Thinning Of Semiconductor Substrate Patents (Class 438/459)
  • Patent number: 8697546
    Abstract: A method of manufacturing a semiconductor device, comprising bonding a first principal surface of a substrate to a supporting substrate through a light-to-heat conversion film, and removing a portion of the light-to-heat conversion film exposed on the supporting substrate. A method of manufacturing a semiconductor device, comprising forming a light-to-heat conversion film on a supporting substrate, bonding a semiconductor substrate to the supporting substrate, so that the light-to-heat conversion film extends outside the semiconductor substrate, performing an anti-contamination treatment on the light-to-heat conversion film, and separating the supporting substrate and the semiconductor substrate from each other.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: April 15, 2014
    Inventor: Kenta Ono
  • Patent number: 8697545
    Abstract: A method for manufacturing microelectromechanical structures (MEMS) is disclosed. A low temperature MEMS device is designed. The low temperature MEM device is based upon a semiconductor manufacturing process comprising at least one semiconductor process for providing at least a heater therein. Each semiconductor process used in implementing the design is limited to a maximum temperature of the in-process low temperature MEMs device or a substrate onto which the low temperature MEMS device is being manufactured to below 300° C.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: April 15, 2014
    Assignee: The Royal Institution for the Advancement of Learning/McGill University
    Inventors: Frederic Nabki, Mourad El-Gamal, Tomas A. Dusatko
  • Patent number: 8692371
    Abstract: Disclosed are a semiconductor apparatus and a manufacturing method thereof. The manufacturing method of the semiconductor apparatus includes: forming a semiconductor chip on a semiconductor substrate; adhering a carrier wafer with a plurality of through holes onto the semiconductor chip; polishing the semiconductor substrate; forming a first via hole at the rear side of the polished semiconductor substrate; forming a first metal layer below the polished semiconductor substrate and at the first via hole; and removing the carrier wafer from the polished semiconductor substrate.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Byoung-Gue Min
  • Patent number: 8691664
    Abstract: A method of forming a semiconductor device is presented. A conductor is embedded within a substrate, wherein the substrate contains a non-conducting material. The backside of the substrate is ground to a thickness wherein at least 1 ?m of the non-conducting material remains on the backside covering the conductor embedded within the substrate. Chemical mechanical polishing (CMP) is employed with an undiscerning slurry to the backside of the substrate, thereby planarizing the substrate and exposing the conductive material. A spin wet-etch, with a protective formulation, is employed to remove a thickness y of the non-conducting material from the backside of the substrate, thereby causing the conductive material to uniformly protrude from the backside of the substrate.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ku-Feng Yang, Weng-Jin Wu, Wen-Chih Chiou, Jung-Chih Hu
  • Patent number: 8691665
    Abstract: The present invention is directed to a method for producing a bonded wafer, the method in which heat treatment for flattening the surface of a thin film is performed on a bonded wafer made by the ion implantation delamination method in an atmosphere containing hydrogen or hydrogen chloride, wherein the surface of a susceptor on which the bonded wafer is to be placed, the susceptor used at the time of flattening heat treatment, is coated with a silicon film in advance. As a result, a method for producing a bonded wafer is provided, the method by which a bonded wafer having a thin film with good film thickness uniformity can be obtained even when heat treatment for flattening the surface of a thin film of a bonded wafer after delamination is performed in the ion implantation delamination method.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 8, 2014
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Satoshi Oka, Hiroji Aga, Masahiro Kato, Nobuhiko Noto
  • Patent number: 8685806
    Abstract: A method of forming a SOI substrate, diodes in the SOI substrate and electronic devices in the SOI substrate and an electronic device formed using the SOI substrate. The method of forming the SOI substrate includes forming an oxide layer on a silicon first substrate; ion-implanting hydrogen through the oxide layer into the first substrate, to form a fracture zone in the substrate; forming a doped dielectric bonding layer on a silicon second substrate; bonding a top surface of the bonding layer to a top surface of the oxide layer; thinning the first substrate by thermal cleaving of the first substrate along the fracture zone to form a silicon layer on the oxide layer to formed a bonded substrate; and heating the bonded substrate to drive dopant from the bonding layer into the second substrate to form a doped layer in the second substrate adjacent to the bonding layer.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: April 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Junedong Lee, Dominic J. Schepis
  • Patent number: 8683674
    Abstract: Method for stacking microelectronic devices using two or more carriers, each holding microelectronic devices in an array so they may be registered. Each device is releasably held by its edges in a carrier to allow access to top and bottom surfaces of the device for joining. Arrays of devices held in two or more carriers are juxtaposed and joined to form an array of stacked devices. A resulting stacked device is released from the juxtaposed carriers holding each device by releasing forces of the corresponding carrier urging upon edges of the device, thereby permitting removal of the stacked device.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: April 1, 2014
    Assignee: Centipede Systems, Inc.
