Enclosed Cavity Patents (Class 438/422)
  • Patent number: 7507643
    Abstract: A method for manufacturing a semiconductor substrate includes forming a first semiconductor layer on a semiconductor base; forming a second semiconductor layer having a lower etching selection ratio than the first semiconductor layer on the first semiconductor layer; removing a part of the second semiconductor layer and a part of the first semiconductor layer around an element region so as to form a recess for a support, the recess exposing the semiconductor base; forming a support forming layer on the semiconductor base so as to fill the recess and cover the second semiconductor layer; etching a part excluding the recess and the element region so as to form a support and an exposed face exposing a part of an end face of the first semiconductor layer and a part of an end face of the second semiconductor layer located under the support; etching the first semiconductor layer through the exposed face so as to form a cavity between the second semiconductor layer and the semiconductor base; forming a buried insula
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: March 24, 2009
    Assignee: Seiko Epson Corporation
    Inventor: Kei Kanemoto
  • Patent number: 7504699
    Abstract: A method of forming an air gap or gaps within solid structures and specifically semiconductor structures to reduce capacitive coupling between electrical elements such as metal lines, wherein a norbornene-type polymer is used as a sacrificial material to occupy a closed interior volume in a semiconductor structure. The sacrificial material is caused to decompose into one or more gaseous decomposition products which are removed, preferably by diffusion, through an overcoat layer. The decomposition of the sacrificial material leaves an air gap or gaps at the closed interior volume previously occupied by the norbornene-type polymer. The air gaps may be disposed between electrical leads to minimize capacitive coupling therebetween.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: March 17, 2009
    Assignee: George Tech Research Corporation
    Inventors: Paul A. Kohl, Qiang Zhao, Sue Ann Bidstrup Allen
  • Patent number: 7482261
    Abstract: A semiconductor interconnect structure is provided that includes a new capping layer/dielectric material interface which is embedded inside the dielectric material. In particular, the new interface is an air gap that is located in the upper surface of a dielectric material that is adjacent to a conductive region or feature. The air gap may be unfilled, partially filled or completely filled with either a dielectric capping layer or an upper dielectric material. The presence of the air gap in the upper surface of the dielectric material that is adjacent to the conductive region or feature provides a new interface that has a high mechanical strength and thus the resultant structure is highly reliable. Moreover, the new interface provided in the present invention has a high dielectric breakdown resistance which is important for future technology extendibility.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventor: Chih-Chao Yang
  • Publication number: 20080318392
    Abstract: A method for forming shallow trench isolation structures is provided. The method comprises the following steps: providing a substrate with a “v” shaped trench, forming a first dielectric layer to cover the upper portion of the inner wall of the trench; conducting the first etching process to pull back the uncovered inner wall of the trench; removing the first dielectric layer; and forming a second dielectric layer to cover the trench and form a void inside the trench.
    Type: Application
    Filed: September 28, 2007
    Publication date: December 25, 2008
    Applicant: Promos Technologies Inc.
    Inventors: Kuo-Hsiang Hung, Chuan-Chi Chen
  • Patent number: 7439092
    Abstract: A method of fabricating thin films of semiconductor materials by implanting ions in a substrate composed of at least two different elements at least one of which can form a gaseous phase on bonding with itself and/or with impurities includes the following steps: (1) bombarding one face of the substrate with ions of a non-gaseous heavy species in order to implant those ions in a concentration sufficient to create in the substrate a layer of microcavities containing a gaseous phase formed by the element of the substrate; (2) bringing this face of the substrate into intimate contact with a stiffener; and (3) obtaining cleavage at the level of the microcavity layer by the application of heat treatment and/or a splitting stress.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: October 21, 2008
    Assignee: Commissariat A l'Energie Atomique
    Inventor: Aurélie Tauzin
  • Publication number: 20080217730
    Abstract: Methods of forming a gas dielectric and a related structure are disclosed. In one embodiment, the method includes providing a wiring level including at least one conductive portion within a sacrificial dielectric; forming a nanofiber layer over the wiring level; vaporizing the sacrificial dielectric by heating; evacuating the vaporized sacrificial layer; and sealing pores in the nanofiber layer.
