Including Isolation Structure Patents (Class 438/294)
  • Patent number: 9159812
    Abstract: A FinFET device includes a dielectric layer formed over a semiconductor substrate and having an upper dielectric layer surface. A fin of semiconductor material extends upwards from the substrate through an opening in the dielectric layer. A base portion of the fin, which is recessed below the upper dielectric layer surface, includes a base channel region that separates first and second base source/drain regions. An upper channel region extends upwards from the base channel region and terminates in an upper fin surface disposed above the upper dielectric layer surface. A gate electrode straddles the upper channel region and is separated from the upper channel region by a gate dielectric. First and second epitaxial source/drain regions meet the first and second base source/drain regions, respectively, at first and second interfaces, respectively. The first and second interfaces are recessed in the opening and arranged below the upper dielectric layer surface.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: October 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ru-Shang Hsiao, Chien-Hsun Lin, Sheng-Fu Yu, Yu-Chang Liang, Kuan Yu Chen, Li-Yi Chen
  • Patent number: 9111992
    Abstract: A device comprising a p-type base region, and a p-type region formed over the p-type base region and in contact with the p-type base region is disclosed. The device also includes an n-well region surrounded by the p-type region, wherein the n-well is formed from an n-type epitaxial layer and the p-type region is formed by counter-doping the same n-type epitaxial layer.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: August 18, 2015
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Jeoung Mo Koo, Purakh Raj Verma, Guowei Zhang
  • Patent number: 9087741
    Abstract: An apparatus and a method for creating a CMOS with a dual raised source and drain for NMOS and PMOS. The spacers on both stack gates are of equal thickness. In this method, a first insulating layer is formed on the surface. The first region is then masked while the other region has the first layer etched away and has an epitaxial source and drain grown on the region. A second layer is formed to all exposed surfaces. The second region is then masked while the first region is etched away. The epitaxial source and drain is formed on the first region. The second region can also be masked by adding a thin layer of undoped silicon and then oxidize it. Another way to mask the second region is to use a hard mask. Another way to form the second source and drain is to use amorphous material.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: July 21, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Balasubramanian S. Haran
  • Publication number: 20150144878
    Abstract: A semiconductor device may include an alternating stack of superlattice and bulk semiconductor layers on a substrate, with each superlattice layer including a plurality of stacked group of layers, and each group of layers of the superlattice layer including a plurality of stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. The semiconductor device may further include spaced apart source and drain regions in an upper bulk semiconductor layer of the alternating stack of superlattice and bulk semiconductor layers, and a gate on the upper bulk semiconductor layer between the spaced apart source and drain regions.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 28, 2015
    Inventors: Robert Mears, Hideki Takeuchi, Erwin Trautmann
  • Publication number: 20150137233
    Abstract: A high-voltage transistor includes an active region including a diffused region of a first conductivity type defined by inner edges of a border of shallow trench isolation. A gate having side edges and end edges is disposed over the active region. Spaced apart source and drain regions of a second conductivity type opposite the first conductivity type are disposed in the active region outwardly with respect to the side edges of the gate. Lightly-doped regions of the second conductivity type more lightly-doped than the source and drain regions surround the source and drain regions and extend inwardly between the source and drain regions towards the gate to define a channel, and outwardly towards all of the inner edges of the shallow trench isolation. Outer edges of the lightly-doped region from at least the drain region are spaced apart from the inner edges of the shallow trench isolation.
