Multiple Insulative Layers In Groove Patents (Class 438/435)
  • Publication number: 20100041207
    Abstract: A high density plasma dep/etch/dep method of depositing a dielectric film into a gap between adjacent raised structures on a substrate disposed in a substrate processing chamber. The method deposits a first portion of the dielectric film within the gap by forming a high density plasma from a first gaseous mixture flown into the process chamber, etches the deposited first portion of the dielectric film by flowing an etchant gas comprising CxFy, where a ratio of x to y is greater than or equal to 1:2 and then deposits a second portion of the dielectric film over the first portion by forming a high density plasma from a second gaseous mixture flown into the process chamber.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 18, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Young S. Lee, Ying Rui, Dmitry Lubomirsky, Daniel J. Hoffman, Jang Gyoo Yang, Anchuan Wang
  • Publication number: 20100032773
    Abstract: In an embodiment, a semiconductor device is provided. The semiconductor device may include a first diffusion region, a second diffusion region an active region disposed between the first diffusion region and the second diffusion region, a control region disposed above the active region, a first trench isolation disposed laterally adjacent to the first diffusion region opposite to the active region, and a second trench isolation disposed between the second diffusion region and the active region. The second trench isolation may have a smaller depth than the first trench isolation.
    Type: Application
    Filed: August 8, 2008
    Publication date: February 11, 2010
    Inventors: Mayank Shrivastava, Harald Gossner, Ramgopal Rao, Maryam Shojaei Baghini
  • Patent number: 7659170
    Abstract: By recessing the isolation structure of a transistor prior to silicidation, the series resistance may be reduced due to the increased amount of metal silicide formed in the vicinity of the isolation structure. By recessing the isolation structure prior to the formation of the gate electrode, an increased degree of poly wrap around may be obtained, thereby increasing the effective channel width.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: February 9, 2010
    Assignee: GlobalFoundries, Inc.
    Inventors: Christoph Schwan, Manfred Horstmann, Martin Gerhardt, Markus Forseberg
  • Patent number: 7659159
    Abstract: In a method of fabricating a flash memory device, a semiconductor substrate includes a tunnel insulating layer and a charge storage layer formed in an active region and a trench formed in an isolation region. A first insulating layer is formed to fill a part of the trench. A second insulating layer is formed on the first insulating layer so that the trench is filled. The first and second insulating layers are removed such that the first and second insulating layers remain on sidewalls of the charge storage layer and on a part of the trench. A third insulating layer is formed on the first and second insulating layers so that a space defined by the charge storage layer is filled. The third insulating layer is removed so that a height of the third insulating layer is lowered.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: February 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Hoon Lee
  • Patent number: 7659181
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, an oxygen barrier is deposited into the trench. An expandable, oxidizable liner, preferably amorphous silicon, is then deposited. The trench is then filled with a spin-on dielectric (SOD) material. A densification process is then applied, whereby the SOD material contracts and the oxidizable liner expands. Preferably, the temperature is ramped up while oxidizing during at least part of the densification process. The resulting trench has a negligible vertical wet etch rate gradient and a negligible recess at the top of the trench.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: February 9, 2010
    Assignee: Micron Technology, Inc.
