Preliminary Etching Of Groove Patents (Class 438/444)
  • Patent number: 6949448
    Abstract: A method for forming a local oxidation of silicon (LOCOS) isolation region on a silicon substrate. A series of patterned graded oxidation mask layers formed of a material comprising silicon, oxygen and nitrogen is formed. The series of patterned graded oxidation mask layers has a comparatively high nitrogen:oxygen atomic ratio within a series of first contiguous sub-layers; a comparatively high nitrogen:oxygen atomic ratio within a series of third contiguous sub-layers; and a comparatively low nitrogen:oxygen atomic ratio within a series of second contiguous sub-layers.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: September 27, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Shih-Chi Lin
  • Patent number: 6943088
    Abstract: In a trench isolation structure of a semiconductor device, oxide liners are formed within the trenches, wherein a non-oxidizable mask is employed during various oxidation steps, thereby creating different types of liner oxides and thus different types of corner rounding and thus mechanical stress. Therefore, for a specified type of circuit elements, the characteristics of the corresponding isolation trenches may be tailored to achieve an optimum device performance.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: September 13, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ralf van Bentum, Stephan Kruegel, Gert Burbach
  • Patent number: 6927138
    Abstract: Provided is a method of semiconductor device fabrication capable of rounding the sharp edge portions of trenches so as to form device isolation regions having high electrical reliability. A semiconductor substrate comprising a lattice-strain relaxed silicon germanium layer, a silicon germanium layer, and a lattice strained silicon layer formed in this order of mention onto a silicon substrate is used, while trenches are formed in the portions for device isolation regions of the semiconductor substrate by etching. Then, a silicon film is deposited on the entirety of the exposed surface, and the deposited silicon film is dry-oxidized so as to form a silicon dioxide film. As a result, the edge portions of the trenches are rounded.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: August 9, 2005
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masahiro Takenaka
  • Patent number: 6875697
    Abstract: A dual depth trench isolation structure formed between active devices and conductive well regions of same conductivity type which comprises a first inter-well isolation structure having a first isolation trench depth, a second inter-well isolation structure having a second isolation trench depth which combine to form a dual depth trench containing the dual depth trench isolation structure comprising the first inter-well isolation structure and the second inter-well isolation structure, with the dual depth trench isolation interposed at the boundary of an n-well conductive region and a p-well conductive region, a first intra-well isolation structure having a first isolation trench depth, the first intra-well isolation structure interposed between a pair of p-channel transistors residing in the n-well region, and a second intra-well isolation structure having a second isolation trench depth, the second intra-well isolation structure interposed between a pair of n-channel transistors residing in the p-well regio
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: April 5, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Jigish D. Trivedi
  • Patent number: 6852606
    Abstract: A method for forming an isolation layer of a semiconductor device which is capable of improving isolation characteristics of a highly integrated semiconductor device. The method includes the steps of forming a first insulating layer on a substrate; forming both a first recess in the first isolation region and a plurality of second recesses in the second isolation region by only once applying a photolithography process to the first insulating layer; forming a third recess, which is deeper than the first recess, in the center area of the first recess in the first isolation region; and filling the first, second, third recesses with insulating materials or a thermal oxide layer. In addition, in the semiconductor device in which the isolation region has different widths, the first isolation region which is relatively narrower in width than the second isolation region has a deeper recess than the second isolation region.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: February 8, 2005
    Assignee: LG Semicon Co., LTD
    Inventor: Young Kwon Jun
  • Patent number: 6828209
    Abstract: Embodiments include semiconductor devices and a methods for manufacturing the same that suppress deficiencies in the transistor characteristics. A method for manufacturing a semiconductor device includes the steps of (A) forming a polishing stopper layer 14 having a predetermined pattern over a substrate 10, (B) removing a part of the substrate using the polishing stopper layer 14 as a mask to form a trench 16, (C) forming a trench oxide film 18 over a surface of the substrate 10 that forms the trench 16, (D) forming an insulating layer 21 that fills the trench 16 over an entire surface of the substrate, (E) polishing the insulating layer 21 by a chemical-mechanical polishing, (F) removing the polishing stopper layer 14, and (G) etching a part of the insulating layer 21 to form a trench insulating layer 20.
