Gettering Of Substrate Patents (Class 438/471)
  • Publication number: 20130102128
    Abstract: A method for treating the threading dislocation within a GaN-containing semiconductor layer is provided. The method includes a substrate is provided. A GaN-containing semiconductor layer with the threading dislocation is formed on the substrate. An etching process with an etching gas is performed to remove the threading dislocation in the GaN-containing semiconductor layer so as to increase the efficiency for the light emitting device.
    Type: Application
    Filed: January 10, 2012
    Publication date: April 25, 2013
    Applicant: National Chiao Tung University
    Inventors: Wei-I Lee, Yen-Hsien Yeh, Yin-Hao Wu, Tzu-Yi Yu
  • Publication number: 20130102129
    Abstract: Processes for suppressing minority carrier lifetime degradation in silicon wafers are disclosed. The processes involve quench cooling the wafers to increase the density of nano-precipitates in the silicon wafers and the rate at which interstitial atoms are consumed by the nano-precipitates.
    Type: Application
    Filed: June 1, 2012
    Publication date: April 25, 2013
    Applicant: MEMC SINGAPORE PTE. LTD. (UEN200614794D)
    Inventors: Robert J. Falster, Vladimir V. Voronkov
  • Patent number: 8399280
    Abstract: A method for protecting, against laser attacks, an integrated circuit chip formed inside and on top of a semiconductor substrate and including in the upper portion of the substrate an active portion in which are formed components, this method including the steps of: forming in the substrate a gettering area extending under the active portion, the upper limit of the area being at a depth ranging between 5 and 50 ?m from the upper surface of the substrate; and introducing diffusing metal impurities into the substrate.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 19, 2013
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Pascal Fornara, Fabrice Marinet
  • Patent number: 8383452
    Abstract: In one embodiment, a method for manufacturing a semiconductor device is disclosed. The method can include depositing a first amorphous film having a first impurity, depositing a third amorphous lower-layer film on the first amorphous film, forming microcrystals on the third amorphous lower-layer film, depositing a third amorphous upper-layer film on the third amorphous lower-layer film to cover the microcrystals, depositing a second amorphous film having a second impurity on the third amorphous upper-layer film, and radiating microwaves to crystallize the third amorphous lower-layer film and the third amorphous upper-layer film to form a third crystal layer, and crystallize the first amorphous film and the second amorphous film to form a first crystal layer and a second crystal layer.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: February 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomonori Aoyama, Kiyotaka Miyano, Yusuke Oshiki
  • Publication number: 20130045586
    Abstract: An internal gettering process for a Czochralski silicon wafers comprises: (1) heating a Cz silicon wafer to 1200-1250° C. at a heating rate of 50-100° C./s under a nitrogen atmosphere, maintaining for 30-150 seconds, cooling the Cz silicon wafer to 800-1000° C. first at a cooling rate of 5-50° C./s, and then cooling the Cz silicon wafer naturally; (2) annealing the Cz silicon wafer obtained in the step (1) at 800-900° C. under an argon atmosphere for a period of 8-16 hours. The present invention only involves two heat treatment steps which require lower temperature and shorter time comparing to the conventional processes. The density of the bulk microdefects and the width of the denuded zone can be easily controlled by the temperature, duration and cooling rate of rapid thermal processing in the first step.