    Type: Application
    Filed: November 19, 2014
    Publication date: May 21, 2015
    Applicant: MICROSEMI SOC CORPORATION
    Inventors: Fengliang Xue, Fethi Dhaoui, John McCollum
  • Patent number: 9034702
    Abstract: Disclosed herein is a method for fabricating a silicon nanowire field effect transistor based on a wet etching.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: May 19, 2015
    Assignee: Peking University
    Inventors: Ru Huang, Jiewen Fan, Yujie Ai, Shuai Sun, Runsheng Wang, Jibin Zou, Xin Huang
  • Patent number: 9034712
    Abstract: A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized. A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, Jr., Ephrem G. Gebreselasie, Richard A. Phelps, Jed H. Rankin, Yun Shi
  • Patent number: 9035380
    Abstract: An integrated circuit includes a high-voltage well having a first doping type, a first doped region and a second doped region embedded in the high-voltage well, the first and second doped regions having a second doping type and spaced apart by a channel in the high-voltage well, source/drain regions formed in the first doped region and in the second doped region, each of the source/drain regions having the second doping type and more heavily doped than the first and second doped regions, first isolation regions spaced apart from each of the source/drain regions, and resistance protection oxide forming a ring surrounding each of the source/drain regions.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: May 19, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Sheng Chen, Chen-Liang Chu, Shih-Kuang Hsiao, Fei-Yun Chen, Kong-Beng Thei
  • Publication number: 20150129940
    Abstract: Embodiments of mechanisms for forming a semiconductor device are provided. The semiconductor device includes a semiconductor substrate. The semiconductor device also includes an isolation structure in the semiconductor substrate and surrounding an active region of the semiconductor substrate. The semiconductor device includes a gate over the semiconductor substrate. The gate has an intermediate portion over the active region and two end portions connected to the intermediate portion. Each of the end portions has a first gate length longer than a second gate length of the intermediate portion and is located over the isolation structure.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jung-Chi JENG, I-Chih CHEN, Wen-Chang KUO, Ying-Hao CHEN, Ru-Shang HSIAO, Chih-Mu HUANG
  • Publication number: 20150129987
    Abstract: Embodiments of mechanisms for forming a semiconductor device are provided. The semiconductor device includes a semiconductor substrate and an isolation structure in the semiconductor substrate and surrounding an active region of the semiconductor substrate. The semiconductor device also includes a gate over the semiconductor substrate, and the gate has an intermediate portion over the active region and two end portions connected to the intermediate portion, and the end portions are over the isolation structure. The semiconductor device further includes a support film over the isolation structure and covering the isolation structure and at least one of the end portions of the gate. The support film exposes the active region and the intermediate portion of the gate.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jung-Chi JENG, I-Chih CHEN, Wen-Chang KUO, Ying-Hao CHEN, Ru-Shang HSIAO, Chih-Mu HUANG
  • Publication number: 20150129933
    Abstract: When forming field effect transistors with a semiconductor alloy layer, e.g., SiGe, embedded in the source/drain regions, a strategy called tucking has been developed in order to improve formation of the semiconductor alloy layer. An improved tucking strategy is hereby proposed, wherein the interface between the isolation region and the active region is not straight, but it rather defines an indentation, so that the active region protrudes into the isolation region in correspondence to the indentation. A gate is then formed on the surface of the device in such a way that a portion of the indentation is covered by the gate. An etching process is then performed, during which the gate acts as a screen. The etching thus gives rise to a cavity defined by a sidewall comprising portions exposing silicon, alternated to portions exposing the dielectric material of the isolation region.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: GLOBAL FOUNDRIES Inc.
    Inventor: Robert Lutz
  • Publication number: 20150123180
    Abstract: Each unit pixel includes a photoelectric converter, an n-type impurity region forming an accumulation diode together with the semiconductor region, the accumulation diode accumulating a signal charge generated by the photoelectric converter, an amplifier transistor including a gate electrode electrically connected to the impurity region, and an isolation region formed around the amplifier transistor and implanted with p-type impurities. The amplifier transistor includes an n-type source/drain region formed between the gate electrode and the isolation region, and a channel region formed under the gate electrode. A gap in the isolation region is, in a gate width direction, wider at a portion including the channel region than at a portion including the source/drain region.