    Type: Grant
    Filed: October 14, 2000
    Date of Patent: December 7, 2004
    Assignee: Seiko Epson Corporation
    Inventor: Yutaka Maruo
  • Patent number: 6790781
    Abstract: A dual depth trench isolation structure formed between active devices and conductive well regions of same conductivity type which comprises a first inter-well isolation structure having a first isolation trench depth, a second inter-well isolation structure having a second isolation trench depth which combine to form a dual depth trench containing the dual depth trench isolation structure comprising the first inter-well isolation structure and the second inter-well isolation structure, with the dual depth trench isolation interposed at the boundary of an n-well conductive region and a p-well conductive region, a first intra-well isolation structure having a first isolation trench depth, the first intra-well isolation structure interposed between a pair of p-channel transistors residing in the n-well region, and a second intra-well isolation structure having a second isolation trench depth, the second intra-well isolation structure interposed between a pair of n-channel transistors residing in the p-well regio
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: September 14, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Jigish D. Trivedi
  • Patent number: 6790752
    Abstract: The present invention is generally directed to various methods of controlling Vss implants on memory devices, and a system for performing same. In one illustrative embodiment, the method comprises forming a plurality of trenches in a semiconducting substrate, measuring at least one physical characteristic of at least one of the trenches and determining at least one parameter of a VSS implant process to be performed on the substrate based upon the measured at least one physical characteristic of at least one trench.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: September 14, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Matthew A. Purdy
  • Patent number: 6777297
    Abstract: A disposable spacer for use in a semiconductor device fabrication process is formed of a germanium-silicon alloy. The germanium-silicon alloy may include a first portion (x) of germanium and a second portion (1-x) of silicon, wherein x is greater than about 0.2. A method of forming the disposal spacer includes providing a device structure and forming a layer of germanium-silicon alloy on the device structure. The layer is then etched to form the disposable spacer. The device structure may include a substrate and a gate structure with the disposable spacers formed at sidewalls thereof. Further, the device structure may include a substrate having an oxidation mask formed thereon with the disposable spacers formed relative to sidewalls of the oxidation mask. In addition, the method includes removing the disposable spacer by oxidizing the spacer to form volatile GexSiyO. Any unvolatilized GexSiyO may be removed using water.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: August 17, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Publication number: 20040157403
    Abstract: A flash memory cell and fabrication method thereof are disclosed. An example fabrication method deposits a pad oxide layer and a pad nitride layer on a semiconductor substrate, patterns the pad nitride layer, implants ions into the substrate to form an ion implant region, forms spacers on sidewalls of the pad nitride layer pattern, removes some part of the pad oxide layer and the top portion of the substrate through an etching process using the spacers as a mask to form a trench that divides the ion implant region into two parts. The example fabrication method also forms a gap filling insulating layer over the resulting substrate, and forms a trench isolation layer and junction regions simultaneously by removing the spacers, the pad nitride layer pattern, the pad oxide layer, and the top portion of the gap filling insulating layer.
    Type: Application
    Filed: December 31, 2003
    Publication date: August 12, 2004
    Inventors: Chang Hun Han, Bong Kil Kim
  • Patent number: 6768130
    Abstract: A method of forming a semiconductor on insulator structure in a monolithic semiconducting substrate with a bulk semiconductor structure. A first portion of a surface of the monolithic semiconducting substrate is recessed without effecting a second portion of the surface of the monolithic semiconducting substrate. An insulator precursor species is implanted beneath the surface of the recessed first portion of the monolithic semiconducting substrate, and a trench is etched around the implanted and recessed first portion of the monolithic semiconducting substrate. The insulator precursor species is activated to form an insulator layer beneath the surface of the recessed first portion of the monolithic semiconducting substrate. The semiconductor on insulator structure is formed in the first portion of the monolithic semiconducting substrate, and the bulk semiconductor structure is formed in the second portion of the monolithic semiconducting substrate.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: July 27, 2004
    Assignee: LSI Logic Corporation
    Inventor: Matthew J. Comard
  • Patent number: 6746936
    Abstract: The present invention relates to a method for forming an isolation film for semiconductor devices.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: June 8, 2004
    Assignee: Hynix Semiconductor Inc.
    Inventor: Joon Hyeon Lee
  • Patent number: 6727161
    Abstract: A process for making a semiconductor structure, includes forming a second dielectric layer on exposed regions of an intermediate structure. The intermediate structure includes: a semiconductor substrate having the regions, a first dielectric layer on at least a first portion of the semiconductor substrate, an etch-stop layer on at least a second portion of the first dielectric layer, and spacers on at least a third portion of said semiconductor substrate. The spacers are adjacent edges of the etch-stop layer and adjacent the exposed regions.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: April 27, 2004
    Assignee: Cypress Semiconductor Corp.