    Inventors: John A. Smythe, III, Jigish D. Trivedi
  • Patent number: 7655535
    Abstract: A method for fabricating a device isolation structure of a semiconductor device includes the steps of forming a pad oxide layer and a pad nitride layer over a semiconductor substrate including a cell region and a dummy region, etching a portion of the pad nitride layer, the pad oxide layer and the semiconductor substrate to form a trench, forming a sidewall oxide layer over the sidewalls of the trench; removing the sidewall oxide layer in the dummy region, forming a silicon nitride layer over the sidewalls of the sidewall oxide layer both in the cell region and in the dummy region, filling the trench with an insulating layer, polishing the insulating layer to expose the pad nitride layer, and removing the pad nitride layer.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hyo Seob Yoon, Woo Jin Kim, Ok Min Moon, Ji Yong Park
  • Patent number: 7655534
    Abstract: A fin transistor is formed by forming a hard mask layer on a substrate having an active region and a field region. The hard mask layer is etched to expose the field region. A trench is formed by etching the exposed field region. The trench is filled with an SOG layer. The hard mask layer is removed to expose the active region. An epi-silicon layer is formed on the exposed active region. The SOG layer is then partially etched from the upper end of the trench, thus filling a lower portion of the trench. A HDP oxide layer is deposited on the etched SOG layer filling the trench, thereby forming a field oxide layer composed of the SOG layer and the HDP oxide. The HDP oxide layer in the field oxide layer is etched to expose both side surfaces of the epi-silicon layer. A gate is then formed on the epi-silicon layer of which both side surfaces are exposed and the field oxide layer.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: February 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dong Sun Sheen, Seok Pyo Song, Sang Tae Ahn, Hyun Chul Sohn
  • Patent number: 7655524
    Abstract: Embodiments relate to a semiconductor device and a method for manufacturing a semiconductor device. In embodiments, a transistor including the gate electrode and a source/drain may be formed between isolation layers and a contact may be connected to the source/drain. A barrier layer may be formed at a boundary between the isolation layer and the source/drain and may physically isolate the isolation layer from the source/drain.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: February 2, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jong Bok Lee
  • Patent number: 7652345
    Abstract: In a device isolation layer for a p-MOS transistor and a method of forming the same, a trench oxide layer having a first and a second sub-oxide layers is formed in a trench including a first and a second sub-trenches. The first and second sub-oxide layers are formed on side and bottom surfaces of the first and second sub-trenches, respectively. The second sub-trench has a width greater than the first sub-trench. The first sub-oxide layer has a first thickness that is uniform along the side and bottom surfaces of the first sub-trench and the second sub-oxide layer has a second thickness greater than the first thickness along the side surface of the second sub-trench. A liner layer is formed on the trench oxide layer, and an insulation pattern is formed on the liner layer.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yun-Sung Lee
  • Publication number: 20100012950
    Abstract: An integrated circuit chip and a method of fabricating an integrated circuit chip. The integrated circuit chip includes: a set of wiring levels stacked from a first wiring level to a last wiring level; and a respective void in each wiring level of two or more wiring levels of the set wiring levels, each respective void extending in a continuous ring parallel and proximate to a perimeter of the integrated circuit chip, a void of a higher wiring level stacked directly over but not contacting a void of a lower wiring level, the respective voids forming a crack stop.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xiao Hu Liu, Chih-Chao Yang, Haining Sam Yang
  • Patent number: 7648921
    Abstract: A method of forming a dielectric layer is provided. A first dielectric layer is formed on a substrate having metal layers formed thereon. The first dielectric layer includes overhangs in the spaces between two neighboring metal layers and voids under the overhangs. The first dielectric layer is partially removed to cut off the overhangs and expose the voids and therefore openings are formed. A second dielectric layer is formed on the dielectric layer to fill up the opening.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: January 19, 2010
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Hsu-Sheng Yu, Shing-Ann Lo, Ta-Hung Yang
  • Patent number: 7648886
    Abstract: A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed to in a low temperature process which reduces germanium outgassing. The low temperature process can be a UVO, ALD, CVD, PECVD, or HDP process.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: January 19, 2010
    Assignee: Globalfoundries Inc.
    Inventors: Minh-Van Ngo, Qi Xiang, Paul R. Besser, Eric N. Paton, Ming-Ren Lin
  • Publication number: 20100006974
    Abstract: The present disclosure provides a method of manufacturing a microelectronic device. The method includes forming recessed shallow trench isolation (STI) features in a semiconductor substrate, defining a semiconductor region between adjacent two of the recessed STI features; forming a tunnel dielectric feature within the semiconductor region; forming a nitride layer on the recessed STI features and the tunnel dielectric feature; etching the nitride layer to form nitride openings within the recessed STI features; partially removing the recessed STI features through the nitride openings, resulting in gaps between the nitride layer and the recessed STI features; and forming a first dielectric material on surfaces of the nitride layer, sealing the nitride openings.
    Type: Application
    Filed: July 14, 2008
    Publication date: January 14, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jeff J. Xu, Chia-Ta Hsieh, Chun-Pei Wu, Chun-Hung Lee
  • Publication number: 20100006975
    Abstract: A method of forming a semiconductor structure is provided. The method includes providing a semiconductor substrate with a substrate region. The method also includes forming a pad oxide layer overlying the substrate region. The method additionally includes forming a stop layer overlying the pad oxide layer. Furthermore, the method includes patterning the stop layer and the pad oxide layer to expose a portion of the substrate region. In addition, the method includes forming a trench within an exposed portion of the substrate region, the trench having sidewalls and a bottom and a height. Also, the method includes depositing alternating layers of oxide and silicon nitride to at least fill the trench, the oxide being deposited by an HDP-CVD process. The method additionally includes performing a planarization process to remove a portion of the silicon nitride and oxide layers. In addition, the method includes removing the pad oxide and stop layers.