    Type: Application
    Filed: March 16, 2012
    Publication date: February 21, 2013
    Applicant: ZHEJIANG UNIVERSITY
    Inventors: Xiangyang Ma, Ze Xu, Biao Wang, Deren Yang
  • Patent number: 8349646
    Abstract: A semiconductor wafer for semiconductor components and to a method for its production is disclosed. In one embodiment, the semiconductor wafer includes a front side with an adjoining near-surface active zone as basic material for semiconductor component structures. The rear side of the semiconductor wafer is adjoined by a getter zone for gettering impurity atoms in the semiconductor wafer. The getter zone contains oxygen precipitates. In the near-surface active zone, atoms of doping material are located on lattice vacancies. The atoms of doping material have a higher diffusion coefficient that the oxygen atoms.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: January 8, 2013
    Assignee: Infineon Technologies Austria AG
    Inventor: Hans-Joachim Schulze
  • Patent number: 8343853
    Abstract: A method of processing a semiconductor wafer includes preheating the wafer to a preheating temperature that is less than a peak temperature, heating the wafer from the preheating temperature to the peak temperature at a first ramp rate that averages about 100° C. per second or more, and, immediately after heating the wafer from the preheating temperature to the peak temperature, cooling the wafer at a second ramp rate that averages about ?70° C. per second or more from the peak temperature to the preheating temperature, wherein the peak temperature is about 1,100° C. or more.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: January 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Hyoung Koo, Sam-jong Choi, Yeonsook Kim, Taesung Kim, Heesung Kim, KyooChul Cho, Joonyoung Choi
  • Patent number: 8343618
    Abstract: A silicon wafer in which both occurrences of slip dislocation and warpage are suppressed in device manufacturing processes is a silicon wafer having BMDs having an octahedral shape, wherein BMDs located at a position below the silicon wafer surface to a depth of 20 ?m and having a diagonal length of 200 nm or more are present at a concentration of ?2×109/cm3, and BMDs located at a position below a depth ?50 ?m have a diagonal length of ?10 nm to ?50 nm and a concentration of ?1×1012/cm3.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 1, 2013
    Assignee: Siltronic AG
    Inventors: Masayuki Fukuda, Katsuhiko Nakai
  • Publication number: 20120329242
    Abstract: A method suitable to reprocess a semiconductor substrate is provided. A semiconductor substrate in which a projection including a damaged semiconductor region and an insulating layer is provided in a peripheral portion of the semiconductor substrate is subjected to etching treatment for removing the insulating layer and to etching treatment for removing the damaged semiconductor region selectively with a non-damaged semiconductor region left using a mixed solution including nitric acid, a substance dissolving a semiconductor material included in the semiconductor substrate and oxidized by the nitric acid, a substance controlling a speed of oxidation of the semiconductor material and a speed of dissolution of the oxidized semiconductor material, and nitrous acid, in which the concentration of the nitrous acid is higher than or equal to 10 mg/l and lower than or equal to 1000 mg/l. Through these steps, the semiconductor substrate is reprocessed.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 27, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kazuya HANAOKA, Shunsuke KIMURA
  • Patent number: 8329563
    Abstract: A device and a device manufacturing process. First, a gettering layer is formed on the bottom surface of a silicon substrate. Gates having a MOS structure are then formed on the principal surface of the silicon substrate, and the gettering layer is removed. According to this manufacturing method, the formation of the gates having a MOS structure is performed such that the gettering layer getters dissolved oxygen present in the silicon substrate. This reduces the concentration of dissolved oxygen in the silicon substrate, resulting in improved device characteristics.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: December 11, 2012
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tadaharu Minato, Hidekazu Yamamoto
  • Patent number: 8309436
    Abstract: A method of producing an epitaxial substrate for a solid-state imaging device, comprising: forming a gettering sink by injecting laser beam to a semiconductor substrate through one surface thereof, condensing the laser beam to an arbitrarily selected portion of the semiconductor substrate, thereby causing multi-photon absorption process to occur in the portion, and forming a gettering sink having a modified crystal structure; and epitaxially growing at least two epitaxial layers on the semiconductor substrate in which the gettering sink is formed.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 13, 2012
    Assignee: Sumco Corporation
    Inventor: Kazunari Kurita
  • Publication number: 20120220084
    Abstract: A method of fabricating a polycrystalline silicon layer includes: forming an amorphous silicon layer on a substrate; crystallizing the amorphous silicon layer into a polycrystalline silicon layer using a crystallization-inducing metal; forming a metal layer pattern or metal silicide layer pattern in contact with an upper or lower region of the polycrystalline silicon layer corresponding to a region excluding a channel region in the polycrystalline silicon layer; and annealing the substrate to getter the crystallization-inducing metal existing in the channel region of the polycrystalline silicon layer to the region in the polycrystalline silicon layer having the metal layer pattern or metal silicide layer pattern. Accordingly, the crystallization-inducing metal existing in the channel region of the polycrystalline silicon layer can be effectively removed, and thus a thin film transistor having an improved leakage current characteristic and an OLED display device including the same can be fabricated.
    Type: Application
    Filed: May 4, 2012
    Publication date: August 30, 2012
    Applicant: SAMSUNG MOBILE DISPLAY CO., LTD.