    Type: Application
    Filed: March 7, 2007
    Publication date: September 11, 2008
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger
  • Patent number: 7422940
    Abstract: A process for producing a layer arrangement, in which a plurality of electrically conductive structures are formed on a substrate, a first electrically insulating layer is formed on the plurality of electrically conductive structures, in such a manner than trenches are formed between mutually adjacent regions of the first electrically insulating layer, electrically insulating structures are formed in the trenches between the adjacent regions of the first electrically insulating layer, material of the first electrically insulating layer is removed, so that airgaps are formed between the electrically insulating structures and the electrically conductive structures, and a second electrically insulating layer is formed on the electrically conductive structures and on the electrically insulating structures, in such a manner that the second electrically insulating layer spans adjacent electrically conductive structures and electrically insulating structures.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: September 9, 2008
    Assignee: Infineon Technologies AG
    Inventors: Gunther Schindler, Werner Pamler
  • Publication number: 20080188051
    Abstract: Some embodiments include methods of forming voids within semiconductor constructions. In some embodiments the voids may be utilized as microstructures for distributing coolant, for guiding electromagnetic radiation, or for separation and/or characterization of materials. Some embodiments include constructions having micro-structures therein which correspond to voids, conduits, insulative structures, semiconductor structures or conductive structures.
    Type: Application
    Filed: February 7, 2007
    Publication date: August 7, 2008
    Inventor: David H. Wells
  • Patent number: 7396736
    Abstract: A magnetic sensor includes a thin deformable membrane made of a conductive material forming a first plate of a capacitor which conducts an electric current therethrough. A second capacitor plate of the capacitor includes a doped region of a semiconductor substrate. A layer of a gaseous dielectric separates the two plates. The membrane deforms due to the effect of the Lorentz force generated by a magnetic field lying in the plane of the membrane and perpendicular to the lines of current being conducted therethrough. In addition, a process for fabricating this magnetic sensor is also provided as well as a device for measuring a magnetic field using the magnetic sensor.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: July 8, 2008
    Assignee: STMicroelectronics SA
    Inventors: Hervé Jaouen, Thomas Skotnicki, Malgorzata Jurczak
  • Patent number: 7396739
    Abstract: A method for integrating an electronic component or the like into a substrate includes following process steps: formation of a dielectric insulating layer on the front side of a substrate; complete back-etching of an area of the substrate from the back of the substrate to form a cavity; formation of a photoresistive layer with a homogeneous thickness over the back of the substrate; placement of an electronic component on the photoresistive layer formed in the cavity for adhesion of the electronic component to the photoresistive layer; removal of the formed photoresistive layer except for the area on which the electronic component adheres to the photoresistive layer in the cavity; and formation of a fixing layer over the back of the substrate to fix the electronic component in the cavity of the substrate.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: July 8, 2008
    Assignee: ATMEL Germany GmbH
    Inventor: Mojtaba Joodaki
  • Patent number: 7396732
    Abstract: A method for forming deep trench or via airgaps in a semiconductor substrate is disclosed comprising the steps of patterning a hole in the substrate, partly fill said hole with a sacrificial material (e.g. poly-Si), depositing spacers on the sidewalls of the unfilled part of the hole (e.g. TEOS) to narrow the opening, removing through said narrowed opening the remaining part of the sacrificial material (e.g. by isotropic etching) and finally sealing the opening of the airgap by depositing a conformal layer (TEOS) above the spacers. The method of forming an airgap is demonstrated successfully for use as deep trench isolation structures in BiCMOS devices.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: July 8, 2008
    Assignee: Interuniversitair Microelektronica Centrum vzw (IMEC)
    Inventor: Eddy Kunnen
  • Patent number: 7394144
    Abstract: Consistent with an example embodiment, a reduced surface field effect type (RESURF) semiconductor device is manufactured having a drift region over a drain region. Trenches are formed through openings in mask. A trench insulating layer is deposited on the sidewalls and base of the trenches followed by an overetching step to remove the trench insulating layer from the base of the trenches as well as the top of the sidewalls of the trenches adjacent to the first major surface leaving exposed silicon at the top of the sidewalls of the trench and the base of the trenches. Silicon is selectively grown plugging the trenches with silicon plug (18) leaving void.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: July 1, 2008
    Assignee: NXP B.V.