    Type: Application
    Filed: October 24, 2008
    Publication date: January 14, 2010
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Ting Cheong Ang
  • Patent number: 7645679
    Abstract: A method for forming an isolation layer for a semiconductor device is provided. The preferred method is capable of securing a gap fill margin during formation of an isolation layer. A device isolation layer formed according to a preferred method includes a trench formed in a device separation area of a semiconductor substrate; a thermal oxidation layer formed in a part of the trench; an oxidation silicon layer formed on the thermal oxidation layer; and an oxidation isolation layer formed on the oxidation silicon layer and filling the trench.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: January 12, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: In Kyu Chun
  • Patent number: 7642172
    Abstract: A semiconductor device can include a semiconductor substrate, a first trench formed in the semiconductor substrate, a second trench formed in the semiconductor substrate, a first device isolation layer formed in the first trench, a second device isolation layer formed in the second trench having a different structure than the first device isolation layer.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: January 5, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Dae-Kyeun Kim
  • Publication number: 20090311846
    Abstract: A mask pattern is formed on a semiconductor substrate in which a cell region, a PMOS region, and an NMOS region are defined. Trenches are formed in the cell region, the PMOS region, and the NMOS region. A sidewall oxide layer and a protection layer are formed in the trenches, and a portion of the protection layer in the PMOS region is removed. A first device isolation insulating layer is formed on the substrate, filling the trenches. Portions of the first device isolation insulating layer are removed to expose the mask pattern and the trenches of the cell region and the NMOS region and to leave a portion of the first device isolation insulating layer in the trench in the PMOS region. A liner is formed on the portion of the first device isolation region in the trench in the PMOS region and conforming to sidewalls of the trenches in the cell region and the NMOS region. A second device isolation insulating layer is formed on the substrate, filling the trenches in the cell region and the NMOS region.
    Type: Application
    Filed: May 14, 2009
    Publication date: December 17, 2009
    Inventors: Dong-Woon Shin, Soo-jin Hong, Guk-hyon Yon, Si-young Choi, Sun-ghil Lee
  • Patent number: 7632737
    Abstract: A method including, prior to a plasma heat-up operation, forming a liner on structure coated with an insulator. And a method including forming a trench on a substrate, forming an insulator on the trench, and after forming a liner having a thickness of between about 50 angstroms and about 400 angstroms on the insulator, applying a plasma heat-up operation to the substrate.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: December 15, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Neal R. Rueger, William Budge, Weimin Li
  • Patent number: 7632736
    Abstract: In general, in one aspect, a method includes forming a spacer layer over a substrate having patterned stacks formed therein and trenches between the patterned stacks. A sacrificial polysilicon layer is deposited over the substrate to fill the trenches. A patterning layer is deposited over the substrate and patterned to define contact regions over at least a portion of the trenches. The sacrificial polysilicon layer is etched using the patterned patterning layer to form open regions.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: December 15, 2009
    Assignee: Intel Corporation
    Inventors: Max Wei, Been-Jon Woo
  • Patent number: 7625807
    Abstract: The present invention facilitates semiconductor fabrication by maintaining shape and density of an etch stop layer (206) during trench fill operations. The shape and density of the etch stop layer (206) is maintained by forming a protective alloy liner layer (310) on the etch stop layer (206) prior to trench fill operations. The protective alloy liner (310) is comprised of an alloy that is resistant to materials employed in the trench fill operations. As a result, clipping and/or damage to the etch stop layer (206) is mitigated thereby facilitating a subsequent planarization process that employs the etch stop layer (206). Additionally, selection of thickness and composition (1706) of the formed protective alloy (310) yields a stress amount and type (1704) that is applied to channel regions of unformed transistor devices, ultimately providing for an improvement in channel mobility.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: December 1, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Manuel A. Quevedo-Lopez, James J. Chambers, Leif Christian Olsen