    Inventor: Thomas H. Di Stefano
  • Publication number: 20140084454
    Abstract: A direct multiple substrate die assembly can include a first and a second substrate, wherein each substrate can include at least one interlocking edge feature. An electrical interconnection area can be formed adjacent to or within the interlocking edge feature on each substrate and can be configured to couple one or more electrical signals between the substrates. In one embodiment, the interlocking edge feature can include one or more keying features that can enable accurate alignment between the substrates. In yet another embodiment, the direct multiple substrate die assembly can be mounted out of plane with respect to a supporting substrate.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Applicant: APPLE INC.
    Inventors: Shawn X. ARNOLD, Matthew E. LAST
  • Patent number: 8679944
    Abstract: The invention provides a method of trimming a structure that includes a first wafer bonded to a second wafer, with the first wafer having a chamfered edge. The method includes a first trimming step carried out over a first depth that includes at least the thickness of the first wafer and over a first width determined from the edge of the first wafer. A second trimming step is then carried out over a second depth that includes at least the thickness of the first wafer and over a second width that is less than the first width.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 25, 2014
    Assignee: Soitec
    Inventors: Marcel Broekaart, Marion Migette, Sébastien Molinari, Eric Neyret
  • Patent number: 8679945
    Abstract: An integrated circuit is formed by coating a top surface of a wafer that has been processed through all integrated circuit chip manufacturing steps prior to backgrind with photoresist, applying backgrind tape over a top surface of the photoresist, backgrinding a back surface of the wafer to a specified thickness, removing the backgrind tape from the top surface of the photoresist, and removing the photoresist. The surface of the integrated circuit and any devices that may be bonded to the surface of the integrated circuit are protected by the photoresist layer during removal of the backgrind tape.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: March 25, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory A. Moore, Tyonda Hill
  • Patent number: 8679946
    Abstract: A process for manufacturing a stacked structure comprising at least one thin layer bonded to a target substrate, in which a thin layer is formed by introduction gaseous species into an initial substrate, to form a weakened layer separating a film from the rest of the initial substrate, a first contact face of the thin layer is bonded to a face of an intermediate substrate by molecular adhesion, and the initial substrate is fractured at the weakened layer so as to expose a free face of the thin layer. The intermediate substrate is then removed in order to obtain the stacked structure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 25, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Hubert Moriceau, Bernard Aspar, Eric Jalaguier, Fabrice Letertre
  • Patent number: 8673740
    Abstract: A method is for formation of an electrically conducting through-via within a first semiconductor support having a front face and comprising a silicon substrate. The method may include forming of a first insulating layer on top of the front face of the first semiconductor support, fabricating a handle including, within an additional rigid semiconductor support having an intermediate semiconductor layer, and forming on either side of the intermediate semiconductor layer of a porous region and of an additional insulating layer. The method may also include direct bonding of the first insulating layer and of the additional insulating layer, and thinning of the silicon substrate of the first semiconductor support so as to form a back face opposite to the front face.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 18, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Julien Cuzzocrea, Laurent-Luc Chapelon
  • Patent number: 8669166
    Abstract: One illustrative method disclosed herein includes forming a plurality of die above a crystalline semiconducting substrate, irradiating and cooling an edge region of the substrate to form an amorphous region in the edge region of the substrate and, after forming the amorphous region, performing at least one process operation to reduce the thickness of the substrate.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: March 11, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Rahul Agarwal, Ramakanth Alapati, Jon Greenwood
  • Patent number: 8669140
    Abstract: A method of making a semiconductor device includes providing a first semiconductor die and a conductive frame member having at least one conductive via. A first encapsulation layer is formed. A first redistribution layer is formed opposite the first encapsulation layer. A second redistribution layer is formed opposite the first redistribution layer. A second semiconductor die is mounted and electrically connected with receptor pads in the second redistribution layer. A third semiconductor die is mounted to the second semiconductor die and electrically connected with bond wires to a conductor in the second redistribution layer. A second encapsulation layer embeds the second and third semiconductor dies, the wires, and the conductor in the second redistribution layer.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: March 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kesvakumar V. C. Muniandy, Navas Khan Oratti Kalandar, Lan Chu Tan
  • Publication number: 20140065759
    Abstract: A method for bonding first and second wafers by molecular adhesion. The method includes placing the wafers in an environment having a first pressure (P1) greater than a predetermined threshold pressure above which initiation of bonding wave propagation is prevented, bringing the first wafer and the second wafer into alignment and contact, and spontaneously initiating the propagation of a bonding wave between the wafers after they are in contact solely by reducing the pressure within the environment to a second pressure (P2) below the threshold pressure.