    Inventors: Yongchul Ahn, Kaichiu Wong
  • Patent number: 6723616
    Abstract: A method of forming a semiconductor device using shallow trench isolation, includes forming a trench within a semiconductor substrate and forming a screen dielectric stack outwardly from the semiconductor substrate. The screen dielectric stack includes a first sacrificial dielectric layer disposed outwardly from the semiconductor substrate and a second sacrificial dielectric layer disposed outwardly from and in contact with the first sacrificial dielectric layer. In one embodiment, the first sacrificial dielectric layer is formed before forming the trench and the second sacrificial dielectric layer is formed after forming the trench.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: April 20, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Seetharaman Sridhar, Youngmin Kim, Zhiqiang Wu, Mark S. Rodder
  • Patent number: 6723615
    Abstract: A highly reliable semiconductor device capable of preventing generation of a leakage current is provided. The semiconductor device comprises a silicon substrate having a main surface and including a trench formed on the main surface. The trench is defined by surfaces including a bottom surface, a side surface, continuous to the bottom surface, having first inclination with respect to the main surface, and an intermediate surface, formed between the main surface and the bottom surface, having second inclination smaller than the first inclination with respect to the main surface. The semiconductor device further comprises an n-type impurity region.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: April 20, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Shu Shimizu
  • Patent number: 6720233
    Abstract: In a method of producing a trench insulation in a silicon substrate a first silicon-oxide layer is deposited on a front surface of a sequence of layers including the silicon substrate. Then the first silicon-oxide layer is structured so as to define a mask for a subsequent production of a trench. A trench is etched with a predetermined depth in the silicon substrate making use of the mask and filled with a silicon oxide. Then a first polysilicon layer is conformally deposited on the first silicon-oxide layer and on the oxide-filled trench. The first polysilicon layer is removed in such a way that a polysilicon cover remains on the oxide-filled trench, and the first silicon-oxide layer is removed.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: April 13, 2004
    Inventor: Werner Muth
  • Patent number: 6699773
    Abstract: A method of forming a shallow trench isolation type semiconductor device comprises forming an etch protecting layer pattern to define at least one active region on a substrate, forming at least one trench by etching the substrate partially by using the etch protecting layer pattern as an etch mask, forming a thermal-oxide film on an inner wall of the trench, filling the trench having the thermal-oxide film with a CVD silicon oxide layer to form an isolation layer, removing the etch protecting layer pattern from the substrate over which the isolation layer is formed, removing the thermal-oxide film formed on a top end of the inner wall of the trench to a depth of 100 to 350 Å, preferably 200 Å from the upper surface of the substrate, and forming a gate oxide film on the substrate from which the active region and the top end are exposed.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: March 2, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keum-Joo Lee, Young-Min Kwon, Chang-Lyoung Song, In-Seak Hwang
  • Patent number: 6693019
    Abstract: An electronic power device is integrated monolithically in a semiconductor substrate. The device has a first power region and a second region, each region including P/N junction formed of a first semiconductor region with a first type of conductivity, which first semiconductor region extends through the substrate from the top surface of the device and is diffused into a second semiconductor region with the opposite conductivity from the first. The device also includes an interface structure between the two regions, of substantial thickness and limited planar size, that includes a trench filled with dielectric material. A method of manufacturing the electronic power device includes forming a silicon oxide-filled trench. The method includes forming, in the substrate, a plurality of small trenches having predetermined widths and -being delimited by a corresponding plurality of semiconductor material walls having second predetermined widths.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: February 17, 2004
    Assignee: STMicroelectronics S.r.l.
    Inventor: Salvatore Leonardi
  • Publication number: 20040018698
    Abstract: An method and apparatus for high voltage control of isolation region transistors (320) in an integrated circuit. Isolation region transistors (320) are formed between active devices by selective implantation of channel stop implants (140). Isolation region transistors (320) are those areas with a conductor (130) over an isolation region (120) with no channel stop implant (140). This provides an isolation region transistor (320) with a lower threshold voltage than the areas with channel stop implant (140). The voltage threshold of the isolation region transistors 320 are adjustable to a range of voltages by varying the length of channel stop implant (140). The apparatus may be fabricated using conventional fabrication processes.