    Inventors: Christelle Rochefort, Erwin A. Hijzen, Philippe Meunier-Beillard
  • Patent number: 7378306
    Abstract: A semiconductor process and apparatus provide a planarized hybrid substrate (225) having a more uniform polish surface (300) by thickening an SOI semiconductor layer (210) in relation to a previously or subsequently formed epitaxial silicon layer (220) with a selective silicon deposition process that covers the SOI semiconductor layer (210) with a crystalline semiconductor layer (216). By forming first gate electrodes (151) over a first SOI substrate (90) using deposited (100) silicon and forming second gate electrodes (161) over an epitaxially grown (110) silicon substrate (70), a high performance CMOS device is obtained which includes high-k metal PMOS gate electrodes (161) having improved hole mobility.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: May 27, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gregory S. Spencer, Peter J. Beckage, Mariam G. Sadaka, Veer Dhandapani
  • Patent number: 7371653
    Abstract: Provided is a metal interconnection structure of a semiconductor device, having: a lower metal layer disposed on an insulating layer formed on a semiconductor device; a contact plug disposed on the lower metal layer; a supporting layer disposed to surround the contact plug; an upper metal layer disposed on the contact plug and the supporting layer; and an air layer interposed between the lower and upper metal layers to insulate the lower metal layer from the upper metal layer.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: May 13, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sang Kwon Kim
  • Patent number: 7364964
    Abstract: A highly reliable semiconductor device having a ferroelectric capacitor structure by sufficiently preventing the H2 attack without damaging the function of an interlayer insulating film covering interconnections and the like to obtain a high capacitor performance. The position of a semiconductor substrate mounted on and secured to a substrate support plate in an HDP-CVD system is adjusted in the vertical direction, whereby a second HDP-CVD oxide film is deposited so that voids are formed between aluminum interconnections at lower positions than the height of the aluminum interconnections.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: April 29, 2008
    Assignee: Fujitsu Limited
    Inventor: Kazutoshi Izumi
  • Patent number: 7358148
    Abstract: An adjustable self aligned low capacitance integrated circuit air gap structure comprises a first interconnect adjacent a second interconnect on an interconnect level, spacers formed along adjacent sides of the first and second interconnects, and an air gap formed between the first and second interconnects. The air gap extends above an upper surface of at least one of the first and second interconnects and below a lower surface of at least one of the first and second interconnects, and the distance between the spacers defines the width of the air gap. The air gap is self-aligned to the adjacent sides of the first and second interconnects.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: April 15, 2008
    Assignee: International Business Machines Corporation
    Inventors: Robert M. Geffken, William T. Motsiff
  • Patent number: 7351648
    Abstract: Methods for fabricating a semiconductor device include forming a first layer on an underlying layer, forming a hardmask on the first layer, and patterning holes through the hardmask and first layer. An overhang is formed extending over sides of the holes. A conformal layer is deposited over the overhang and in the holes until the conformal layer closes off the holes to form a void/seam in each hole. The void/seam in each hole is exposed by etching back a top surface. The void/seam in each hole is extended to the underlying layer.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: April 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III, Chung Hon Lam
  • Publication number: 20080057666
    Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor substrate with gate structures. A sacrificial insulating layer is formed between the gate structures at a height lower than that of the gate structures such that a portion of each gate structure is exposed above the sacrificial insulating layer. Spacers are formed on sidewalls of the exposed portions of the gate structures. A portion of the sacrificial insulating layer between the spacers is exposed. The sacrificial insulating layer is removed, thereby forming spaces below the spacers. An insulating layer is formed to fill the spaces between the spacers such that air pockets are formed between the gate structures and below the spacers.
    Type: Application
    Filed: December 26, 2006
    Publication date: March 6, 2008
    Applicant: Hynix Semiconductor Inc.