    Type: Application
    Filed: October 30, 2013
    Publication date: March 6, 2014
    Applicant: Soitec
    Inventor: Marcel BROEKAART
  • Patent number: 8664078
    Abstract: An object is to provide a semiconductor device in which, through a simpler process, junction capacitance and power consumption can be reduced more than a conventional semiconductor device, and a manufacturing method thereof. An insulating film including an opening is formed over a base substrate and a part of a bond substrate is transferred to the base substrate, with the insulating film interposed therebetween, whereby a semiconductor film including a cavity between the semiconductor film and the base substrate is formed over the base substrate. Then, a semiconductor device including a semiconductor element such as a transistor is manufactured using the semiconductor film. The transistor includes a cavity between the base substrate and the semiconductor film used as an active layer. One cavity may be provided or a plurality of cavities may be provided.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: March 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hidekazu Miyairi
  • Patent number: 8664086
    Abstract: A method for manufacturing a semiconductor thin film device includes: forming a buffer layer on an Si (111) substrate and a single crystal semiconductor layer on the buffer layer; forming an island including the semiconductor layer, buffer layer, and a portion of the substrate; forming a coating layer on the island; etching the substrate along its Si (111) plane to release the island from the substrate, the coating layer serving as a mask; and bonding the released island to another substrate, a released surface of the released island contacting the another substrate. A semiconductor device includes a single crystal semiconductor layer other than Si, which has a semiconductor device formed on a front surface of an Si (111) layer lying in a (111) plane. The layer is bonded to another substrate with a back surface contacting the another substrate or a bonding layer formed on the another substrate.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: March 4, 2014
    Assignee: Oki Data Corporation
    Inventor: Mitsuhiko Ogihara
  • Patent number: 8664081
    Abstract: A computer readable medium is provided that is encoded with a program comprising instructions for performing a method for fabricating a 3D integrated circuit structure. Provided are an interface wafer including a first wiring layer and through-silicon vias, and a first active circuitry layer wafer including active circuitry. The first active circuitry layer wafer is bonded to the interface wafer. Then, a first portion of the first active circuitry layer wafer is removed such that a second portion remains attached to the interface wafer. A stack structure including the interface wafer and the second portion of the first active circuitry layer wafer is bonded to a base wafer. Next, the interface wafer is thinned so as to form an interface layer, and metallizations coupled through the through-silicon vias in the interface layer to the first wiring layer are formed on the interface layer.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: March 4, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, Robert Hannon, Subramanian S. Iyer, Steven J. Koester, Fei Liu, Sampath Purushothaman, Albert M. Young, Roy R. Yu
  • Patent number: 8664084
    Abstract: A method for making a thin-film element includes epitaxially growing a first crystalline layer on a second crystalline layer of a support where the second crystalline layer is a material different from the first crystalline layer, the first crystalline layer having a thickness less than a critical thickness. A dielectric layer is formed on a side of the first crystalline layer opposite to the support to form a donor structure. The donor structure is assembled with a receiver layer and the support is removed.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: March 4, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Chrystel Deguet, Laurent Clavelier
  • Patent number: 8664087