  • Patent number: 7625805
    Abstract: Trenches are formed in an SOI wafer to isolate low-voltage and high-voltage elements in the wafer. The isolation trenches are formed with trench coverings that do not protrude above the trenches. Vertical in-trench and horizontal out-of-trench isolation layers are formed and the trenches are then filled to above the planar surface formed by the isolating layers. The filling is planarized and a portion of the filling located in the trench interior is removed. A portion of the isolation layers are then removed and a portion of the filling is removed so that the filler and the isolation layers in the trenches are at about the same level. A covering layer is then deposited. The covering layer extends above the surface of the wafer and into the trenches down to the filler and the isolation layers. The covering layer is additionally planarized to about the top of the trenches.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: December 1, 2009
    Assignee: X-FAB Semiconductor Foundries AG
    Inventors: Ralf Lerner, Uwe Eckoldt
  • Patent number: 7622369
    Abstract: A method of forming device isolation regions on a trench-formed silicon substrate and removing residual carbon therefrom includes providing a flowable, insulative material constituted by silicon, carbon, nitrogen, hydrogen, oxygen or any combination of two or more thereof; forming a thin insulative layer, by using the flowable, insulative material, in a trench located on a semiconductor substrate wherein the flowable, insulative material forms a conformal coating in a silicon and nitrogen rich condition whereas in a carbon rich condition, the flowable, insulative material vertically grows from the bottom of the trenches; and removing the residual carbon deposits from the flowable, insulative material by multi-step curing, such as O2 thermal annealing, ozone UV curing followed by N2 thermal annealing.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 24, 2009
    Assignee: ASM Japan K.K.
    Inventors: Woo Jin Lee, Atsuki Fukazawa, Nobuo Matsuki
  • Publication number: 20090283852
    Abstract: Stress-inducing structures, methods, and materials are disclosed. In one embodiment, an isolation region includes an insulating material in a lower portion of a trench formed in a workpiece and a stress-inducing material disposed in a top portion of the trench over the insulating material.
    Type: Application
    Filed: May 19, 2008
    Publication date: November 19, 2009
    Inventors: Alois Gutmann, Roland Hampp, Scott Jansen
  • Publication number: 20090286381
    Abstract: In-situ semiconductor process that can fill high aspect ratio (typically at least 6:1, for example 7:1 or higher), narrow width (typically sub 0.13 micron, for example 0.1 micron or less) gaps without damaging underlying features and little or no incidence of voids or weak spots is provided. A protective layer is deposited to protect underlying features in regions of the substrate having lower feature density so that unwanted material may be removed from regions of the substrate having higher feature density. This protective layer may deposits thicker on a low density feature than on a high density feature and may be deposited using a PECVD process or low sputter/deposition ratio HDP CVD process. This protective layer may also be a metallic oxide layer that is resistant to fluorine etching, such as zirconium oxide (ZrO2) or aluminum oxide (Al2O3).
    Type: Application
    Filed: May 16, 2008
    Publication date: November 19, 2009
    Applicant: NOVELLUS SYSTEMS INC.
    Inventors: Bart van Schravendijk, Richard S. Hill, Wilbert van den Hoek, Harald te Nijenhuis
  • Publication number: 20090286380
    Abstract: A method for manufacturing a semiconductor device includes forming an oxide film uniformly in a trench in the device isolation by, for example, a radical oxidation process. The method also includes increasing the thickness of the oxide film positioned at recess sidewalls by forming a gate oxide film. Manufacturing the device according to this method will prevent junction leakage and maintain a gate oxidation intensity characteristic that will improve the refresh characteristic of the device.