    Inventors: Byoung-Keon PARK, Jin-Wook SEO, Tae-Hoon YANG, Kil-Won LEE, Ki-Yong LEE
  • Publication number: 20120199956
    Abstract: The present invention relates to process for recycling a source substrate that has a surface region and regions in relief on the surface region, with the regions in relief corresponding to residual regions of a layer of the source substrate that were not being separated from the rest of the source substrate during a prior removal step. The process includes selective electromagnetic irradiation of the source substrate at a wavelength such that the damaged material of the surface region absorbs the electromagnetic irradiation. The present invention also relates to a recycled source substrate and to a process for transferring a layer from a source substrate recycled for this purpose.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 9, 2012
    Inventors: Monique Lecomte, Pascal Guenard, Sophie Rigal, David Sotta, Fabienne Janin, Christelle Veytizou
  • Patent number: 8227299
    Abstract: A method for removing impurities from at least one semiconductor device layer during manufacturing of a semiconductor device is disclosed. The semiconductor device layer has a compound semiconductor material and/or germanium. Each heating process performed during the manufacturing of the semiconductor device after provision of the semiconductor device layer has a low thermal budget determined by temperatures equal to or lower than about 900° C. and time periods equal to or lower than about 5 minutes. In one aspect, the method includes providing a germanium gettering layer with a higher solubility for the impurities than the semiconductor device layer. The germanium gettering layer is provided at least partly in direct or indirect contact with the at least one semiconductor device layer, such that impurities can diffuse from the at least one semiconductor device layer to the germanium gettering layer.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: July 24, 2012
    Assignees: IMEC, Umicore
    Inventors: Eddy Simoen, Jan Vanhellemont
  • Publication number: 20120178240
    Abstract: A method of nucleating and growing oxygen precipitates of sufficient concentration and size in lightly doped p-type wafers for effective gettering of heavy metals is deep submicron transistor, integrated circuit manufacturing flows.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 12, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Bradley David Sucher
  • Publication number: 20120168911
    Abstract: Provided is a method of fabricating a semiconductor device. The method includes: receiving a silicon wafer that contains oxygen; forming a zone in the silicon wafer, the zone being substantially depleted of oxygen; causing a nucleation process to take place in the silicon wafer to form oxygen nuclei in a region of the silicon wafer outside the zone; and growing the oxygen nuclei into defects. Also provided is an apparatus that includes a silicon wafer. The silicon wafer includes: a first portion that is substantially free of oxygen, the first portion being disposed near a surface of the silicon wafer; and a second portion that contains oxygen; wherein the second portion is at least partially surrounded by the first portion.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Chung-Yi Yu, Chia-Shiung Tsai, Ho-Yung David Hwang, Alexander Kalnitsky
  • Patent number: 8198177
    Abstract: Seeds are implanted in a regular pattern upon an undersubstrate. An AlxInyGa1-x-yN (0?x?1, 0?y?1, 0<x+y?1) mixture crystal is grown on the seed implanted undersubstrate by a facet growth method. The facet growth makes facet pits above the seeds. The facets assemble dislocations to the pit bottoms from neighboring regions and make closed defect accumulating regions (H) under the facet bottoms. The closed defect accumulating regions (H) arrest dislocations permanently. Release of dislocations, radial planar defect assemblies and linear defect assemblies are forbidden. The surrounding accompanying low dislocation single crystal regions (Z) and extra low dislocation single crystal regions (Y) are low dislocation density single crystals.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 12, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Seiji Nakahata, Ryu Hirota, Kensaku Motoki, Takuji Okahisa, Kouji Uematsu
  • Patent number: 8193075
    Abstract: Apparatus and methods for repairing silicon dangling bonds resulting from semiconductor processing are disclosed. The silicon dangling bonds can be repaired by introducing hydrogen radicals with substantially no hydrogen ions into the processing chamber to react with the silicon dangling bonds, eliminating them.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: June 5, 2012
    Assignee: Applied Materials, Inc.