    Abstract: A method of manufacturing a semiconductor structure is disclosed, which includes providing a substrate comprising a bottom surface and a growth surface opposite to the bottom surface; forming a buffer layer comprising a first surface which is not a C-plane substantially parallel with the bottom surface on the growth surface; forming a semiconductor structure on the buffer layer; forming at least one cavity in the buffer layer; extending the cavity along a main extending direction; separating the substrate and the semiconductor structure; wherein the main extending direction is substantially not parallel with the normal direction of the first surface.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: March 4, 2014
    Assignee: EPISTAR Corporation
    Inventors: Shih-Pang Chang, Hung-Chi Yang, Yu-Jiun Shen
  • Patent number: 8664082
    Abstract: The invention pertains to a combination of a substrate and a wafer, wherein the substrate and the wafer are arranged parallel to one another and bonded together with the aid of an adhesive layer situated between the substrate and the wafer, and wherein the adhesive is chosen such that its adhesive properties are neutralized or at least diminished when a predetermined temperature is exceeded. According to the invention, the adhesive layer is only applied annularly between the substrate and the wafer in the edge region of the wafer.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: March 4, 2014
    Inventor: Erich Thallner
  • Publication number: 20140054748
    Abstract: An edge trimming method includes providing a semiconductor wafer having a front side and a backside, trimming an edge of a periphery of the semiconductor wafer from the front side to form at least a notch region around the periphery of the front side of the semiconductor wafer, and providing the front side of the semiconductor wafer to a handle wafer. The notch region comprises a first wall and a second wall, and the first and the second wall are perpendicular to each other.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Inventor: GENMAO LIU
  • Publication number: 20140051231
    Abstract: This invention relates to a method for bonding of a first contact surface of a first substrate to a second contact surface of a second substrate, the second substrate having at least one reaction layer, with the following steps, especially the following sequence: forming a reservoir in a reservoir formation layer on the first contact surface, at least partial filling of the reservoir with a first educt or a first group of educts, the first contact surface making contact with the second contact surface for formation of a prebond connection, thinning of the second substrate and forming a permanent bond between the first and second contact surface, at least partially strengthened by the reaction of the first educt with the second educt contained in the reaction layer of the second substrate.
    Type: Application
    Filed: April 8, 2011
    Publication date: February 20, 2014
    Applicant: EV GROUP E. THALLNER GMBH
    Inventors: Thomas Plach, Kurt Hingerl, Markus Wimplinger, Christoph Flötgen
  • Publication number: 20140048910
    Abstract: Provided is a substrate structure, including: a first substrate and a second substrate arranged correspondingly. A first surface of the first substrate faces a second surface of the second substrate, wherein the first surface is successively arranged with a conductor interconnection layer and a bonding layer, with the bonding layer connecting the first substrate and the conductor interconnection layer to the second substrate. The substrate structure and a method for manufacturing the same. The second substrate can serve as a support substrate and the first substrate as a substrate for directly manufacturing a device. However, the first substrate is formed by the growth of a crystal without the problem of thickness and stress thereof, thereby avoiding unnecessary stress and further improving the performance of the device formed in the first substrate.
    Type: Application
    Filed: February 23, 2012
    Publication date: February 20, 2014
    Applicant: MEMSEN ELECTRONICS INC.