    Type: Application
    Filed: December 23, 2008
    Publication date: November 19, 2009
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Seung Bum Kim, Jong Kuk Kim
  • Patent number: 7618876
    Abstract: A method of manufacturing a semiconductor device comprises forming a trench in a semiconductor substrate, forming a first insulating film having a first recessed portion in the trench, forming a coating film so as to fill the first recessed portion therewith, transforming the coating film into a second insulating film, planarizing the second insulating film to expose the first insulating film and the second insulating film, removing at least the second insulating film from the first recessed portion to moderate an aspect ratio for the first recessed portion formed in the trench, thereby forming a second recessed portion therein, and forming a third insulating film on a surface of the semiconductor substrate so as to fill the second recessed portion therewith.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: November 17, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Osamu Arisumi, Masahiro Kiyotoshi, Katsuhiko Hieda, Yoshitaka Tsunashima
  • Patent number: 7611964
    Abstract: The present invention relates to a method of forming an isolation layer of a semiconductor memory device. According to a method of fabricating a semiconductor memory device in accordance with an aspect of the present invention, a tunnel insulating layer and a charge trap layer are formed over a semiconductor substrate. An isolation trench is formed by etching the charge trap layer and the tunnel insulating layer. A passivation layer is formed on the entire surface including the isolation trench. A first insulating layer is formed at a bottom of the isolation trench. Portions of the passivation layer, which are oxidized in the formation process of the first insulating layer, are removed. A second insulating layer is formed on the entire surface including the first insulating layer.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: November 3, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jong Hye Cho, Whee Won Cho, Eun Soo Kim
  • Publication number: 20090267199
    Abstract: An isolation layer of a semiconductor device and a process for forming the same is described herein. The isolation layer includes a trench that is defined and formed in a semiconductor substrate. A first liner nitride layer is formed on the surface of the trench and a flowable insulation layer is formed in the trench including the first liner nitride layer. The flowable insulation layer is formed such to define a recess in the trench. A second liner nitride layer is formed on the recess including the flowable insulation layer and the first liner nitride layer. Finally, an insulation layer is formed in the recess on the second liner nitride layer to completely fill the trench.
    Type: Application
    Filed: July 3, 2008
    Publication date: October 29, 2009
    Inventors: Hyung Hwan KIM, Kwang Kee CHAE, Jong Goo JUNG, Ok Min MOON, Young Bang LEE, Sung Eun PARK
  • Patent number: 7608519
    Abstract: In a method of fabricating a trench isolation structure of a semiconductor device, excellent gap filling properties are attained, without the generation of defects. In one aspect, the method comprises: loading a substrate with a trench formed therein into a high-density plasma (HDP) chemical vapor deposition apparatus; primarily heating the substrate; applying a first bias power to the apparatus so as to form an HDP oxide liner on side wall and bottom surfaces of the trench, a gap remaining in the trench following formation of the HDP oxide liner; removing the application of the first bias power and secondarily heating the substrate; applying a second bias power at a power level that is greater than that of the first bias power to the substrate so as to form an HDP oxide film to fill the gap in the trench; and unloading the substrate from the apparatus.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: October 27, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-suk Shin, Yong-kuk Jeong
  • Patent number: 7605049
    Abstract: A transistor that forms an integrated circuit, a photo detector and a micromirror are mounted on the same semiconductor substrate in an optical semiconductor device of the present invention, which has an antireflection film that is formed on the photo detector, a first insulating film which is formed on the antireflection film and in which an opening is created in the state where the antireflection film is exposed, and an etching stopping film which is formed on the first insulating film and which has been left in the periphery around the opening in the first insulating film on the antireflection film and in the periphery around the portion above the micromirror.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: October 20, 2009
    Assignee: Panasonic Corporation
    Inventors: Masaki Taniguchi, Hisatada Yasukawa, Takaki Iwai, Ryoichi Ito
  • Patent number: 7601607
    Abstract: An embodiment of the invention shows a process to form a damascene opening preferably without hardmask overhang or dielectric layer undercut/void. The low-k dielectric material can be sandwiched in two hardmask films to form the dielectric film through which an interconnect opening is etched. A first example embodiment comprises the following. We form a lower interconnect and an insulating layer over a semiconductor structure. We form a first hardmask a dielectric layer, and a second hardmask layer, over the lower interconnect and insulating layer. We etch a first interconnect opening in the first hardmask, the dielectric layer and the second hardmask layer. Lastly, we form an interconnect in the first interconnect opening.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: October 13, 2009
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Wuping Liu, Raymond Joy, Beichao Zhang, Liang Choo Hsia, Boon Meng Seah, Shyam Pal
  • Patent number: 7601608
    Abstract: A method of forming a buried digit line is disclosed. Sacrificial spacers are formed along the sidewalls of an isolation trench, which is then filled with a sacrificial material. One spacer is masked while the other spacer is removed and an etch step into the substrate beneath the removed spacer forms an isolation window. Insulating liners are then formed along the sidewalls of the emptied trench, including into the isolation window. A digit line recess is then formed through the bottom of the trench between the insulating liners, which double as masks to self-align this etch. The digit line recess is then filled with metal and recessed back, with an optional prior insulating element deposited and recessed back in the bottom of the recess.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: October 13, 2009
    Assignee: Micron Technologies, Inc.