    Inventor: Zhi Xu
  • Patent number: 8192648
    Abstract: A method of forming a material from a source material including the following steps of grinding the source material to get powders if the source material is not already in the form of powders; sintering the powders with at least one compression step and one thermal processing step; and purifying the material with a gas flow, the gas flow passing through the porosity channels of the material.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: June 5, 2012
    Assignee: S'Tile
    Inventor: Alain Straboni
  • Patent number: 8183646
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: May 22, 2012
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20120122300
    Abstract: An apparatus comprising a microelectromechanical system. The microelectromechanical system includes a crystalline structural element having dislocations therein. For at least about 60 percent of adjacent pairs of the dislocations, direction vectors of the dislocations form acute angles of less than about 45 degrees.
    Type: Application
    Filed: January 26, 2012
    Publication date: May 17, 2012
    Applicant: Lucent Technologies Inc.
    Inventor: George Patrick Watson
  • Patent number: 8178951
    Abstract: There is provided a compound semiconductor substrate prepared by forming a point defect in an inside structure thereof by implanting an electrically-neutral impurity with energy of 0.1 to 10 MeV on a surface of the substrate. When the compound semiconductor is undoped, electrical resistance increases to increase insulating properties, and when the compound semiconductor is doped with an n-type dopant, the impurity is implanted and charge concentration of the substrate increases to increase conductive properties. In accordance with the present invention, the various electrical properties needed for the compound semiconductor can be effectively controlled by increasing the insulating properties of the undoped compound semiconductor or by increasing the charge concentration of the n-type compound semiconductor, and the application range to various devices can be expanded.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: May 15, 2012
    Assignee: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Young Zo Yoo, Hyun Min Shin, Jun Sung Choi
  • Patent number: 8143142
    Abstract: A method of fabricating an epi-wafer includes providing a wafer including boron by cutting a single crystal silicon ingot, growing an insulating layer on one surface of the wafer, performing thermal treatment of the wafer, removing the insulating layer formed on one surface of the wafer, mirror-surface-grinding one surface of the wafer, and growing an epitaxial layer on one surface of the wafer and forming a high-density boron layer within the wafer that corresponds to the interface between the wafer and the epitaxial layer.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: March 27, 2012
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Young-Soo Park, Gi-Jung Kim, Won-Je Park, Jae-Sik Bae
  • Patent number: 8142885
    Abstract: Silicon wafers and a process for their manufacture wherein both slip dislocation and occurrence of warpage are suppressed include heat treatment to provide wafers having plate-shaped BMDs, a density of BMDs whose diagonal lengths are in a range of 10 nm to 120 nm, of BMDs present in the bulk of the wafer at a distance of 50 ?m or more is 1×1011/cm3 or more, and the density of BMDs whose diagonal lengths are 750 nm or more in the wafer bulk is 1×107/cm3 or less, and the interstitial oxygen concentration is 5×1017 atoms/cm3 or less. The process involves low and high temperature heat treating at under defined temperature ramping rates.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: March 27, 2012
    Assignee: Siltronic AG
    Inventors: Katsuhiko Nakai, Sei Fukushima
  • Publication number: 20120070961
    Abstract: Embodiments provide methods for etching and depositing silicon materials on a substrate. In one example, the method includes heating a substrate containing a silicon-containing material to a temperature of about 800° C. or less and removing a portion of the silicon-containing material and a contaminant to reveal an exposed surface of the silicon-containing material during an etching process and depositing a silicon-containing layer on the exposed surface of the silicon-containing material during a deposition process. The method further provides conducting the etching and deposition processes in the same chamber and utilizing chlorine gas and a silicon source gas during the etching and deposition processes. In some examples, the silicon-containing material is removed at a rate within a range from about 2 ? per minute to about 20 ? per minute during the etching process.
    Type: Application
    Filed: November 28, 2011
    Publication date: March 22, 2012
    Applicant: Applied Materials
    Inventor: Arkadii V. Samoilov
  • Patent number: 8133769
    Abstract: A method for forming gettering sites and gettering impurities in a substrate layer includes producing a first masking layer over the substrate layer and patterning the masking layer to define openings at locations where trenches will be formed in the substrate layer at a later time. Ions are then implanted into the substrate layer to produce gettering sites. The gettering sites are disposed at a depth in the substrate layer such that the sites are removed when the trenches are formed. The first masking layer is removed and impurities driven to the gettering sites by thermally processing the substrate layer. A second masking layer is then produced over the substrate layer and patterned to define openings at locations where the trenches will be formed. The substrate layer is etched to produce the trenches. The gettering sites and gettered impurities are removed when the trenches are etched into the substrate layer.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: March 13, 2012
    Assignee: Truesense Imaging, Inc.