    Type: Application
    Filed: November 28, 2014
    Publication date: May 7, 2015
    Inventors: Yoshihiro SATO, Ryohei MIYAGAWA, Tokuhiko TAMAKI, Junji HIRASE, Yoshiyuki OHMORI, Yoshiyuki MATSUNAGA
  • Patent number: 9012979
    Abstract: A semiconductor device and method of manufacturing the same are provided. A device can include an LDMOS region and a high side region on a semiconductor substrate. The device can further include an insulating region separating the LDMOS region from the high side region and the insulating region can include a plurality of second conductive type wells, a plurality of second conductive type buried layer patterns, or both.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2015
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Nam Chil Moon
  • Patent number: 9006064
    Abstract: A gate dielectric can be formed by depositing a first silicon oxide material by a first atomic layer deposition process. The thickness of the first silicon oxide material is selected to correspond to at least 10 deposition cycles of the first atomic layer deposition process. The first silicon oxide material is converted into a first silicon oxynitride material by a first plasma nitridation process. A second silicon oxide material is subsequently deposited by a second atomic layer deposition process. The second silicon oxide material is converted into a second silicon oxynitride material by a second plasma nitridation process. Multiple repetitions of the atomic layer deposition process and the plasma nitridation process provides a silicon oxynitride material having a ratio of nitrogen atoms to oxygen atoms greater than 1/3, which can be advantageously employed to reduce the leakage current through a gate dielectric.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Barry P. Linder, Shahab Siddiqui
  • Patent number: 9006066
    Abstract: A semiconductor structure in fabrication includes a n-FinFET and p-FinFET. Stress inducing materials such as silicon and silicon germanium are epitaxially grown into naturally diamond-shaped structures atop the silicon fins of the n-FinFET and p-FinFET areas. The diamond structures act as the source, drain and channel between the source and drain. The diamond structures of the channel are selectively separated from the fin while retaining the fin connections of the diamond-shaped growth of the source and the drain. Further fabrication to complete the structure may then proceed.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: April 14, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Min-Hwa Chi, Hoong Shing Wong
  • Patent number: 9006070
    Abstract: Methods of making an integrated circuit are disclosed. An embodiment method includes etching a trench in a silicon substrate, depositing a first layer of isolation material in the trench, the first layer of isolation material projecting above surface of the silicon substrate, capping the first layer of isolation material by depositing a second layer of isolation material, the second layer of isolation material extending along at least a portion of sidewalls of the first layer of isolation material, epitaxially-growing a silicon layer upon the silicon substrate, the silicon layer horizontally adjacent to the second layer of isolation material, and forming a gate structure on the silicon layer, the gate structure defining a channel.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Min Hao Hong, You-Hua Chou, Chih-Tsung Lee, Shiu-Ko JangJian, Miao-Cheng Liao, Hsiang-Hsiang Ko, Chen-Ming Huang
  • Patent number: 9000555
    Abstract: An electronic device may include a substrate, a buried oxide (BOX) layer overlying the substrate, at least one semiconductor device overlying the BOX layer, and at least one STI region in the substrate and adjacent the at least one semiconductor device. The at least one STI region defines a sidewall surface with the substrate and may include a nitride layer lining a bottom portion of the sidewall surface, an oxide layer lining a top portion of the sidewall surface above the bottom portion, and an insulating material within the nitride and oxide layers.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: April 7, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: Qing Liu, Nicolas Loubet, Prasanna Khare
  • Patent number: 8999797
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of bit line structures over a substrate, forming contact holes between the bit line structures, forming sacrificial spacers on sidewalls of the contact holes, forming first plugs recessed inside the contact holes, forming air gaps by removing the sacrificial spacers, forming conductive capping layers capping the first plugs and the air gaps, and forming second plugs over the conductive capping layers.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: April 7, 2015
    Assignee: SK Hynix Inc.