    Type: Application
    Filed: July 29, 2003
    Publication date: January 29, 2004
    Applicant: Altera Corporation
    Inventor: Dominik J. Schmidt
  • Patent number: 6623985
    Abstract: A semiconductor device and method for manufacturing the same in which the semiconductor device includes a substrate; an MOS transistor formed on the substrate; an interlayer dielectric provided on at least a portion of the MOS transistor; a hydrogen occluding material which is an interstitial hydrogen occluding compound, which is provided on the interlayer dielectric, and which is employed as a wire by being disposed in the vicinity of the top of the MOS transistor; and a ferroelectric capacitor which has a height which is greater than that of the MOS transistor, wherein the hydrogen occluding material is placed between the MOS transistor and the ferroelectric capacitor.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: September 23, 2003
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Yasushi Igarashi
  • Patent number: 6610581
    Abstract: There is disclosed a method of forming an isolation film in a semiconductor device, the method including the steps of: forming a silicon oxide film and a silicon nitride film in that order on a silicon substrate, using a resist pattern as a mask, etching the silicon nitride film and silicon oxide film, and forming trenches in the substrate. In the substrate, the respective trenches form a region in which isolation films are to be formed, and the region between the trenches forms an active region. In this case, each dimension is set so that a ratio W/t of width W to thickness t of the patterned silicon nitride film is 3.8 or more. Subsequently, by removing the resist pattern, subsequently using the silicon nitride film as the mask, and performing thermal oxidation at a temperature of 1050° C. to 1150° C. in an oxygen atmosphere, an isolation film is formed in the trench.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: August 26, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Yasuhiro Takeda, Hideaki Fujiwara
  • Patent number: 6610580
    Abstract: In a first aspect of the present invention, a flash memory array is disclosed. The flash memory array comprises a substrate comprising active regions, wherein the active regions are defined by a layer of nitride, the layer of nitride including a top surface. The flash memory array further comprises shallow trenches in the substrate, each of the shallow trenches including a layer of oxide, the layer of oxide having a top surface, wherein the top surface of the layer of oxide and the top surface of the layer of nitride are on substantially the same plane and channel areas wherein the occurrences of polyl stringers in the channel areas is substantially reduced. In a second aspect of the present invention, a method and system for fabricating a flash memory array is disclosed. The method comprises the steps of providing a layer of nitride over a substrate, forming trenches in the substrate and then growing a layer of oxide in the trenches. Finally, the layer of oxide is polished back.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: August 26, 2003
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Maria C. Chan, Hao Fang, Mark S. Chang, Mike Templeton
  • Patent number: 6579777
    Abstract: A method of forming a localized oxidation having reduced bird's beak encroachment in a semiconductor device by providing an opening in the silicon substrate that has sloped sidewalls with a taper between about 10° and about 75° as measured from the vertical axis of the recess opening and then growing field oxide within the tapered recess opening for forming the localized oxidation.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: June 17, 2003
    Assignees: Cypress Semiconductor Corp., LSI Logic Corporation
    Inventors: Ting P. Yen, Pamela S. Trammel, Philippe Schoenborn, Alexander H. Owens
  • Patent number: 6559033
    Abstract: Protective caps are formed over horizontally closely spaced apart metal lines of an integrated circuit structure. Low k silicon oxide dielectric material is then deposited over and between the metal lines and over protective caps on the lines. After the formation of such low k material between the lines and over the caps, standard k dielectric material is deposited over the low k layer as a planarizing layer over low portions of the low k layer between the lines which may be lower than the top of the caps on the lines to prevent further etching or dishing of the low k layer of during planarizing. The structure is then planarized to bring the low k dielectric material down to the tops of the protective caps on the metal lines. A layer of standard k silicon material is then formed over the planarized low k layer and the caps to allow via formation without passing through the low k layer to avoid via poisoning.
    Type: Grant
    Filed: June 27, 2001
    Date of Patent: May 6, 2003
    Assignee: LSI Logic Corporation
    Inventors: John Rongxiang Hu, Kai Zhang, Senthil K. Arthanari, Hong-Qiang Michael Lu
  • Publication number: 20030040165
    Abstract: A method for rounding bottom corner in LOCOS process by using high density plasma poly etcher comprising the steps of preparing a Si substrate, forming sequentially on the Si substrate with a pad oxide layer and a Si3N4 layer, using a high density plasma poly etcher (HDPPE) with a gas of CF4/Ar or CH4/He to etch the pad oxide layer and the Si3N4 layer to form an opening and a recess in the Si substrate and to round bottom corners of the recess.
    Type: Application
    Filed: August 22, 2001
    Publication date: February 27, 2003
    Inventor: Chun-Hung Lee
  • Patent number: 6524499
    Abstract: The transparent conductive film of the present invention is formed to have a conductive layer containing at least ruthenium fine particles, gold fine particles and silver fine particles, the weight ratio of ruthenium fine particles and gold fine particles in the conductive layer being within the range of 40:60 to 99:1. As a result, this transparent conductive film and a display device having this transparent conductive film have superior electromagnetic wave shielding effects and anti-reflection effects, high chemical stability and superior visibility.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: February 25, 2003
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Naoki Takamiya, Hideki Horikoshi, Kazutomo Mori, Tadashi Neya
  • Publication number: 20030032260
    Abstract: A process for making a semiconductor structure, includes forming a second dielectric layer on exposed regions of an intermediate structure. The intermediate structure includes: a semiconductor substrate having the regions, a first dielectric layer on at least a first portion of the semiconductor substrate, an etch-stop layer on at least a second portion of the first dielectric layer, and spacers on at least a third portion of said semiconductor substrate. The spacers are adjacent edges of the etch-stop layer and adjacent the exposed regions.