    Inventor: Lianjun Liu
  • Patent number: 8652925
    Abstract: A structure and method is provided for fabricating isolated capacitors. The method includes simultaneously forming a plurality of deep trenches and one or more isolation trenches surrounding a group or array of the plurality of deep trenches through a SOI and doped poly layer, to an underlying insulator layer. The method further includes lining the plurality of deep trenches and one or more isolation trenches with an insulator material. The method further includes filling the plurality of deep trenches and one or more isolation trenches with a conductive material on the insulator material. The deep trenches form deep trench capacitors and the one or more isolation trenches form one or more isolation plates that isolate at least one group or array of the deep trench capacitors from another group or array of the deep trench capacitors.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: February 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Oh-Jung Kwon, Junedong Lee, Paul C. Parries, Dominic J. Schepis
  • Patent number: 8652937
    Abstract: A back-illuminated semiconductor imaging device on a semiconductor-on-insulator substrate is disclosed. The device includes an insulator layer, a semiconductor substrate having an interface with the insulator layer, an epitaxial layer grown on the semiconductor substrate; and one or more imaging components in the epitaxial layer. The semiconductor substrate and the epitaxial layer exhibit a net doping concentration profile having a maximum value at a predetermined distance from the interface which decreases monotonically on both sides of the profile. The doping profile between the interface with the insulation layer and the peak of the doping profile functions as a “dead band” to prevent dark current carriers from penetrating to the front side of the device.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: February 18, 2014
    Assignee: SRI International
    Inventors: Levine Peter Alan, Pradyumna Swain, Mahalingam Bhaskaran
  • Publication number: 20140042598
    Abstract: A composite substrate which includes a silicon layer having less lattice defects is provided. A composite substrate includes an insulating substrate and a functional layer of which one main surface is bonded to an upper surface of the substrate. A dopant concentration of the functional layer decreases from the other main surface toward the substrate side in a thickness direction of the functional layer.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 13, 2014
    Applicant: Kyocera Corporation
    Inventors: Masanobu KITADA, Motokazu Ogawa, Yoshiyuki Kawaguchi
  • Patent number: 8647965
    Abstract: A method of producing a radiographic image detector includes: preparing a thin-film transistor substrate comprising an insulating substrate and a thin-film transistor that is disposed on a surface of the insulating substrate at a first side; attaching, to the thin-film transistor substrate, a protective member comprising a protective member support and an adhesive layer that includes conductive particles and that is disposed on the protective member support, such that the adhesive layer and a surface of the thin-film transistor substrate at the first side contact each other; polishing a surface of the thin-film transistor substrate at a second side opposite to the first side, after the attaching of the protective member; separating and removing the protective member from the thin-film transistor substrate after the polishing; and providing a scintillator layer on a surface of the thin-film transistor substrate at the first side, after the removing of the protective member.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: February 11, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Keiichiro Sato
  • Patent number: 8642444
    Abstract: Disclosed herein is a method of manufacturing a bonded substrate, including the steps of: forming a first bonding layer on a surface on one side of a semiconductor substrate; forming a second bonding layer on a surface on one side of a support substrate; adhering the first bonding layer and the second bonding layer to each other; a heat treatment for bonding the first bonding layer and the second bonding layer to each other; and thinning the semiconductor substrate from a surface on the other side of the semiconductor substrate to form a semiconductor layer.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: February 4, 2014
    Assignee: Sony Corporation
    Inventor: Nobutoshi Fujii
  • Patent number: 8642390
    Abstract: Organic-adhesive tapes are often used to secure and protect the bumps during wafer processing after bump formation. While residual organic-adhesive tape may remain on the wafer after tape de-lamination, applying a bump template layer on the bumps before laminating the tape allows any residue to be removed afterwards and results in a residue-free wafer.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: February 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung Yu Wang, Jiann-Jong Wang
  • Publication number: 20140030871
    Abstract: An integrated circuit chip is formed with a circuit layer, a trap rich layer and through-semiconductor-vias. The trap rich layer is formed above the circuit layer. The through-semiconductor-vias are also formed above the circuit layer. In some embodiments, the circuit layer is included in a wafer, and the trap rich layer and through-semiconductor-vias are included in another wafer. The two wafers are bonded together after formation of the trap rich layer and through-semiconductor-vias. Additionally, in some embodiments, yet another wafer may also be bonded to the wafer that includes the trap rich layer and through-semiconductor-vias. Furthermore, in some embodiments, another circuit layer may be formed in the wafer that includes the trap rich layer and through-semiconductor-vias.
    Type: Application
    Filed: October 1, 2013
    Publication date: January 30, 2014
    Applicant: IO SEMICONDUCTOR, INC.