    Inventor: Soo Jin KIM
  • Patent number: 7332406
    Abstract: A low-k dielectric sacrificial material is formed within a microelectronic structure covered with a layer defining an exhaust vent. At an appropriate time, the underlying sacrificial material is decomposed and exhausted away through the exhaust vent. Residue from the exhausted sacrificial material accumulates at the vent location during exhaustion until the vent is substantially occluded. As a result, an air gap is created having desirable characteristics as a dielectric.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: February 19, 2008
    Assignee: Intel Corporation
    Inventors: Hyun-Mog Park, Grant M. Kloster
  • Patent number: 7326603
    Abstract: A semiconductor device includes a semiconductor substrate that has an oxide film selectively formed on a part thereof; a semiconductor layer that is formed on the oxide film by epitaxial growth; a first gate electrode that is formed on the semiconductor layer; first source/drain layers that are formed on the semiconductor layer so as to be disposed at both sides of the first gate electrode, respectively; a second gate electrode that is formed on the semiconductor substrate; and second source/drain layers that are formed on the semiconductor substrate so as to be disposed at both sides of the second gate electrode, respectively.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: February 5, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Kei Kanemoto
  • Patent number: 7300823
    Abstract: Apparatus for housing a micromechanical structure, and a method for producing the housing. The apparatus has a substrate having a main side on which the micromechanical structure is formed, a photo-resist material structure surrounding the micromechanical structure to form a cavity together with the substrate between the substrate and the photo-resist material structure, wherein the cavity separates the micromechanical structure and the photo-resist material structure and has an opening, and a closure for closing the opening to close the cavity.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: November 27, 2007
    Assignee: Infineon Technologies AG
    Inventors: Martin Franosch, Andreas Meckes, Winfried Nessler, Klaus-Gunter Oppermann
  • Patent number: 7297593
    Abstract: A method of forming a floating gate of a flash memory device wherein a hard mask nitride film is stripped using two or more etching steps. Accordingly, a seam can be prevented when depositing a floating gate polysilicon film. Furthermore, the floating gate polysilicon film may be blanket-etched to make rounded upper edge portions of the floating gate polysilicon film. In this way, a void can be prevented when depositing a control gate polysilicon.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: November 20, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Heon Kim
  • Patent number: 7294568
    Abstract: A method of forming air gaps in the interconnect structure of an integrated circuit device. The air gaps may be formed by depositing sacrificial layer over a dielectric layer and then depositing a permeable hard mask over the sacrificial layer. The sacrificial layer is subsequently removed to form air gaps. The permeable hard mask may have a thickness of less than approximately 250 nm, and internal stresses within the permeable hard mask may be controlled to prevent deformation of this layer. Other embodiments are described and claimed.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: November 13, 2007
    Assignee: Intel Corporation
    Inventors: Michael D. Goodner, Kevin P. O'Brien, Grant M. Kloster
  • Patent number: 7294536
    Abstract: A process for manufacturing an SOI wafer, including the steps of: forming, in a wafer of semiconductor material, cavities delimiting structures of semiconductor material; thinning out the structures through a thermal process; and completely oxidizing the structures.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: November 13, 2007
    Assignee: STMicroelectronics S.R.L.
    Inventors: Flavio Villa, Gabriele Barlocchi, Pietro Corona
  • Publication number: 20070252230
    Abstract: A simple, effective and economical method to improved the yield of CMOS devices using contact etching stopper liner, including, single neutral stressed liner, single stressed liner and dual stress liner (DSL), technology is provided. In order to improve the chip yield, the present invention provides a method in which a sputter etching process is employed to smooth/flatten (i.e., thin) the top surface of the contact etch stopper liners. When DSL technology is used, the inventive sputter etching process is used to reduce the complexity caused by DSL boundaries to smooth/flatten top surface of the DSL, which results in significant yield increase. The present invention also provides a semiconductor structure including at least one etched liner.