    Inventors: Yong-Soo Joung, Hyung-Kyun Kim, Jae-Soo Kim, Dong-Gun Hwang, Kyoung Yoo
  • Patent number: 8993401
    Abstract: An apparatus includes a first device with a metal gate and a drain well that experiences a series resistance that drops a drain contact voltage from 10 V to 4-6 V at a junction between the drain well and a channel under the gate. The apparatus includes an interlayer dielectric layer (ILD0) disposed above and on the drain well and a salicide drain contact in the drain well. The apparatus also includes a subsequent device that is located in a region different from the first device that operates at a voltage lower than the first device.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: March 31, 2015
    Inventors: Walid M. Hafez, Chia-Hong Jan, Anisur Rahman
  • Patent number: 8987098
    Abstract: The technology relates to a damascene word line for a three dimensional array of nonvolatile memory cells. Partly oxidized lines of material such as silicon are made over a plurality of stacked nonvolatile memory structures. Word line trenches are made in the partly oxidized lines, by removing the unoxidized lines from the intermediate parts of the partly oxidized lines, leaving the plurality of oxidized lines at the outer parts of the plurality of partly oxidized lines. Word lines are made in the word line trenches over the plurality of stacked nonvolatile memory structures.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: March 24, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Hung Chen, Yen-Hao Shih, Hang-Ting Lue
  • Patent number: 8981493
    Abstract: An improved finFET and method of fabrication is disclosed. Embodiments of the present invention take advantage of the different epitaxial growth rates of {110} and {100} silicon. Fins are formed that have {110} silicon on the fin tops and {100} silicon on the long fin sides (sidewalls). The lateral epitaxial growth rate is faster than the vertical epitaxial growth rate. The resulting merged fins have a reduced merged region in the vertical dimension, which reduces parasitic capacitance. Other fins are formed with {110} silicon on the fin tops and also {110} silicon on the long fin sides. These fins have a slower epitaxial growth rate than the {100} side fins, and remain unmerged in a semiconductor integrated circuit, such as an SRAM circuit.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Thomas N. Adam, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 8975712
    Abstract: One method disclosed herein includes forming first and second transistor devices in and above adjacent active regions that are separated by an isolation region, wherein the transistors comprise a source/drain region and a shared gate structure, forming a continuous conductive line that spans across the isolation region and contacts the source/drain regions of the transistors and etching the continuous conductive line to form separated first and second unitary conductive source/drain contact structures that contact the source/drain regions of the first and second transistors, respectively. A device disclosed herein includes a gate structure, source/drain regions, first and second unitary conductive source/drain contact structures, each of which contacts one of the source/drain regions, and first and second conductive vias that contact the first and second unitary conductive source/drain contact structures, respectively.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: March 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Mahbub Rashed, Juhan Kim, Yunfei Deng, Suresh Venkatesan
  • Patent number: 8975144
    Abstract: An integrated circuit structure includes a fin field-effect transistor (FinFET) including a semiconductor fin over and adjacent to insulation regions; and a source/drain region over the insulation regions. The source/drain region includes a first and a second semiconductor region. The first semiconductor region includes silicon and an element selected from the group consisting of germanium and carbon, wherein the element has a first atomic percentage in the first semiconductor region. The first semiconductor region has an up-slant facet and a down-slant facet. The second semiconductor region includes silicon and the element. The element has a second atomic percentage lower than the first atomic percentage. The second semiconductor region has a first portion on the up-slant facet and has a first thickness. A second portion of the second semiconductor region, if any, on the down-slant facet has a second thickness smaller than the first thickness.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: March 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsz-Mei Kwok, Chien-Chang Su, Kuan-Yu Chen, Hsueh-Chang Sung, Hsien-Hsin Lin
  • Patent number: 8975132
    Abstract: A semiconductor device with an isolation layer buried in a trench includes an interface layer formed on the surface of the trench, a buffer layer formed in the interface layer at a bottom corner of the trench, a liner layer formed over the interface layer, and a gap-fill layer gap-filling the trench over the liner layer. The trench includes a micro-trench formed at the bottom corner thereof, and the buffer layer fills the micro-trench.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: March 10, 2015
    Assignee: SK Hynix Inc.