    Inventors: Anton Arriagada, Chris Brindle, Michael A. Stuber
  • Patent number: 8637383
    Abstract: Methods of fabricating semiconductor structures include forming a plurality of openings extending through a semiconductor material and at least partially through a metal material and deforming the metal material to relax a remaining portion of the semiconductor material. The metal material may be deformed by exposing the metal material to a temperature sufficient to alter (i.e., increase) its ductility. The metal material may be formed from one or more of hafnium, zirconium, yttrium, and a metallic glass. Another semiconductor material may be deposited over the remaining portions of the semiconductor material, and a portion of the metal material may be removed from between each of the remaining portions of the semiconductor material. Semiconductor structures may be formed using such methods.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: January 28, 2014
    Assignee: Soitec
    Inventor: Christiaan J. Werkhoven
  • Patent number: 8637381
    Abstract: Aspects of the invention provide for preventing undercuts during wafer etch processing and enhancing back-gate to channel electrical coupling. In one embodiment, aspects of the invention include a semiconductor structure, including: a high-k buried oxide (BOX) layer atop a bulk silicon wafer, the high-k BOX layer including: at least one silicon nitride layer; and a high-k dielectric layer; and a silicon-on-insulator (SOI) layer positioned atop the high-k BOX layer.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Effendi Leobandung, Dae-Gyu Park, Shom S. Ponoth, Zhibin Ren, Ghavam G. Shahidi, Leathen Shi
  • Patent number: 8637970
    Abstract: An embodiment of the present invention relates to a chip package and fabrication method thereof, which includes a chip protection layer or an additional etching stop layer to cover conducting pads to prevent dicing residue from damaging or scratching the conducting pads. According to another embodiment, a chip protection layer, an additional etching stop layer formed thereon, or a metal etching stop layer level with conducting pads or combinations thereof may be used when etching an intermetal dielectric layer at a structural etching region and a silicon substrate to form an opening for subsequent semiconductor manufacturing processes.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: January 28, 2014
    Inventors: Chia-Lun Tsai, Chia-Ming Cheng, Long-Sheng Yeou
  • Patent number: 8633086
    Abstract: A method for forming a support structure for supporting and handling a semiconductor wafer containing vertical FETs formed at the front surface thereof is provided. In one embodiment, a semiconductor wafer is provided having a front surface and a rear surface, wherein the front surface comprises one or more dies separated by dicing lines. The wafer is thinned to a predetermined thickness. A plurality of patterned metal features are formed on a thinned rear surface to provide support for the wafer, wherein each of the plurality of patterned metal features covers substantially one die, leaving the dicing lines substantially uncovered. The wafer is thereafter diced along the dicing lines to separate the one or more dies for later chip packaging.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: January 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alex Kalnitsky, Hsiao-Chin Tuan, Liang-Kai Han, Uway Tseng, Yuan-Chih Hsieh, Hung-Hua Lin
  • Patent number: 8633570
    Abstract: A method is demonstrated to form an SOI substrate having a silicon layer with reduced surface roughness in a high yield. The method includes the step of bonding a base substrate such as a glass substrate and a bond substrate such as a single crystal semiconductor substrate to each other, where a region in which bonding of the base substrate with the bond substrate cannot be performed is provided at the interface therebetween. Specifically, the method is exemplified by the combination of: irradiating the bond substrate with accelerated ions; forming an insulating layer over the bond substrate; forming a region in which bonding cannot be performed in part of the surface of the bond substrate; bonding the bond substrate and the base substrate to each other with the insulating layer therebetween; and separating the bond substrate from the base substrate, leaving a semiconductor layer over the base substrate.