    Type: Application
    Filed: June 4, 2007
    Publication date: November 1, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Daewon Yang
  • Patent number: 7285474
    Abstract: Air-gap insulated interconnection structures and methods of fabricating the structures, the methods including: forming a dielectric layer on a substrate; forming a capping layer on a top surface of the dielectric layer; forming a trench through the capping layer, the trench extending toward said substrate and into but not through, the dielectric layer; forming a sacrificial layer on opposing sidewalls of the trench; filling the trench with a electrical conductor; and removing a portion of the sacrificial layer from between the electrical conductor and the dielectric layer to form air-gaps.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: October 23, 2007
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Jeffrey P. Gambino, Anthony K. Stamper
  • Patent number: 7282423
    Abstract: An FET has a T-shaped gate. The FET has a halo diffusion self-aligned to the bottom portion of the T and an extension diffusion self aligned to the top portion. The halo is thereby separated from the extension implant, and this provides significant advantages. The top and bottom portions of the T-shaped gate can be formed of layers of two different materials, such as germanium and silicon. The two layers are patterned together. Then exposed edges of the bottom layer are selectively chemically reacted and the reaction products are etched away to provide the notch. In another embodiment, the gate is formed of a single gate conductor. A metal is conformally deposited along sidewalls, recess etched to expose a top portion of the sidewalls, and heated to form silicide along bottom portions. The silicide is etched to provide the notch.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark Charles Hakey, Steven John Holmes, David Vaclav Horak, Edward Joseph Nowak
  • Patent number: 7256077
    Abstract: A method of forming a semiconductor device includes forming a first layer over a semiconductor substrate and forming a second layer over the first layer. The second layer includes silicon and has an etch selectivity to the second layer that is greater than approximately 1,000. In one embodiment, the second layer is a porous material, such as porous silicon, porous silicon germanium, porous silicon carbide, and porous silicon carbon alloy. A gate insulator is formed over the second layer and a control electrode is formed over the gate insulator. The first layer is selectively removed with respect to the second layer and the semiconductor substrate.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: August 14, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Marius K. Orlowski
  • Patent number: 7235456
    Abstract: To change a plurality of trenches to one flat empty space by two-dimensionally forming the trenches on the surface of a semiconductor substrate and then applying heat treatment to the semiconductor substrate.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: June 26, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsutomu Sato, Mie Matsuo, Ichiro Mizushima, Yoshitaka Tsunashima, Shinichi Takagi
  • Patent number: 7235457
    Abstract: This invention provides a structure and method for improved transmission line operation on integrated circuits. One method of the invention includes forming transmission lines in an integrated circuit. The method includes forming a first layer of electrically conductive material on a substrate. A first layer of insulating material is formed on the first layer of the electrically conductive material. A pair of layered high permeability shielding lines are formed on the first layer of insulating material. The pair of layered high permeability shielding lines include layered permalloy and/or Ni45Fe55 films. A transmission line is formed on the first layer of insulating material and between and parallel with the pair of layered high permeability shielding lines.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: June 26, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn, Salman Akram
  • Patent number: 7229894
    Abstract: An active cell isolation body of a semiconductor device and a method for forming the same are disclosed. An example active cell isolation body of a semiconductor device includes a trench with a depth in a semiconductor substrate at an active cell isolation region, a buried gap in the semiconductor substrate at a lower portion of the active cell isolation region, where the buried gap is in communication with the trench and extended toward active regions of the semiconductor substrate, and an active cell isolation film filled in the trench to close the buried gap.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: June 12, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwan Joo Koh
  • Patent number: 7169664
    Abstract: According to the present invention, a metal and a barrier material, such as copper and a tantalum-based barrier material, are effectively removed from the wafer edge and especially from the bevel by using an etchant that comprises a diluted mixture of hydrofluoric acid and nitric acid. The method is compatible with currently available etch modules for removing metal from the wafer edge, wherein, depending on the hardware specifics, copper, barrier material and dielectric material may be removed in a single etch step, or a first etch step may be performed substantially without any nitric acid so as to avoid the formation of nitric oxides. In this way, the formation of instable layer stacks may be substantially avoided, thereby reducing the risk of material delamination from the substrate edge.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: January 30, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Axel Preusse, Markus Nopper, Holger Schührer
  • Patent number: 7132348