    Type: Application
    Filed: February 16, 2000
    Publication date: February 13, 2003
    Inventors: Yongchul Ahn, Kaichiu Wong
  • Patent number: 6518147
    Abstract: A process that includes the steps of forming, in a wafer of monocrystalline silicon, first trenches extending between portions of the wafer; etching the substrate to remove the silicon around the first trenches and forming cavities in the substrate; covering the walls of the cavities with an epitaxial growth inhibiting layer; growing a monocrystalline epitaxial layer on top of the substrate and the cavities so as to obtain a monocrystalline wafer embedding buried cavities completely surrounded by silicon; forming second trenches extending in the epitaxial layer as far as the cavities; removing the epitaxial growth inhibiting layer; oxidizing the cavities, forming at least one continuous region of buried oxide; depositing a polysilicon layer on the entire surface of the wafer and inside the second trenches; removing the polysilicon layer on the surface and leaving filling regions inside the second trenches; and oxidizing, on the top, portions of said filling regions so as to form field oxide regions.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: February 11, 2003
    Assignee: STMicroelectronics S.r.l.
    Inventors: Flavio Francesco Villa, Gabriele Barlocchi
  • Publication number: 20030022461
    Abstract: Within a local oxidation of silicon (LOCOS) method for forming a silicon oxide isolation region, there is first amorphized areally completely at least a surface sub-layer portion of a silicon layer within an isolation region location within the silicon layer defined by an oxidation mask layer formed over the silicon layer, to form an amorphized silicon region within the isolation region location. Thus, when thermally oxidizing the silicon layer having formed thereover the oxidation mask layer to form at least in part from the amorphized silicon region a silicon oxide isolation region, the silicon oxide isolation region is formed with an attenuated bird's beak extension.
    Type: Application
    Filed: July 30, 2001
    Publication date: January 30, 2003
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Ming Yang, Fu-Liang Yang
  • Patent number: 6503815
    Abstract: The invention utilizes introductions of oxygen and hydroxyl to perform an in situ steam generated process to reoxidize a conventional sidewall oxide layer and density the oxide in a shallow trench isolation. The ISSG process renders the conventional sidewall oxide layer much less stress and encroachment. The electrical property of the active regions and the isolation quality between the active regions can be assured. The ISSG process can densify the oxide in a shallow trench isolation to prevent the oxide from being lost in the following clean process.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: January 7, 2003
    Assignee: Macronix International Co., Ltd.
    Inventor: Shu-Ya Hsu
  • Patent number: 6500755
    Abstract: The present invention is directed to a method of forming semiconductor devices. In one illustrative embodiment, the method comprises defining a photoresist feature having a first size in a layer of photoresist that is formed above a layer of dielectric material. The method further comprises reducing the first size of the photoresist feature to produce a reduced size photoresist feature, forming an opening in the layer of dielectric material under the reduced size photoresist feature, and forming a conductive material in the opening in the layer of dielectric material.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: December 31, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Srikanteswara Dakshina-Murthy, Paul R. Besser, Jonathan B. Smith, Eric M. Apelgren, Christian Zistl, Jeremy I. Martin, Lie Larry Zhao, Nicholas John Kepler
  • Patent number: 6495431
    Abstract: A first field oxidation is performed by masking an element-isolating region formation-expected region on a substrate by a first oxidation preventing film (silicon nitride film) having therein a first opening to thereby form a first field oxide film, which is then masked by a second oxidation preventing film (silicon nitride film) having a second opening with a smaller width dimension than the first opening in a second field oxidation to thereby locally form a second field oxide film at the middle of the first field oxide film.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: December 17, 2002
    Assignee: NEC Corporation
    Inventor: Tomokazu Matsuzaki
  • Patent number: 6486038
    Abstract: A method of isolation of active islands on a silicon-on-insulator semiconductor device, comprising the steps of (a) providing a silicon-on-insulator semiconductor wafer having a silicon active layer, a dielectric isolation layer and a silicon substrate, in which the silicon active layer is formed on the dielectric isolation layer and the dielectric isolation layer is formed on the silicon substrate; (b) etching the silicon active layer to form an isolation trench wherein an unetched silicon layer at bottom of the isolation trench remains; (c) oxidizing the layer of silicon at the bottom of the isolation trench to a degree sufficient to oxidize through the layer of silicon at the bottom to the dielectric isolation layer; and (d) filling the isolation trench with a trench isolation material to form a shallow trench isolation structure.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: November 26, 2002
    Assignee: Advanced Micro Devices
    Inventors: Witold P. Maszara, Ming-Ren Lin, Qi Xiang
  • Publication number: 20020173116
    Abstract: A semiconductor device comprises a semiconductor substrate in which a semiconductor element is formed, an interlayer insulating film formed on the semiconductor substrate, an insulating barrier layer, formed on the interlayer insulating film by plasma nitriding, for preventing diffusion of a metal constituting a wiring layer, a conductive barrier layer, formed on the insulating barrier layer, for preventing diffusion of the metal, and a wiring layer formed of the metal on the conductive barrier layer. A bottom portion of the wiring layer is protected by the conductive barrier layer and the insulating barrier layer. Therefore, the diffusion of the metal constituting the wiring layer can be surely prevented.