    Inventor: Cristian A. Tivarus
  • Patent number: 8124502
    Abstract: A semiconductor device manufacturing method is provided, including: providing a semiconductor substrate, forming on the semiconductor substrate a layer including a semiconductor compound and a dope additive, and thereafter forming an emitter region and gettering impurities by annealing the semiconductor substrate including the layer.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: February 28, 2012
    Assignee: Applied Materials, Inc.
    Inventor: Rafel Ferre i Tomas
  • Publication number: 20120040511
    Abstract: Seeds are implanted in a regular pattern upon an undersubstrate. An AlxInyGa1?x?yN (0?x?1, 0?y?1, 0<x+y?1) mixture crystal is grown on the seed implanted undersubstrate by a facet growth method. The facet growth makes facet pits above the seeds. The facets assemble dislocations to the pit bottoms from neighboring regions and make closed defect accumulating regions (H) under the facet bottoms. The closed defect accumulating regions (H) arrest dislocations permanently. Release of dislocations, radial planar defect assemblies and linear defect assemblies are forbidden. The surrounding accompanying low dislocation single crystal regions (Z) and extra low dislocation single crystal regions (Y) are low dislocation density single crystals.
    Type: Application
    Filed: October 25, 2011
    Publication date: February 16, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Seiji NAKAHATA, Ryu Hirota, Kensaku Motoki, Takuji Okahisa, Kouji Uematsu
  • Patent number: 8101999
    Abstract: A SOI substrate includes a silicon substrate, a silicon oxide layer arranged on the silicon substrate, a silicon layer arranged on the silicon oxide layer, a gettering layer arranged in the silicon substrate, and a damaged layer formed of an impurity-doped region arranged in the silicon oxide layer.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: January 24, 2012
    Assignee: Sony Corporation
    Inventor: Ritsuo Takizawa
  • Patent number: 8093089
    Abstract: Method of manufacturing image sensors having a plurality of gettering regions. In the method, a gate electrode may be formed on a semiconductor substrate. A source/drain region may be formed in the semiconductor substrate to be overlapped with the gate electrode. A gettering region may be formed in the semiconductor substrate to be adjacent to the source/drain region.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: January 10, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyun-Pil Noh
  • Patent number: 8087135
    Abstract: A piezoelectric vibrator manufacturing method includes a cavity forming step for forming depressions for a cavities on at least one of two wafers; a bonding electrode film forming step for forming bonding electrode films on bonded surfaces of the both wafers; a mount pattern forming step for forming a pair of mount patterns in the cavity; a through hole forming step for forming a pair of through holes in the cavity; a through electrode forming step for forming a pair of through electrodes electrically connected with the pattern in the cavity; a mount step for electrically connecting the pattern and a piezoelectric vibrating strip, a superimposing step for superimposing the both wafers and storing getter materials; a bonding step for anodically bonding the both wafers to fabricating a wafer member; a gettering step for adjusting the degree of vacuum in the interior of the cavity while measuring a series resonance resistance value; and a cutting step for cutting the wafer member into individual pieces.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: January 3, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Keiichi Ouchi, Yuki Hoshi
  • Patent number: 8088670
    Abstract: When manufacturing a bonded substrate using an insulator substrate as a handle wafer, there is provided a method for manufacturing a bonded substrate which can be readily removed after carried and after mounted by roughening a back surface of the bonded substrate (corresponding to a back surface of the insulator substrate) and additionally whose front surface can be easily identified like a process of a silicon semiconductor wafer in case of the bonded substrate using a transparent insulator substrate as a handle wafer. There is provided a method for manufacturing a bonded substrate in which an insulator substrate is used as a handle wafer and a donor wafer is bonded to a front surface of the insulator substrate, the method comprises at least that a sandblast treatment is performed with respect to a back surface of the insulator substrate.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: January 3, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Atsuo Ito, Kouichi Tanaka, Makoto Kawai, Yuuji Tobisaka
  • Patent number: 8063466
    Abstract: There is provided a semiconductor substrate for solid-state image sensing device in which the production cost is lower than that of a gettering method through a carbon ion implantation and problems such as occurrence of particles at a device production step and the like are solved. Silicon substrate contains solid-soluted carbon having a concentration of 1×1016-1×1017 atoms/cm3 and solid-soluted oxygen having a concentration of 1.4×1018-1.6×1018 atoms/cm3.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: November 22, 2011
    Assignee: Sumco Corporation
    Inventor: Kazunari Kurita
  • Publication number: 20110248372
    Abstract: A semiconductor wafer is set in a laser irradiation apparatus, and laser beam irradiation is performed while the semiconductor wafer is moved. At this time, a laser beam emitted from a laser generating apparatus is condensed by a condensing lens so that the condensing point (focal point) is positioned at a depth of several tens of gm or so from one surface of the semiconductor wafer. Thereby, the crystal structure of the semiconductor wafer in the position having such a depth is modified, and a gettering sink is formed.
