18, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoya KAWAI, Naoki YASUDA
  • Publication number: 20140264554
    Abstract: A memory device and a method of making the same are presented. The memory device includes a substrate and a memory cell formed on the substrate. The memory cell includes a single transistor. The single transistor includes a first gate on the substrate which functions as a control gate and a second gate embedded in the substrate which functions as a select gate.
    Type: Application
    Filed: December 31, 2013
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Khee Yong LIM, Kian Ming TAN, Elgin Kiok Boone QUEK
  • Patent number: 8836035
    Abstract: An apparatus has a semiconductor device that includes: a semiconductor substrate having a channel region, a high-k dielectric layer disposed at least partly over the channel region, a gate electrode disposed over the dielectric layer and disposed at least partly over the channel region, wherein the gate electrode is made substantially of metal, and a gate contact engaging the gate electrode at a location over the channel region. A different aspect involves a method for making a semiconductor device that includes: providing a semiconductor substrate having a channel region, forming a high-k dielectric layer at least partly over the channel region, forming a gate electrode over the dielectric layer and at least partly over the channel region, the gate electrode being made substantially of metal, and forming a gate contact that engages the gate electrode at a location over the channel region.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: September 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry Hak-Lay Chuang, Lee-Wee Teo, Han-Gan Chew
  • Publication number: 20140252492
    Abstract: A method of forming a semiconductor device that includes forming a high-k gate dielectric layer on a semiconductor substrate, wherein an oxide containing interfacial layer can be present between the high-k gate dielectric layer and the semiconductor substrate. A scavenging metal stack may be formed on the high-k gate dielectric layer. An annealing process may be applied to the scavenging metal stack during which the scavenging metal stack removes oxide material from the oxide containing interfacial layer, wherein the oxide containing interfacial layer is thinned by removing of the oxide material. A gate conductor layer is formed on the high-k gate dielectric layer. The gate conductor layer and the high-k gate dielectric layer are then patterned to provide a gate structure. A source region and a drain region are then formed on opposing sides of the gate structure.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: International Business Machines Corporation
    Inventors: Martin M. Frank, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20140256098
    Abstract: Memories and their formation are disclosed. One such memory has a first array of first memory cells extending in a first direction from a first surface of a semiconductor. A second array of second memory cells extends in a second direction, opposite to the first direction, from a second surface of the semiconductor. Both arrays may be non-volatile memory arrays. For example, one of the memory arrays may be a NAND flash memory array, while the other may be a one-time-programmable memory array.
    Type: Application
    Filed: May 21, 2014
    Publication date: September 11, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanh D. Tang, John Zahurak, Siddartha Kondoju, Haitao Liu, Nishant Sinha
  • Publication number: 20140246717
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes: a plurality of first semiconductor regions; a plurality of control gate electrodes; a charge storage layer; a first insulating film provided between the charge storage layer and first semiconductor regions; a second insulating film provided between the charge storage layer and control gate electrodes; and an element isolation region provided between the plurality of first semiconductor regions, and the element isolation region being in contact with the first insulating film and a first portion of the charge storage layer on the first insulating film side. Each of the plurality of control gate electrodes is in contact with a second portion other than the first portion of the charge storage layer. The charge storage layer includes a silicon-containing layer in contact with the first insulating film and a silicide-containing layer provided on the silicon-containing layer.
    Type: Application
    Filed: September 5, 2013
    Publication date: September 4, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Fumiki AISO
  • Patent number: 8822292
    Abstract: The present disclosure provides a method for forming and controlling a molecular level SiO2 interface layer, mainly comprising: cleansing before growing the SiO2 interface layer, growing the molecular level ultra-thin SiO2 interface layer; and controlling reaction between high-K gate dielectric and the SiO2 interface layer to further reduce the SiO2 interface layer. The present disclosure can strictly prevent invasion of oxygen during process integration. The present disclosure can obtain a good-quality high-K dielectric film having a small EOT. The manufacturing process is simple and easy to integrate. It is also compatible with planar CMOS process, and can satisfy requirement of high-performance nanometer level CMOS metal gate/high-K device of 45 nm node and below.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: September 2, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qiuxia Xu, Gaobo Xu
  • Publication number: 20140239378
    Abstract: In an MONOS-type memory cell with a split gate structure, short circuit between a selection gate electrode and a memory gate electrode is prevented, and reliability of a semiconductor device is improved. In a MONOS memory having a selection gate electrode and a memory gate electrode that are adjacent to each other and that extend in a first direction, an upper surface of the selection gate electrode in a region except for a shunt portion at an end portion of the selection gate electrode in the first direction is covered with a cap insulating film. The memory gate electrode is terminated on the cap insulating film side with respect to a border between the cap insulating film and an upper surface of the shunt portion exposed from the cap insulating film.
    Type: Application
    Filed: February 26, 2014
    Publication date: August 28, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Koichi Toba, Hiraku Chakihara, Yoshiyuki Kawashima
  • Publication number: 20140239374
    Abstract: Memory cells including embedded SONOS based non-volatile memory (NVM) and MOS transistors and methods of forming the same are described. Generally, the method includes: forming a dielectric stack on a substrate, the dielectric stack including a tunneling dielectric on the substrate and a charge-trapping layer on the tunneling dielectric; patterning the dielectric stack to form a gate stack of a NVM transistor of a memory device in a first region of the substrate while concurrently removing the dielectric stack from a second region of the substrate; and performing a gate oxidation process of a baseline CMOS process flow to thermally grow a gate oxide of a MOS transistor overlying the substrate in the second region while concurrently growing a blocking oxide overlying the charge-trapping layer. In one embodiment, Indium is implanted to form a channel of the NVM transistor.