    Type: Application
    Filed: April 26, 2000
    Publication date: November 21, 2002
    Inventors: Hisako Apyama, Kyoichi Suguro, Hitoshi Tamura, Hisataka Hayashi, Tomonori Aoyama, Gaku Minamihaba, Tadashi Iijima
  • Patent number: 6479368
    Abstract: A method of manufacturing a semiconductor device, in which the depth of a divot in a shallow trench isolation can be decreased. The method comprises forming a trench in a semiconductor substrate, for isolating elements, forming a nitride film on a surface of the trench, depositing mask material on an entire surface of the semiconductor substrate, filling the trench with the mask material, etching the mask material until a surface level of the mask material in the trench falls below the surface of the semiconductor substrate, removing an exposed upper portion of the nitride film on the surface of the trench, removing the mask material from the trench, filling the trench with element-isolating material, thereby forming an element-isolating region, and forming a transistor in an element region isolated from another element region by the element-isolating region.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: November 12, 2002
    Assignees: Kabushiki Kaisha Toshiba, International Business Machines Corp.
    Inventors: Jack A. Mandelman, Mutsuo Morikado, Herbert Ho, Jeffrey P. Gambino
  • Patent number: 6472245
    Abstract: An image sensor includes a photo diode having a first region of a first dopant type formed within a semiconductor substrate and a second region of a second dopant type common to said semiconductor substrate, in which the top side of the second region is exposed on the upper surface of the semiconductor substrate. A method for manufacturing the image sensor is disclosed which includes the steps of: forming a field oxide on the semiconductor substrate; etching selectively the field oxide in contact with the photo diode region to expose a portion of the semiconductor substrate between the etched field oxide and the photo diode region; and forming a connection window for connecting the second region of the photo diode to the semiconductor substrate by ion-injecting the first dopant into the exposed portion of the semiconductor substrate between the etched field oxide and the photo diode region.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: October 29, 2002
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventor: Won-Ho Lee
  • Patent number: 6465324
    Abstract: A method is provided to form a LOCOS isolation in a CMOS SOI device. The SOI has a top silicon layer, a bottom silicon layer, and an insulation layer between the top and bottom silicon layers. An oxide layer is formed over the top silicon layer, and an LPCVD layer is deposited over the oxide layer. A photoresist is provided over the LPCVD layer that exposes a localized area of the LPCVD layer. The LPCVD layer and the oxide layer are etched away through the localized area to expose the top silicon layer. The silicon in the top silicon layer is etched so as to form a recess in the top silicon layer. The photoresist is removed and an isolation oxide is grown over the silicon in the recess so that the silicon in the recess is fully oxidized.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: October 15, 2002
    Assignee: Honeywell International Inc.