    Inventors: Hyung-Hwan Kim, Bong-Ho Choi, Jin-Yul Lee, Seung-Seok Pyo
  • Patent number: 8969161
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 3, 2015
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8969163
    Abstract: A method of forming a semiconductor structure may include preparing a continuous active layer in a region of the substrate and forming a plurality of adjacent gates on the continuous active layer. A first raised epitaxial layer may be deposited on a recessed region of the continuous active layer between a first and a second one of the plurality of gates, whereby the first and second gates are adjacent. A second raised epitaxial layer may be deposited on another recessed region of the continuous active layer between the second and a third one of the plurality of gates, whereby the second and third gates are adjacent. Using a cut mask, a trench structure is etched into the second gate structure and a region underneath the second gate in the continuous active layer. The trench is filled with isolation material for electrically isolating the first and second raised epitaxial layers.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Michael V. Aquilino, Byeong Yeol Kim, Ying Li, Carl John Radens
  • Patent number: 8969164
    Abstract: A semiconductor structure comprises a substrate, a gate stack, a base area, and a source/drain region, wherein the gate stack is located on the base area, the source/drain region is located in the base area, and the base area is located on the substrate. A supporting isolated structure is provided between the base area and the substrate, wherein part of the supporting structure is connected to the substrate; a cavity is provided between the base area and the substrate, wherein the cavity is composed of the base area, the substrate and the supporting isolated structure. A stressed material layer is provided on both sides of the gate stack, the base area and the supporting isolated structure. Correspondingly, a method is provided for manufacturing such a semiconductor structure, which inhibits the short channel effect, reduces the parasitic capacitance and leakage current, and enhances the steepness of the source/drain region.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: March 3, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Zhijiong Luo, Haizhou Yin
  • Patent number: 8962441
    Abstract: One illustrative device disclosed herein includes a plurality of source/drain regions positioned in an active region on opposite sides of a gate structure, each of the source/drain regions having a lateral width in a gate length direction of the transistor and a plurality of halo regions, wherein each of the halo regions is positioned under a portion, but not all, of the lateral width of one of the plurality of source/drain regions. A method disclosed herein includes forming a plurality of halo implant regions in an active region, wherein an outer edge of each of the halo implant regions is laterally spaced apart from an adjacent inner edge of an isolation region.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: February 24, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jerome Ciavatti, Johannes M. van Meer
  • Patent number: 8962430
    Abstract: On a substrate formed of a first semiconductor layer, an insulating layer and a second semiconductor layer, a silicon oxide pad layer and a silicon nitride pad layer are deposited and patterned to define a mask. The mask is used to open a trench through the first semiconductor layer and insulating layer and into the second semiconductor layer. A dual liner of silicon dioxide and silicon nitride is conformally deposited within the trench. The trench is filled with silicon dioxide. A hydrofluoric acid etch removes the silicon nitride pad layer along with a portion of the conformal silicon nitride liner. A hot phosphoric acid etch removes the silicon oxide pad layer, a portion of the silicon oxide filling the trench and a portion of the conformal silicon nitride liner. The dual liner protects against substrate etch through at an edge of the trench between the first and second semiconductor layers.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 24, 2015
    Assignees: STMicroelectronics, Inc., International Business Machines Corporation
    Inventors: Qing Liu, Nicolas Loubet, Bruce Doris
  • Publication number: 20150048313
    Abstract: The present invention discloses a strip-shaped gate-modulated tunneling field effect transistor with double-diffusion and a preparation method thereof, belonging to a field of CMOS field effect transistor logic device and the circuit.
    Type: Application
    Filed: July 8, 2013
    Publication date: February 19, 2015
    Inventors: Ru Huang, Qianqian Huang, Yingxin Qiu, Zhan Zhan, Yangyuan Wang
  • Patent number: 8956942
    Abstract: Channel-to-substrate leakage in a FinFET device is prevented by inserting an insulating layer between the semiconducting channel (fin) and the substrate during fabrication of the device. Similarly, source/drain-to-substrate leakage in a FinFET device is prevented by isolating the source/drain regions from the substrate by inserting an insulating layer between the source/drain regions and the substrate. Forming such an insulating layer isolates the conduction path from the substrate both physically and electrically, thus preventing current leakage. In an array of semiconducting fins made up of a multi-layer stack, the bottom material is removed, thus yielding a fin array that is suspended above the silicon surface. A resulting gap underneath the remaining top fin material is then filled with oxide to better support the fins and to isolate the array of fins from the substrate.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 17, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Prasanna Khare
  • Publication number: 20150041920
    Abstract: An electrostatic discharge (ESD) protection device includes two N-metal oxide semiconductor (NMOS) elements and a doped region. The two NMOS elements are arranged on a P-substrate, and each NMOS element includes a gate, a source, and a drain. The source and the drain are arranged on two opposite sides of the gate. The doped region is implanted into an outer space of the two NMOS surrounding the two NMOS, and a PN junction is formed by the doped region and the P-substrate.