    Inventor: David H. Wells
  • Publication number: 20090253243
    Abstract: In a method of manufacturing a non-volatile memory device, a conductive structure is formed on a substrate. The conductive structure includes a tunnel oxide pattern, a first conductive pattern, a pad oxide pattern and a hard mask pattern. A trench is formed on the substrate using the conductive structure as an etching mask. An inner oxide layer is formed on an inner wall of the trench and sidewalls of the tunnel oxide pattern and the first conductive pattern. The inner oxide layer is cured, thereby forming a silicon nitride layer on the inner oxide layer. A device isolation pattern is formed in the trench, and the hard mask pattern and the pad oxide pattern are removed from the substrate. A dielectric layer and a second conductive pattern are formed on the substrate. Accordingly, the silicon nitride layer prevents hydrogen (H) atoms from leaking into the device isolation pattern.
    Type: Application
    Filed: June 16, 2009
    Publication date: October 8, 2009
    Inventors: Hye-Jin Cho, Kyu-Charn Park, Choong-Ho Lee, Byung-Yong Choi
  • Patent number: 7595224
    Abstract: In a method for manufacturing a light detector that is provided with an apertured part for incident light on an upper structural layer stack laminated on a semiconductor substrate, a polyimide film, which is applied in order to protect a silicon-nitride film on an upper surface of the upper structural layer stack, is properly removed from the apertured part, allowing, e.g., the intensity of light incident within the apertured part to be made uniform. A smoothing film 140 is applied to the surface of the upper structural layer stack 86, smoothly covering corner parts 142 on the aperture edge of the apertured part 116. The smoothing film 140 is etched and the corner parts 142 that are exposed on the aperture edge, where the smoothing film 140 is thin, are removed by the etching. The aperture edge of the apertured part 116 is thereby enlarged. After the smoothing film 140 has been detached, a polyimide film is applied.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: September 29, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Nobuji Kobayashi
  • Patent number: 7582560
    Abstract: A method for fabricating a semiconductor device includes preparing a substrate comprising a first surface and a second surface formed at a lower position than the first surface, forming an insulation layer over the substrate, etching the insulation layer to form a first contact hole exposing the first surface and a second contact hole having a larger depth than the first contact hole above the second surface, forming a first sacrificial layer over the insulation layer, the first contact hole, and the second contact hole, forming a second sacrificial layer over the substrate structure and filled in the first contact hole, exposing the first sacrificial layer at a bottom surface of the second contact hole while having the second sacrificial layer remain in the first contact hole, etching the first sacrificial layer, and etching the remaining insulation layer to expose the second surface.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: September 1, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ky-Hyun Han, Ki-Won Nam
  • Publication number: 20090215243
    Abstract: A method of manufacturing a semiconductor device includes forming an isolation region defining an active region in a semiconductor substrate, forming a first insulating film over the semiconductor substrate, forming a second insulating film having etching properties different from those of the first insulating film over the first insulating film, selectively removing the second insulating film from a first region over the active region and the isolation region by dry etching using a fluorocarbon-based etching gas, removing a residual film formed by the dry etching over the first insulating film by exposure in an atmosphere containing oxygen, and selectively removing the first insulating film from the first region by wet etching.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 27, 2009
    Applicant: FUJITSU MICROELECTRONICS LIMITED
    Inventors: Jusuke Ogura, Hikaru Kokura, Hideyuki Kojima, Toru Anezaki, Hiroyuki Ogawa, Junichi Ariyoshi
  • Patent number: 7575981
    Abstract: A method for fabricating an isolation layer in a semiconductor device includes providing a substrate, forming a trench over the substrate, forming a liner nitride layer and a liner oxide layer along a surface of the trench, forming an insulation layer having an etch selectivity ratio different from that of the liner oxide layer over the liner oxide layer, forming a spin on dielectric (SOD) oxide layer to fill a portion of the trench over the insulation layer, and forming a high density plasma (HDP) oxide layer for filling the remaining a portion of the trench.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 18, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Hae-Jung Lee, Hyun-Sik Park, Jae-Kyun Lee
  • Publication number: 20090203188
    Abstract: Methods of manufacturing a semiconductor device, which can reduce hot electron induced punchthrough (HEIP) and/or improve the operating characteristics of the device include selectively forming an oxynitride layer in a device isolation layer according to the characteristics of transistors isolated by the device isolation layer. The methods include forming first trenches and second trenches on a substrate, forming an oxide layer on the surfaces of the first trenches and the second trenches, selectively forming an oxynitride layer on the second trenches by using plasma ion immersion implantation (PIII), and forming a buried insulating layer in the first trenches and the second trenches. The buried insulating layer may be planarized to form a first device isolation layer in the first trenches and a second device isolation layer in the second trenches.