    Inventors: Eric E. Vogt, Cheisen J. Yue
  • Patent number: 6444539
    Abstract: A semiconductor apparatus and method for producing shallow trench isolation. The method includes the steps providing a semiconductor substrate member fabricated having a thin barrier oxide layer on which are fabricated a plurality of spaced apart silicon nitride pads. The regions between the spaced apart nitride pads delineate U-shaped regions for forming shallow isolation trenches and are layered with silicon oxide and polysilicon. The U-shaped regions provide a buffer region of oxide and polysilicon material adjacent opposing silicon nitride pads that prevent erosion of the nitride during etch formation of the isolation trench. The polysilicon is further etched to form a wider, second U-shaped region having sloped sidewalls that provide opposing spacer-forming buffer material that facilitates forming a V-shaped isolation trench region into the semiconductor substrate member a predetermined depth without eroding the silicon nitride pads.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: September 3, 2002
    Assignees: Advanced Micro Devices, Inc., Fujitsu Limited
    Inventors: Yu Sun, Angela T. Hui, Yue-Song He, Tatsuya Kajita, Mark Chang, Chi Chang, Hung-Sheng Chen
  • Patent number: 6440819
    Abstract: A local oxidation of silicon (LOCOS) process directed to forming differential field oxide thickness on a single wafer with minimized process steps and optimized planarity. When patterning the masking layer, at least two window widths are formed in the masking layer, exposing the underlying substrate and pad oxide. When one of the window widths is sufficiently small, oxidation of the substrate will be inhibited causing reduced growth and thus a reduced field oxide thickness in that window as compared to other larger windows formed in the same masking layer, creating differential field oxide thicknesses in one growth step. To optimize planarity, prior to oxidation variable depth trenches are formed in alignment with the windows so that the resulting field oxide regions are substantially planar with the substantial surface.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: August 27, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Scott Luning
  • Patent number: 6380018
    Abstract: A semiconductor device having two or more types of separation oxide film are formed on the substrate of the semiconductor device by different methods so as to correspond with element types formed on the same semiconductor substrate. The method for producing the semiconductor device comprises a first separation oxide film formation process, and a second separation oxide film formation process. In the first separation oxide film formation process, a first mask layer is formed on the semiconductor substrate, the first mask layer of the element separation region of the logic element is selectively removed and the semiconductor substrate in the region area selectively oxidized. In second separation oxide film formation process, the remaining first mask layer is removed, a second mask layer is formed, the second mask layer of the element separation region of DRAM elements is then selectively removed, and the semiconductor substrate of the region is selectively oxidized.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: April 30, 2002
    Assignee: NEC Corporation
    Inventor: Iwao Shirakawa
  • Publication number: 20020048898
    Abstract: A process for forming isolation and active regions, wherein the patterning of an oxidation-barrier active stack is performed separately in the PMOS and NMOS regions. After the active stack is in place, two masking steps are used: one exposes the isolation areas on the NMOS side, for stack etch, channel-stop implant, and silicon recess etch (optional). The other masking step is exactly complementary, and performs the analogous operations on the PMOS side. After these two steps are performed (in either order), an additional nitride layer can optionally be deposited and etched to cover the sidewall of the active stack. Field oxide is then formed, and processing then proceeds in conventional fashion.
    Type: Application
    Filed: March 9, 2001
    Publication date: April 25, 2002
    Inventor: Jia Li
  • Patent number: 6362051
    Abstract: A gate structure for an ONO flash memory device includes a first layer of silicon oxide on top of a semiconductor substrate, a second layer of silicon oxide, a layer of silicon nitride sandwiched between the two silicon oxide layers, and a control gate on top of the second layer of silicon oxide. Nitrogen is implanted into the first layer of silicon oxide at less than normal energy levels to reduce the amount of damage to the underlying semiconductor substrate. After low energy nitrogen implantation, the semiconductor structure is heated to anneal out the implant damage and to diffuse the implanted nitrogen to the substrate and silicon oxide interface to cause SiN bonds to be formed at that interface. The SiN bonds is desirable because they improve the bonding strength at the interface and the nitrogen remaining in the silicon oxide layer increases the oxide bulk reliability.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: March 26, 2002
    Assignees: Advanced Micro Devices, Inc., Fujitsu Limited
    Inventors: Jean Yang, Yider Wu, Hidehiko Shiraiwa, Mark Ramsbey
  • Publication number: 20020008298
    Abstract: A process for creating silicon isolation regions which utilizes silicon islands or pillars as sources of silicon for silicon dioxide (or silicon oxide) fields. These silicon oxide fields separate active areas within a device. By providing multiple sources of silicon for silicon oxide formation, the described invention minimizes the use of trench wall edges as silicon sources for silicon oxide growth. This reduction in stress helps to minimize encroachment and undergrowth or bird's beak formation. This process also leads to a reduced step height between the field oxide and active areas, thus providing a more planar wafer surface.
    Type: Application
    Filed: September 5, 2001
    Publication date: January 24, 2002
    Inventor: Salman Akram
  • Publication number: 20020001919
    Abstract: A method of forming a partial reverse active mask. A mask pattern comprising a large active region pattern with an original dimension and a small active region pattern is provided. The large active region pattern and the small active region pattern are shrunk until the small active region pattern disappears. The large active region pattern enlarged to a dimension slightly smaller than the original dimension.