    Type: Application
    Filed: August 11, 2014
    Publication date: February 12, 2015
    Inventor: CHIH-NAN CHENG
  • Patent number: 8946679
    Abstract: The present disclosure relates to the fabrication of microelectronic devices having at least one negative differential resistance device formed therein. In at least one embodiment, the negative differential resistance devices may be formed utilizing quantum wells. Embodiments of negative differential resistance devices of present description may achieve high peak drive current to enable high performance and a high peak-to-valley current ratio to enable low power dissipation and noise margins, which allows for their use in logic and/or memory integrated circuitry.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: February 3, 2015
    Assignee: Intel Corporation
    Inventor: Ravi Pillarisetty
  • Publication number: 20150014771
    Abstract: A semiconductor device comprising dual L-shaped drift regions in a lateral diffused metal oxide semiconductor (LDMOS) and a method of making the same. The LDMOS in the semiconductor device comprises a trench isolation region or a deep trench encapsulated by a liner, a first L-shaped drift region, and a second L-shaped drift region. The LDMOS comprising the dual L-shape drift regions is integrated with silicon-germanium (SiGe) technology. The LDMOS comprising the dual L-shape drift regions furnishes a much higher voltage drop in a lateral direction within a much shorter distance from a drain region than the traditional LDMOS does.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Inventors: David G. Brochu, JR., John J. Ellis-Monaghan, Michael J. Hauser, Jeffrey B. Johnson, Xuefeng Liu
  • Patent number: 8933534
    Abstract: An isolation structure of a high-voltage driving circuit includes a P-type substrate and a P-type epitaxial layer; a high voltage area, a low voltage area and a high and low voltage junction terminal area are arranged on the P-type epitaxial layer; a first P-type junction isolation area is arranged between the high and low voltage junction terminal area and the low voltage area, and a high-voltage insulated gate field effect tube is arranged between the high voltage area and the low voltage area; two sides of the high-voltage insulated gate field effect tube and an isolation structure between the high-voltage insulated gate field effect tube and a high side area are formed as a second P-type junction isolation area.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: January 13, 2015
    Assignee: Southeast University
    Inventors: Longxing Shi, Qinsong Qian, Weifeng Sun, Jing Zhu, Xianguo Huang, Shengli Lu
  • Patent number: 8927373
    Abstract: Methods of fabricating non-planar transistors including current enhancing structures are provided. The methods may include forming first and second fin structures directly adjacent each other overlying a substrate including an isolation layer. The methods may further include forming a spacer on the isolation layer including first and second recesses exposing upper surfaces of the first and second fin structures respectively. The spacer may cover an upper surface of the isolation layer between the first and second recesses. The methods may also include forming first and second current enhancing structures contacting the first and second fin structures, respectively, in the first and second recesses.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co, Ltd.