    Type: Grant
    Filed: September 24, 2011
    Date of Patent: January 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Naoki Okuno
  • Patent number: 8629042
    Abstract: A system and method for stacking semiconductor dies is disclosed. A preferred embodiment comprises forming through-silicon vias through the wafer, protecting a rim edge of the wafer, and then removing the unprotected portions so that the rim edge has a greater thickness than the thinned wafer. This thickness helps the fragile wafer survive further transport and process steps. The rim edge is then preferably removed during singulation of the individual dies from the wafer.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ku-Feng Yang, Weng-Jin Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Patent number: 8629482
    Abstract: According to one embodiment, a method for manufacturing a semiconductor device includes implanting impurity ions to a semiconductor layer in which an electrode is embedded; forming a light absorption film which absorbs laser light at a side of the electrode to which the laser light is irradiated; and activating the impurity ions by irradiating laser light to the semiconductor layer at which the light absorption film is formed in the forming.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: January 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoyasu Kudo, Kenichi Yoshino, Masaki Kamimura
  • Patent number: 8623740
    Abstract: A method for producing a structure having an ultra thin buried oxide (UTBOX) layer by assembling a donor substrate with a receiver substrate wherein at least one of the substrates includes an insulating layer having a thickness of less than 50 nm that faces the other substrate, conducting a first heat treatment for reinforcing the assembly between the two substrates at temperature below 400° C., and conducting a second heat treatment at temperature above 900° C., wherein the exposure time between 400° C. and 900° C. between the heat treatments is less than 1 minute and advantageously less than 30 seconds.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: January 7, 2014
    Assignee: Soitec
    Inventors: Didier Landru, Ionut Radu, Sébastien Vincent
  • Patent number: 8617962
    Abstract: The invention relates to finishing a substrate of the semiconductor-on-insulator (SeOI) type comprising an insulator layer buried between two semiconducting material layers. The method successively comprises routing the annular periphery of the substrate so as to obtain a routed substrate, and encapsulating the routed substrate so as to cover the routed side edge of the buried insulator layer by means of a semiconducting material.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 31, 2013
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Aziz Alami-Idrissi, Alexandre Chibko, Sebastien Kerdiles
  • Publication number: 20130341755
    Abstract: An insulating portion has a first region, a second region, and a third region in the stated order from the silicon portion side, the nitrogen concentration of the first region is lower than the nitrogen concentration of the second region and the oxygen concentration of the first region, the nitrogen concentration of the third region is lower than the nitrogen concentration of the second region and the oxygen concentration of the third region, and the thickness of the first region is larger than the thickness of the third region.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 26, 2013
    Inventor: Kazuo Kokumai
  • Publication number: 20130344680
    Abstract: A trap rich layer for an integrated circuit chip is formed by chemical etching and/or laser texturing of a surface of a semiconductor layer. In some embodiments, a trap rich layer is formed by a technique selected from the group of techniques consisting of laser texturing, chemical etch, irradiation, nanocavity formation, porous Si-etch, semi-insulating polysilicon, thermal stress relief and mechanical texturing. Additionally, combinations of two or more of these techniques may be used to form a trap rich layer.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 26, 2013
    Applicant: IO SEMICONDUCTOR, INC.
    Inventors: Anton Arriagada, Michael A. Stuber, Stuart B. Molin
  • Publication number: 20130341763
    Abstract: The invention provides a method for manufacturing a bonded substrate by bonding a base substrate to a bond substrate through an insulator film, including: a porous layer forming step of partially forming a porous layer or forming a porous layer whose thickness partially varies on a bonding surface of the base substrate; an insulator film forming step of changing the porous layer into the insulator film, and thereby forming the insulator film whose thickness partially varies on the bonding surface of the base substrate; a bonding step of bonding the base substrate to the bond substrate through the insulator film; and a film thickness reducing step of reducing a film thickness of the bonded bond substrate to form a thin-film layer. As a result, there is provided the method for manufacturing a bonded substrate that enables obtaining an insulator film whose thickness partially varies with use of a simple method.
    Type: Application
    Filed: January 6, 2012
    Publication date: December 26, 2013
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Yuuki Ooi, Wei Feng Qu, Tsuyoshi Ohtsuki, Kyoko Mitani, Fumio Tahara
  • Patent number: 8609473
    Abstract: A method for fabricating a stackable integrated circuit layer and a device made from the method are disclosed. A stud bump is defined on the contact pad of an integrated circuit die and the stud-bumped die encapsulated in a potting material to define a potted assembly. A predetermined portion of the potting material is removed whereby a portion of the stud bump is exposed. One or more electrically conductive traces are defined on the layer surface and in electrical connection with the stud bump to reroute the integrated circuit contacts to predetermined locations on the layer to provide a stackable neolayer.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: December 17, 2013
    Assignee: ISC8 Inc.