    Type: Application
    Filed: August 21, 2001
    Publication date: January 3, 2002
    Applicant: United Microelectronics Corp.
    Inventors: Coming Chen, Juan-Yuan Wu, Water Lur
  • Patent number: 6319794
    Abstract: A shallow trench isolation structure for a semiconductor device and the method for manufacturing the shallow trench isolation device within a semiconductor substrate. The shallow trench isolation structure is divot-free and includes un-annealed dielectric material as the trench fill material. The intersection of the structure and the semiconductor surface in which it is formed, is free of silicon nitride, but the isolation structure may include a silicon nitride liner which is within the trench and recessed below the semiconductor surface.
    Type: Grant
    Filed: October 14, 1998
    Date of Patent: November 20, 2001
    Assignee: International Business Machines Corporation
    Inventors: Hiroyuki Akatsu, Tze-Chiang Chen, Laertis Economikos, Herbert L. Ho, Richard Kleinhenz, Jack A. Mandelman, Wesley C. Natzle
  • Patent number: 6306727
    Abstract: A process for creating silicon isolation regions which utilizes silicon islands or pillars as sources of silicon for silicon dioxide (or silicon oxide) fields. These silicon oxide fields separate active areas within a device. By providing multiple sources of silicon for silicon oxide formation, the described invention minimizes the use of trench wall edges as silicon sources for silicon oxide growth. This reduction in stress helps to minimize encroachment and undergrowth or bird's beak formation. This process also leads to a reduced step height between the field oxide and active areas, thus providing a more planar wafer surface.
    Type: Grant
    Filed: August 18, 1997
    Date of Patent: October 23, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 6303460
    Abstract: A resist pattern (51) is formed only on buried silicon oxide films (2) on the whole surface of an alignment mark area (11A) and a trench (10C). With the resist pattern (51), preetching is performed by dry etching, to remove the silicon oxide film (2) on the whole of a memory cell area (11B) and part of a peripheral circuit area (11C) by a predetermined thickness. After removing the resist pattern (51), a silicon oxide film (3) and a silicon nitride film (4) are removed by CMP polishing, to provide a height difference between the highest portion and the lowest portion of the silicon oxide film (2A) which serves as an alignment mark. Thus, a semiconductor device with trench isolation structure which achieves a highly accurate alignment without deterioration of device performance and a method for manufacturing the semiconductor device can be provided.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: October 16, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Toshiaki Iwamatsu
  • Patent number: 6297130
    Abstract: This is a method for forming a recessed LOCOS isolation region, which includes the steps of forming a first silicon nitride layer between the pad oxide layer and a polysilicon buffer layer and a second nitride layer over the polysilicon buffer layer. In addition, the method for forming LOCOS isolation regions can include the additional steps of forming a sidewall seal around the perimeter of the active moat regions prior to the field oxidation step. The resulting field oxide isolation regions have provided a low-profile recessed field oxide with reduced oxide encroachment into the active moat region.
    Type: Grant
    Filed: August 30, 1993
    Date of Patent: October 2, 2001
    Assignee: Texas Instruments Incorporated
    Inventor: Kalipatnam Vivek Rao
  • Patent number: 6291312
    Abstract: A method for forming a pullback opening above a shallow trench isolation structure. A patterned mask layer is formed over a substrate. A sacrificial layer is formed on the sidewalls of the mask layer. The exposed portion of the substrate is etched to form a trench in the substrate. The sacrificial layer is removed to increase the width of the opening above the trench.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: September 18, 2001
    Assignee: Taiwan Semiconductor Manufacturing Co, Ltd.
    Inventors: Bor-Wen Chan, Yuan-Hung Liu
  • Patent number: 6284626
    Abstract: With the present invention, a filled isolation trench is fabricated as part of an integrated circuit on a semiconductor wafer using nitrogen implantation into at least one side wall of the isolation trench. An isolation trench is etched within a layer of semiconductor material. The isolation trench has at least one side wall comprised of the semiconductor material, and the isolation trench has a bottom wall. Nitrogen ions are implanted into the at least one side wall of the isolation trench. A layer of an insulator material is thermally grown from the at least one side wall and the bottom wall of the isolation trench. The isolation trench is then filled with the insulator material using a deposition process to form the filled isolation trench. With the present invention, the nitrogen ions implanted into the at least one side wall of the isolation trench reduce a radius of a bird's beak formed on the at least one side wall of the isolation trench.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: September 4, 2001
    Assignee: Vantis Corporation
    Inventor: Hyeon-Seag Kim