    Type: Application
    Filed: September 4, 2013
    Publication date: August 28, 2014
    Applicant: Cypress Semiconductor Corporation
    Inventors: Krishnaswamy Ramkumar, Igor G. Kouznetsov, Venkatraman Prabhakar
  • Patent number: 8815692
    Abstract: A thin film transistor array substrate having excellent characteristics and a method for manufacturing the same are disclosed. The thin film transistor array substrate includes a substrate, a gate electrode positioned on the substrate, a gate insulating layer positioned on the gate electrode, an active layer which is positioned on the gate insulating layer and includes a channel, an ohmic contact layer positioned on the active layer, and a source electrode and a drain electrode which are respectively connected to both sides of the active layer through the ohmic contact layer. The gate insulating layer includes a phosphorus-doped layer positioned adjacent to the active layer.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: August 26, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Yongsoo Cho, Kyoho Moon, Byungyong Ahn, Chanki Ha
  • Patent number: 8815673
    Abstract: In some embodiments of the inventive subject matter, methods include forming an oxide layer on a semiconductor substrate, injecting nitrogen into the oxide layer to form a nitrogen injection layer and to change the oxide layer to an oxynitride layer, removing a part of the oxynitride layer to leave a portion of the oxynitride layer in a first area and expose the nitrogen injection layer in a second area and forming an insulating layer comprising a portion on the portion of the oxynitride layer in the first area and a portion on the nitrogen injection layer in the second area. The insulating layer may have a higher dielectric constant than the oxide layer.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: August 26, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-ho Do, Moon-han Park, Weon-hong Kim, Kyung-il Hong
  • Patent number: 8816446
    Abstract: Semiconductor devices and fabrication methods are provided, in which metal transistor gates are provided for MOS transistors. A rare earth-rare earth alloy incorporated metal nitride layer is formed above a gate dielectric. This process provides adjustment of the gate electrode work function, thereby tuning the threshold voltage of the resulting NMOS transistors.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 26, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Hiroaki Niimi, Manuel Angel Quevedo-Lopez
  • Patent number: 8809964
    Abstract: An electronic subassembly and associated method for the production of an electronic subassembly include a semiconductor layer bearing at least a first transistor having an adjustable threshold voltage is joined to an insulator layer and in which a first trapping zone is formed at a predetermined first depth. The first trapping zone extends at least beneath a channel of the first transistor and includes traps of greater density than the density of traps outside the first trapping zone, in such a way that the semiconductor layer and the first trapping zone are capacitively coupled. The useful information from the first transistor includes the charge transport within this transistor. A second trapping zone can be formed that extends at least beneath a channel of a second transistor that is formed by a second implantation with an energy and/or a dose and/or atoms that differ from those used to form the first trapping zone.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: August 19, 2014
    Assignee: Commissariat a l'Energie Atomique et Aux Energies Alternatives
    Inventors: François Andrieu, Emmanuel Augendre, Laurent Clavelier, Marek Kostrzewa
  • Patent number: 8809152
    Abstract: A semiconductor device including a germanium containing substrate including a gate structure on a channel region of the semiconductor substrate. The gate structure may include a silicon oxide layer that is in direct contact with an upper surface of the germanium containing substrate, at least one high-k gate dielectric layer in direct contact with the silicon oxide layer, and at least one gate conductor in direct contact with the high-k gate dielectric layer. The interface between the silicon oxide layer and the upper surface of the germanium containing substrate is substantially free of germanium oxide. A source region and a drain region may be present on opposing sides of the channel region.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: MaryJane Brodsky, Murshed M. Chowdhury, Michael P. Chudzik, Min Dai, Siddarth A. Krishnan, Shreesh Narasimha, Shahab Siddiqui
  • Patent number: 8809931
    Abstract: According to one embodiment, there is provided a nonvolatile semiconductor memory device including a substrate, a laminated film which has a configuration where first insulating layers and first electrode layers are alternately laminated in a first direction vertical to the substrate, a second insulating layer formed on an inner wall of a first through hole pierced in the first insulating layers and the first electrode layers along the first direction, an intermediate layer formed on a surface of the second insulating layer, a third insulating layer formed on a surface of the intermediate layer, and a pillar-like first semiconductor region which is formed on a surface of the third insulating layer and extends along the first direction.
    Type: Grant
    Filed: March 20, 2013
    Date of Patent: August 19, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsukasa Nakai, Nobutoshi Aoki, Takashi Izumida, Masaki Kondo, Toshiyuki Enda
  • Patent number: 8809938
    Abstract: Three dimensional semiconductor memory devices are provided. The three dimensional semiconductor memory device includes a first stacked structure and a second stacked structure sequentially stacked on a substrate. The first stacked structure includes first insulating patterns and first gate patterns which are alternately and repeatedly stacked on a substrate, and the second stacked structure includes second insulating patterns and second gate patterns which are alternately and repeatedly stacked on the first stacked structure. A plurality of first vertical active patterns penetrate the first stacked structure, and a plurality of second vertical active patterns penetrate the second stacked structure. The number of the first vertical active patterns is greater than the number of the second vertical active patterns.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: August 19, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Sung-Min Hwang, Hansoo Kim, Changseok Kang, Wonseok Cho, Jae-Joo Shim