    Inventors: Peter Lieu, James Yamaguchi, Randy Bindrup, W. Eric Boyd
  • Patent number: 8609461
    Abstract: Various embodiments provide methods for forming a diamond heat spreader and integrating the diamond heat spreader with a heat source without generating voids at the interface. In one embodiment, a semiconductor layer can be epitaxially formed on a diamond substrate having a desirably low surface root mean square (RMS) roughness. The semiconductor epi-layer can be used as an interface layer for bonding the diamond substrate to the heat source to provide efficient heat spreading.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: December 17, 2013
    Assignee: STC.UNM
    Inventors: Ganesh Balakrishnan, Jerome V. Moloney, Victor Hasson
  • Patent number: 8609511
    Abstract: According to one embodiment, an insulation film is formed over the surface, backside, and sides of a first substrate. Next, the insulation film formed over the surface of the first substrate is removed. Then, a joining layer is formed over the surface of the first substrate, from which the insulation film has been removed. Subsequently, the first substrate is bonded to a second substrate via a joining layer.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Shirono, Kazumasa Tanida, Naoko Yamaguchi, Satoshi Hongo, Tsuyoshi Matsumura
  • Patent number: 8603897
    Abstract: A method for manufacturing a bonded wafer including bonding together a bond wafer and a base wafer each having a chamfered portion at an outer circumference and thinning the bond wafer, wherein the thinning of the bond wafer includes: a first step of performing surface grinding on the bond wafer such that a thickness of the bond wafer reaches a first predetermined thickness; a second step of removing an outer circumference portion of the ground bond wafer; and a third step of performing surface grinding on the bond wafer such that the thickness of the bond wafer reaches a second predetermined thickness.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: December 10, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Tadahiro Kato
  • Publication number: 20130320556
    Abstract: Three dimensional integrated circuit (3DIC) structures and hybrid bonding methods for semiconductor wafers are disclosed. A 3DIC structure includes a first semiconductor device having first conductive pads disposed within a first insulating material on a top surface thereof, the first conductive pads having a first recess on a top surface thereof. The 3DIC structure includes a second semiconductor device having second conductive pads disposed within a second insulating material on a top surface thereof coupled to the first semiconductor device, the second conductive pads having a second recess on a top surface thereof. A sealing layer is disposed between the first conductive pads and the second conductive pads in the first recess and the second recess. The sealing layer bonds the first conductive pads to the second conductive pads. The first insulating material is bonded to the second insulating material.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping-Yin Liu, Xin-Hua Huang, Lan-Lin Chao, Chia-Shiung Tsai
  • Patent number: 8598013
    Abstract: To provide a method for manufacturing an SOI substrate provided with a semiconductor layer which can be used practically even when a substrate having a low heat-resistant temperature, such as a glass substrate or the like is used. The semiconductor layer is transferred to a supporting substrate by the steps of irradiating a semiconductor wafer with ions from one surface to form a damaged layer; forming an insulating layer over one surface of the semiconductor wafer; attaching one surface of the supporting substrate to the insulating layer formed over the semiconductor wafer and performing heat treatment to bond the supporting substrate to the semiconductor wafer; and performing separation at the damaged layer into the semiconductor wafer and the supporting substrate. The damaged layer remaining partially over the semiconductor layer is removed by wet etching and a surface of the semiconductor layer is irradiated with a laser beam.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: December 3, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hideto Ohnuma, Yoichi Iikubo, Yoshiaki Yamamoto, Kenichiro Makino
  • Patent number: 8592952
    Abstract: A semiconductor chip and semiconductor package with stack chip structure include align patterns. The align patterns are formed of magnetic materials having opposite polarities on the top and bottom of the semiconductor chip. Thus, when the plurality of chips are stacked on the substrate in order for the packaging, the semiconductor chips may be exactly aligned by the magnetic force between the align patterns of the vertically stacked chips. The semiconductor package includes a plurality of stacked semiconductor chips and a filling material. Each of the stacked semiconductor chips includes a semiconductor substrate having a first surface and a second surface, wherein a circuit pattern such as a bonding pad is formed on the first surface, and a first align pattern formed on the first surface of the semiconductor substrate, wherein the first align pattern is formed of a magnetic material.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: November 26, 2013
    Assignee: SK Hynix Inc.
    Inventors: Seung Hee Jo, Seong Cheol Kim