    Abstract: Systems, devices and methods are provided to improve performance of integrated circuits by providing a low-k insulator. One aspect is an integrated circuit insulator structure. One embodiment includes a solid structure of an insulator material, and a precisely determined arrangement of at least one void formed within the solid structure which lowers an effective dielectric constant of the insulator structure. One aspect is a method of forming a low-k insulator structure. In one embodiment, an insulator material is deposited, and a predetermined arrangement of at least one hole is formed in a surface of the insulator material. The insulator material is annealed such that the low-k dielectric material undergoes a surface transformation to transform the arrangement of at least one hole into predetermined arrangement of at least one empty space below the surface of the insulator material. Other aspects are provided herein.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: November 7, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Joseph E. Geusic, Paul A. Farrar, Arup Bhattacharyya
  • Patent number: 7105420
    Abstract: A new method is provided for creating an inductor on the surface of a silicon substrate. The invention provides overlying layers of oxide fins beneath a metal inductor. The oxide fins provide the stability support for the overlying metal inductor while also allowing horizontal air columns to simultaneously exist underneath the inductor. Overlying layers of air cavities that are spatially inserted between the created overlying layers of oxide fins can be created under the invention by repetitive application of the mask used. The presence of the air wells on the surface of the substrate significantly reduces parasitic capacitances and series resistance of the inductor associated with the substrate.
    Type: Grant
    Filed: October 7, 1999
    Date of Patent: September 12, 2006
    Assignees: Chartered Semiconductor Manufacturing Ltd., National University of Singapore
    Inventors: Lap Chan, Kok Wai Johnny Chew, Cher Liang Cha, Chee Tee Chua
  • Patent number: 7101770
    Abstract: Improved methods and structures are provided using capacitive techniques to reduce noise in high speed interconnections, such as in CMOS integrated circuits. The present invention offers an improved signal to noise ration. The present invention provides for the fabrication of improved transmission lines for silicon-based integrated circuits using conventional CMOS fabrication techniques. Embodiments of a method for forming transmission lines in an integrated circuit include forming a first layer of electrically conductive material on a substrate. The method includes forming a first layer of insulating material on the first layer of the electrically conductive material. The first layer has a thickness of less than 1.0 micrometers (?m). A transmission line is formed on the first layer of insulating material. The transmission line has a thickness and a width of approximately 1.0 micrometers. A second layer of insulating material is formed on the transmission line.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: September 5, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7094682
    Abstract: An improved electrical interconnect for an integrated circuit and methods for providing the same are disclosed. The electrical interconnect includes an air bridge extending through a gaseous medium so as to reduce the capacitance of the interconnect. The air bridge is supported at a first and second end such that the air bridge is suspended above the substrate. The air bridge comprises a highly conductive material, such as silver, so as to provide the air bridge with a reduced resistivity. To inhibit gaseous medium from contaminating the air bridge, the air bridge further comprises an adherent coating interposed between the air bridge and the gaseous medium. A method of forming the electrical interconnect is also disclosed, wherein, prior to forming the adherent coating, the conductive material is processed so as to form fewer grain boundaries, which enhances the electrical properties of the air bridge.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: August 22, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Patent number: 7091611
    Abstract: Structures and methods are provided for an improved multilevel wiring interconnect in an integrated circuit assembly. The present invention provides for a multilayer copper wiring structure by electroless, selectively deposited copper in a streamlined process which further reduces both intra-level line to line capacitance and the inter-level capacitance. In particular, an illustrative embodiment of the present invention includes a novel methodology for forming multilevel wiring interconnects in an integrated circuit assembly. The method includes forming a number of multilayer metal lines, e.g. copper lines formed by selective electroless plating, separated by air gaps above a substrate. A low dielectric constant material is deposited between the number of metal lines and the substrate using a directional process. According to the teachings of the present invention, using a directional process includes maintaining a number of air gaps in the low dielectric constant material.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: August 15, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7078352
    Abstract: A method for the production of airgaps in a semiconductor device and device produced therefrom. The formation of airgaps is accomplished, in part, by chemically and/or mechanically changing the properties of a first dielectric layer locally, such that at least part of said first dielectric layer is converted locally and becomes etchable by a first etching substance. The local conversion of the dielectric material may be achieved during anisotropic etching of the material in oxygen containing plasma or ex-situ by performing an oxidizing step (e.g., a UV/ozone treatment or supercritical carbon dioxide with addition of an oxidizer). Formation of airgaps is achieved after creation of conductive lines and, alternatively, a barrier layer by a first etching substance. The airgaps are formed in a dual damascene structure, near the vias and/or the trenches of the damascene structure.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: July 18, 2006
    Assignees: Interuniversitair Microelektronica Centrum (IMEC vzw), Texas Instruments, Inc.