    Inventors: Mark S. Rodder, Kang-ill Seo
  • Patent number: 8927378
    Abstract: An electrical structure is provided that includes a dielectric layer present on a semiconductor substrate and a via opening present through the dielectric layer. An interconnect is present within the via opening. A metal semiconductor alloy contact is present in the semiconductor substrate. The metal semiconductor alloy contact has a perimeter defined by a convex curvature relative to a centerline of the via opening. The endpoints for the convex curvature that defines the metal semiconductor alloy contact are aligned to an interface between a sidewall of the via opening, a sidewall of the interconnect and an upper surface of the semiconductor substrate.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Chengwen Pei, Jeffrey B. Johnson, Zhengwen Li, Jian Yu
  • Patent number: 8928088
    Abstract: A method of forming an integrated circuit comprises forming at least one gate electrode of at least one active transistor, and at least one first dummy gate electrode. The method also comprises forming a first doped region disposed in the substrate and adjacent to a first side wall of the at least one first dummy gate electrode, wherein the first doped region has a first conductivity type dopant. The method further comprises forming a second doped region disposed in the substrate and adjacent to a second side wall of the at least one first dummy gate electrode. The second doped region has a second conductivity type dopant that is opposite to the first conductivity type dopant.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: January 6, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mei-Hui Huang, Chan-Hong Chern
  • Patent number: 8921185
    Abstract: A method for fabricating an integrated circuit includes the following steps of: providing a substrate with at least one isolation structure formed therein so as to separate the substrate into a first active region with a first stacked structure formed thereon and a second active region with a second stacked structure formed thereon; forming an interlayer dielectric layer covering the first stacked structure and the second stacked structure; and planarizing the interlayer dielectric layer to expose the top surface of the first stacked structure, wherein the second stacked structure is still covered by the interlayer dielectric layer after planarizing.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: December 30, 2014
    Assignee: United Microelectronics Corporation
    Inventors: Hsiang-Chen Lee, Ping-Chia Shih, Ke-Chi Chen, Chih-Ming Wang, Chi-Cheng Huang
  • Patent number: 8923072
    Abstract: Disclosed are a non-volatile memory device and a method of fabricating the same. The non-volatile memory device includes a semiconductor substrate including a plurality of active regions and a pair of first pillars protruding from each active region. A pair of drain selection lines surround each pillar of the pair of first pillars. A pair of second pillars, wherein each second pillar is disposed over a corresponding first pillar, of the pair of the first pillars, and is formed of a semiconductor material. A plurality of word lines and a source selection line form a stack that surrounds the pair of second pillars. A source line is formed over and connected with the pair of second pillars. Drain contacts are formed at both sides of each active region except between pairs of the drain selection lines. A bit line is formed over and connected with the drain contacts.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 30, 2014
    Assignee: SK Hynix Inc.
    Inventor: Seul-Ki Oh
  • Patent number: 8921188
    Abstract: One illustrative method disclosed herein includes forming a trench within an isolated region of a bulk semiconductor substrate, forming a region of an insulating material in the trench and forming a semiconductor material within the trench and above the upper surface of the region of insulating material. A substrate disclosed herein includes an isolated substrate region in a bulk semiconductor substrate, a region of an insulating material that is positioned within a trench defined in the isolated substrate region and a semiconductor material positioned within the trench and above the upper surface of the region of insulating material.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: December 30, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Ram Asra
  • Publication number: 20140367753
    Abstract: A transistor device includes a semiconductor substrate having a first surface and a second surface opposite the first surface, a gate structure disposed on the first surface and configured to form a channel region, and source and drain regions disposed on opposite sides of the channel region. The device also includes a source terminal and a drain terminal disposed on the second surface. The source and drain terminals are connected to the respective source and drain regions. The transistor device further include a body terminal disposed. on the second. surface and configured to connect the highest or lowest voltage supply to the semiconductor substrate.
    Type: Application
    Filed: October 31, 2013
    Publication date: December 18, 2014
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: HERB HE HUANG, Haiting Li, Qiang Zhou
  • Patent number: 8907405
    Abstract: Semiconductor structures with dual trench regions and methods of manufacturing the semiconductor structures are provided herein. The method includes forming a gate structure on an active region and high-k dielectric material formed in one or more trenches adjacent to the active region. The method further includes forming a sacrificial material over the active region and portions of the high-k dielectric material adjacent sidewalls of the active region. The method further includes removing unprotected portions of the high-k dielectric material, leaving behind a liner of high-k dielectric material on the sidewalls of the active region. The method further includes removing the sacrificial material and forming a raised source and drain region adjacent to sidewalls of the gate structure.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: December 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Reinaldo A. Vega, Hongwen Yan
  • Patent number: 8906770
    Abstract: Gate cross diffusion in a semiconductor structure is substantially reduced or eliminated by forming multiple n-type gate regions with different dopant concentrations and multiple p-type gate regions with different dopant concentrations so that the n-type gate region with the lowest dopant concentration touches the p-type gate region with the lowest dopant concentration.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: December 9, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Manoj Mehrotra
  • Patent number: 8896067
    Abstract: Embodiments of present invention provide a method of forming a first and a second group of fins on a substrate; covering a top first portion of the first and second groups of fins with a first dielectric material; covering a bottom second portion of the first and second groups of fins with a second dielectric material, the bottom second portion of the first group and the second group of fins having a same height; exposing a middle third portion of the first and second groups of fins to an oxidizing environment to create an oxide section that separates the top first portion from the bottom second portion of the first and second groups of fins; and forming one or more fin-type field-effect-transistors (FinFETs) using the top first portion of the first and second groups of fins as fins under gates of the one or more FinFETs.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Marc Adam Bergendahl, David Vaclav Horak, Shom Ponoth, Chih-Chao Yang, Charles William Koburger, III
  • Publication number: 20140339647
    Abstract: One method disclosed herein includes forming first and second transistor devices in and above adjacent active regions that are separated by an isolation region, wherein the transistors comprise a source/drain region and a shared gate structure, forming a continuous conductive line that spans across the isolation region and contacts the source/drain regions of the transistors and etching the continuous conductive line to form separated first and second unitary conductive source/drain contact structures that contact the source/drain regions of the first and second transistors, respectively.