    Type: Application
    Filed: June 5, 2008
    Publication date: August 13, 2009
    Inventors: Dong-woon Shin, Tai-su Park, Si-young Choi, Soo-jin Hong, Mi-jin Kim
  • Publication number: 20090203189
    Abstract: A semiconductor device is manufactured by forming trenches in a substrate and selectively performing Plasma Ion Immersion Implantation and Deposition (PIIID) on a subset of the trenches in the substrate. The PIIID may be performed on only a portion of a surface of at least one of the trenches in the substrate. Semiconductor devices can include a semiconductor substrate having first, second and third trenches therein, and an oxide liner layer that fully lines the first trenches, that does not line the second trenches and that partially lines the third trenches.
    Type: Application
    Filed: June 6, 2008
    Publication date: August 13, 2009
    Inventors: Dong-woon Shin, Tai-su Park, Si-Young Choi, Soo-Jin Hong, Mi-Jin Kim
  • Publication number: 20090194807
    Abstract: A semiconductor memory device includes: a semiconductor substrate; an element isolation trench formed on the semiconductor substrate so as to surround an element region in which a memory element is to be formed; a first gate insulating film formed on the element region of the semiconductor substrate; a charge storing layer formed on the first gate insulating film; a second gate insulating film formed on the charge storing layer; a control electrode formed on the second gate insulating film; an impurity diffusion layer formed in a surface layer of the semiconductor substrate along a channel direction of the charge storing layer; a sidewall oxide film formed on a side surface of the element isolation trench; and an element isolation insulating film formed so as to fill the element isolation trench together with the element isolation insulation film; wherein the top surface of the sidewall oxide film is flush with or above the top surface of the first gate insulating film.
    Type: Application
    Filed: October 11, 2007
    Publication date: August 6, 2009
    Inventors: Wakako Takeuchi, Hiroshi Akahori, Hiroki Yamashita
  • Publication number: 20090194810
    Abstract: A stacked film including a gate dielectric film and electrode film of each memory cell of a flash memory is formed on a semiconductor substrate. The stacked film is patterned by reactive ion etching to form an isolation trench for formation of an element isolation region and the surface of the semiconductor substrate is exposed to the internal portion of the isolation trench. An O3-TEOS film exhibiting underlying material selectivity during the deposition is formed in the isolation trench as the first filling dielectric film and then the isolation trench is filled with the second filling dielectric film to form an element isolation region of an STI structure.
    Type: Application
    Filed: January 28, 2009
    Publication date: August 6, 2009
    Inventors: Masahiro KIYOTOSHI, Hiroshi Kubota
  • Publication number: 20090189246
    Abstract: A method for forming a trench isolation structure and a semiconductor device are provided. The method comprises the following steps: forming a patterned mask on a semiconductor substrate; defining a trench with a predetermined depth D by using the patterned mask, wherein the trench has a bottom and a side wall; forming a liner layer covering the bottom and the side wall of the trench; substantially filling the trench with a flowable oxide from the bottom to a thickness d1 to form an oxide layer; forming a barrier layer with a thickness d? to cover and completely seal the surface of the oxide layer, wherein d?<d1 and d1+d??1/2D; forming an insulating layer to fill the trench; and conducting a planarization process wherein the patterned mask is used as a stop layer. In the semiconductor substrate, the oxide layer, essentially composed of the flowable oxide, is confined in an isolated region.
    Type: Application
    Filed: July 23, 2008
    Publication date: July 30, 2009
    Inventors: Hsiao-Che WU, Ming-Yen LI, Wen-Li TSAI
  • Patent number: 7563690
    Abstract: A method for forming a shallow trench isolation (STI) structure is provided. A pad oxide layer and a nitride silicon layer are formed on a provided substrate sequentially. The pad oxide layer, the nitride silicon layer and the substrate are then etched to form a trench. An oxide liner and a nitride liner are formed in the trench. A self-align photo process is implemented and the nitride liner is then etched to expose the oxide liner.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: July 21, 2009
    Assignee: Macronix International Co., Ltd.