    Inventors: Gerald Beyer, Jean Paul Gueneau de Mussy, Karen Maex, Victor Sutcliffe
  • Patent number: 7071091
    Abstract: A method of forming air gaps surrounding conductors in a dielectric layer, the dielectric layer comprising, for example, part of the interconnect structure of an integrated circuit device. The air gaps are formed, in part, by depositing a sacrificial material within a trench and/or via that have been formed in a dielectric layer, and the sacrificial material is ultimately removed after metal deposition to create the air gaps. A porous dielectric cap may be deposited over the dielectric layer, and the sacrificial material may be removed through this porous dielectric layer. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: July 4, 2006
    Assignee: Intel Corporation
    Inventors: James S. Clarke, Michael D. Goodner
  • Patent number: 7049219
    Abstract: An improved electrical interconnect for an integrated circuit and methods for providing the same are disclosed. The electrical interconnect includes an air bridge extending through a gaseous medium so as to reduce the capacitance of the interconnect. The air bridge is supported at a first and second end such that the air bridge is suspended above the substrate. The air bridge comprises a highly conductive material, such as silver, so as to provide the air bridge with a reduced resistivity. To inhibit gaseous medium from contaminating the air bridge, the air bridge further comprises an adherent coating interposed between the air bridge and the gaseous medium. A method of forming the electrical interconnect is also disclosed, wherein, prior to forming the adherent coating, the conductive material is processed so as to form fewer grain boundaries, which enhances the electrical properties of the air bridge.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: May 23, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Patent number: 7045382
    Abstract: Proposed is a method for manufacturing micromechanical sensors and sensors manufactured by this method, where openings are introduced into a semiconductor substrate. After the openings are introduced into the semiconductor substrate, a subsequent temperature treatment is carried out, in which the openings are converted into voids in the depth of the substrate.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: May 16, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Hubert Benzel, Heribert Weber, Hans Artmann, Frank Schaefer
  • Patent number: 7045468
    Abstract: A MOSFET structure in which the channel region is contiguous with the semiconductor substrate while the source and drain junctions are substantially isolated from the substrate, includes a dielectric volume formed adjacent and subjacent to portions of the source and drain regions. In a further aspect of the invention, a process for forming an isolated junction in a bulk semiconductor includes forming a dielectric volume adjacent and subjacent to portions of the source and drain regions.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: May 16, 2006
    Assignee: Intel Corporation
    Inventor: Chunlin Liang
  • Patent number: 7041571
    Abstract: A dual layer of polymeric material is deposited with a base layer and top layer resist onto an integrated circuit structure with topography. The base layer planarizes the surface and fills in the native topography. The base layer decomposes almost completely when exposed to an oxidizing environment. The top layer contains a high composition of oxidizing elements and is photosensitive. (i.e., the layer can be patterned by exposing normal lithographic techniques.) The patterning allows the creation of escape paths for the decomposition products of the underlying base layer. This structure is decomposed in an oxidizing ambient (or plasma) leaving behind a thin carbon-containing membrane. This membrane layer blocks deposition of future layers, creating air gaps in the structure.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: May 9, 2006
    Assignee: International Business Machines Corporation
    Inventor: Jay W. Strane
  • Patent number: 7037851
    Abstract: Method for the production of airgaps in a semiconductor device, the semiconductor device comprising a stack of layers, the stack of layers comprising at least one iteration of a sub-stack of layers.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: May 2, 2006
    Assignee: Interuniversitair Microelektronica Centrum (IMEC vzw)
    Inventors: Jean Paul Gueneau de Mussy, Gerald Beyer, Karen Maex
  • Patent number: 7033927