    Type: Application
    Filed: May 14, 2013
    Publication date: November 20, 2014
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Mahbub Rashed, Juhan Kim, Yunfei Deng, Suresh Venkatesan
  • Patent number: 8890252
    Abstract: A semiconductor device includes a switching element having: a drift layer; a base region; an element-side first impurity region in the base region; an element-side gate electrode sandwiched between the first impurity region and the drift layer; a second impurity region contacting the drift layer; an element-side first electrode coupled with the element-side first impurity region and the base region; and an element-side second electrode coupled with the second impurity region, and a FWD having: a first conductive layer; a second conductive layer; a diode-side first electrode coupled to the second conductive layer; a diode-side second electrode coupled to the first conductive layer; a diode-side first impurity region in the second conductive layer; and a diode-side gate electrode in the second conductive layer sandwiched between first impurity region and the first conductive layer and having a first gate electrode as an excess carrier injection suppression gate.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 18, 2014
    Assignee: DENSO CORPORATION
    Inventors: Hirotaka Saikaku, Tsuyoshi Yamamoto, Shoji Mizuno, Masakiyo Sumitomo, Tetsuo Fujii, Jun Sakakibara, Hitoshi Yamaguchi, Yoshiyuki Hattori, Rie Taguchi, Makoto Kuwahara
  • Publication number: 20140327011
    Abstract: A semiconductor device containing a GaN FET has an isolating gate structure outside the channel area which is operable to block current in the two-dimensional electron gas between two regions of the semiconductor device. The isolating gate structure is formed concurrently with the gate of the GaN FET, and has a same structure as the gate.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 6, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Sameer PENDHARKAR, Naveen TIPIRNENI, Jungwoo JOH
  • Patent number: 8878334
    Abstract: Integrated circuits that include resistors are provided. An integrated circuit resistor may include a conductive structure disposed over a semiconductor substrate. An oxide layer may be interposed between the conductive structure and a top surface of the semiconductor substrate. A shallow trench isolation structure may be formed in the substrate directly beneath the oxide layer. The shallow trench isolation structure may be formed in a given region in the substrate that is contained within a surrounding n-well and a deep n-well. The given region within which the shallow trench isolation structure is formed may exhibit native substrate dopant concentration levels; the given region is neither an n-well nor a p-well. The surrounding n-well and the deep n-well may be reversed biased to help fully deplete the given region so that parasitic capacitance levels associated with the resistor are minimized.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 4, 2014
    Assignee: Altera Corporation
    Inventors: Albert Ratnakumar, Peter Smeys
  • Patent number: 8877604
    Abstract: A FET structure including epitaxial source and drain regions includes large contact areas and exhibits both low resistivity and low parasitic gate to source/drain capacitance. The source and drain regions are laterally etched to provide recesses for accommodating low-k dielectric material without compromising the contact area between the source/drain regions and their associated contacts. A high-k dielectric layer is provided between the raised source/drain regions and a gate conductor as well as between the gate conductor and a substrate, such as an ETSOI or PDSOI substrate. The structure is usable in electronic devices such as MOSFET devices.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: November 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Kangguo Cheng, Ali Khakifirooz, Alexander Reznicek