    Inventor: Chin Cheng Yang
  • Publication number: 20090170282
    Abstract: A method of forming isolation layer in a semiconductor device, comprising forming a trench on an isolation region of a semiconductor substrate by etching utilizing an isolation mask; forming a first insulating layer on a lower portion of the trench; forming a second insulating layer on the semiconductor substrate including the first insulating layer; etching the second insulating layer to increase an aspect ratio on the isolation region; and forming a third insulating layer on a peripheral region of the second insulating layer to fill moats formed on the second insulating layer with the third insulating layer.
    Type: Application
    Filed: June 2, 2008
    Publication date: July 2, 2009
    Inventor: Cha Deok Dong
  • Patent number: 7553741
    Abstract: Even if the insulated isolation structure which makes element isolation using partial and full isolation combined use technology is manufactured, the manufacturing method of a semiconductor device which can manufacture the semiconductor device with which characteristics good as a semiconductor element formed in the SOI layer where insulated isolation was made are obtained is obtained. Etching to an inner wall oxide film and an SOI layer is performed by using as a mask the resist and trench mask which were patterned, and the trench for full isolation which penetrates an SOI layer and reaches an embedded insulating layer is formed. Although a part of CVD oxide films with which the resist is not formed in the upper part are removed at this time, since a silicon nitride film is protected by the CVD oxide film, the thickness of a silicon nitride film is kept constant.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: June 30, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Takashi Ipposhi
  • Publication number: 20090162990
    Abstract: A method for manufacturing a semiconductor device that can prevent the loss of an isolation structure and that can also stably form epi-silicon layers is described. The method for manufacturing a semiconductor device includes defining trenches in a semiconductor substrate having active regions and isolation regions. The trenches are partially filled with a first insulation layer. An etch protection layer is formed on the surfaces of the trenches that are filled with the first insulation layer. A second insulation layer is filled in the trenches formed with the etch protection layer to form an isolation structure in the isolation regions of the semiconductor substrate. Finally, portions of the active regions of the semiconductor substrate are recessed such that the isolation structure has a height higher than the active regions of the semiconductor substrate.
    Type: Application
    Filed: April 10, 2008
    Publication date: June 25, 2009
    Inventors: Sang Tae AHN, Ja Chun KU, Eun Jeong KIM, Wan Soo KIM
  • Patent number: 7550397
    Abstract: Embodiments relate to a semiconductor device and a method of manufacturing a semiconductor device having a pre-metal dielectric liner. In embodiments, method for forming a semiconductor device may include forming a pre-metal dielectric liner, which has a multi-layer structure including a plurality of interfacial surfaces, on an entire surface of a semiconductor substrate formed with a transistor, and forming a boron phospho silicate glass (BPSG) oxide layer on the pre-metal dielectric liner. Since the pre-metal dielectric liner is formed in a multi-layer structure having a plurality of interfacial surfaces, boron (B) of an upper BPSG oxide layer is not penetrated into the semiconductor substrate.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: June 23, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sung Kyung Jung
  • Publication number: 20090155980
    Abstract: A method of forming trench isolation includes etching first trench lines into semiconductive material of a semiconductor substrate. First isolation material is formed within the first trench lines within the semiconductive material. After forming the first isolation material within the first trench lines, second trench lines are etched into semiconductive material of the substrate between the first trench lines such that the first trench lines and second trench lines alternate. Second isolation material is formed within the second trench lines within the semiconductive material. Alternate and additional aspects are contemplated.
    Type: Application
    Filed: December 18, 2007
    Publication date: June 18, 2009
    Inventor: Christopher W. Hill
  • Publication number: 20090152670
    Abstract: A semiconductor device and a method of fabricating the same includes a semiconductor substrate including a first trench; an epitaxial layer disposed on and/or over the semiconductor substrate and including a second trench connected to the first trench; a first insulator disposed in the first trench; and a second insulator disposed in the second trench.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 18, 2009
    Inventor: Dae-Kyeun Kim
  • Patent number: 7541259
    Abstract: The semiconductor device includes a lower device isolation structure formed in a semiconductor substrate to define an active region. The lower device isolation structure has a first compressive stress. An upper device isolation structure is disposed over the lower device isolation structure. The upper device isolation structure has a second compressive stress greater than the first compressive stress. A gate structure is disposed over the active region between the neighboring upper device isolation structures.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: June 2, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Yun Yi