    Abstract: The disclosure relates to method and apparatus for isolating sensitive regions of a semiconductor device by providing a thermal path or an electromagnetic shield. The thermal path may include vias having different length, depth and configuration such that the thermal path between the two regions is lengthened. In addition, the vias may be fully or partially filled with an insulating material having defined conductive properties to further retard heat electromagnetic or heat transmission between the regions. In another embodiment, electrical isolation between two regions is achieved by etching a closed loop or an open loop trench at the border of the regions and filling the trench with a conductive material to provide proper termination of electromagnetic fields within the substrate.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: April 25, 2006
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Daniel C. Edelstein, Keith A. Jenkins, Chirag S. Patel, Lie Shan
  • Patent number: 7022582
    Abstract: The present invention relates to a process for integrating air as dielectric in semiconductor devices, comprising the steps of: a. applying a layer of a dielectric (2) which is to be patterned to a substrate (1); b. patterning the dielectric layer (2) which has been applied; c. applying a conductor metal (3) for the patterned dielectric layer (2) and forming a common surface from the conductor metal (3) and the dielectric (2); d. applying a layer of an organic dielectric (4) to the layer produced in step c.; and e. bringing the coated substrate produced in this way into contact with a fluorine-containing compound in order to form an arrangement which has air as dielectric between conductor structures and has a continuous dielectric layer (4) on the top side, and to a semiconductor device with air layers as dielectric produced using this process.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: April 4, 2006
    Assignee: Infineon Technologies AG
    Inventor: Recai Sezi
  • Patent number: 6984577
    Abstract: A damascene interconnect that reduces interconnect intra-layer capacitance and/or inter-layer capacitance is provided. The damascene interconnect structure has air gaps between metal lines and/or metal layers. The interconnect structure is fabricated to a via level through a processing step prior to forming contact vias, then one or more air gaps are formed into the damascene structure so that the air gaps are positioned between selected metal lines. A sealing layer is then deposited over the damascene structure to seal the air gaps.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: January 10, 2006
    Assignee: Newport Fab, LLC
    Inventors: Bin Zhao, Maureen R. Brongo
  • Patent number: 6955997
    Abstract: A method of manufacturing a semiconductor device, including depositing a first layer of dielectric material onto the device, laser thermal annealing a surface of the first layer, and depositing a second layer of dielectric material over the laser thermal annealed surface of the first layer. The two layers are preferably low dielectric constant (“low-k”) material that form an inter-layer dielectric (“ILD”) layer of a semiconductor device. According to one aspect of the invention, a third layer of low-k material is deposited over the second layer and a surface of the third layer is also laser thermal annealed.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: October 18, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Arvind Halliyal, Minh Van Ngo
  • Patent number: 6949444
    Abstract: A method for forming at least one conductive line intended to receive high-frequency or high-value currents, formed above a given portion of a solid substrate outside of which are formed other elements, including the steps of digging at least one trench in the solid substrate; forming an insulating area in the trench; and forming said conductive line above the insulating area.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: September 27, 2005
    Assignee: STMicroelectronics S.A.
    Inventors: Joaquim Torres, Vincent Arnal, Alexis Farcy
  • Patent number: 6949476
    Abstract: An apparatus on a wafer, comprising: a first metal layer of a wall, a second metal layer of the wall, a third metal layer of the wall comprising: one or more base frames, a fourth metal layer of the wall comprising: one or more vertical frame pairs each on top of the one or more base frames and having a pass-thru therein, a fifth metal layer of the wall comprising: one or more top frames each over the pass-thru; and a metal lid.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: September 27, 2005
    Assignee: Intel Corporation
    Inventors: David Fraser, Brian Doyle