    Type: Application
    Filed: October 16, 2009
    Publication date: October 13, 2011
    Applicant: SUMCO CORPORATION
    Inventor: Kazunari Kurita
  • Patent number: 8030182
    Abstract: By hydrogen-terminating a semiconductor surface using a solution containing HF2? ions and an oxidant, the hydrogen termination can be quickly carried out. In this case, the semiconductor surface is silicon having a (111) surface, a (110) surface, or a (551) surface.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: October 4, 2011
    Assignee: Tadahiro OHMI
    Inventors: Tadahiro Ohmi, Akinobu Teramoto, Hiroshi Akahori
  • Publication number: 20110227202
    Abstract: A silicon wafer and fabrication method thereof are provided. The silicon wafer includes a first denuded zone formed with a predetermined depth from a top surface of the silicon wafer, the first denuded zone being formed with a depth ranging from approximately 20 ?m to approximately 80 ?m from the top surface, and a bulk area formed between the first denuded zone and a backside of the silicon wafer, the bulk area having a concentration of oxygen uniformly distributed within a variation of 10% over the bulk area.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Applicant: MAGNACHIP SEMICONDUCTOR, LTD.
    Inventor: Jung-Goo Park
  • Publication number: 20110186818
    Abstract: A graphene substrate is doped with one or more functional groups to form an electronic device.
    Type: Application
    Filed: May 7, 2010
    Publication date: August 4, 2011
    Inventors: Jeffrey A. Bowers, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Clarence T. Tegreene, Tatsushi Toyokuni, Richard N. Zare
  • Patent number: 7989306
    Abstract: Semiconductor structures and methods of forming semiconductor structures, and more particularly to structures and methods of forming SiGe and/or SiGeC buried layers for SOI/SiGe devices. An integrated structure includes discontinuous, buried layers having alternating Si and SiGe or SiGeC regions. The structure further includes isolation structures at an interface between the Si and SiGe or SiGeC regions to reduce defects between the alternating regions. Devices are associated with the Si and SiGe or SiGeC regions.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Xuefeng Liu, Robert M. Rassel, Steven H. Voldman
  • Publication number: 20110140246
    Abstract: Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3+NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.
    Type: Application
    Filed: December 10, 2010
    Publication date: June 16, 2011
    Applicant: California Institute of Technology
    Inventors: Michael E. Hoenk, Shouleh Nikzad, Todd J. Jones, Frank Greer, Alexander G. Carver
  • Patent number: 7955956
    Abstract: The invention provides a method for recycling/reclaiming a monitor or test wafer and a method for testing an integrated circuit manufacturing process. After a monitor wafer has been used for testing one or more semiconductor wafer processing steps to determine adequacy for use with production wafers, deposited materials and other residues from the tested processing steps are removed, and the stripped wafer is subjected to a thermal anneal to repair defects in its surface and return it to a reusable condition.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: June 7, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Gary C. Barrett, Bradley D. Bucher, Colin L. Carr
  • Patent number: 7946008
    Abstract: A method of manufacturing a piezoelectric vibrator comprises forming a gettering metal film on a surface of a piezoelectric vibrator piece and forming a frequency-adjusting weight, separate from the gettering metal film, on the piezoelectric vibrator piece. The piezoelectric vibrator piece is then placed in a hermetic container after which the hermetic container is hermetically sealed. A laser beam is irradiated on the metal film to heat the same to getter gas contained inside the hermetic container, and after completion of gettering, the laser beam is irradiated on the frequency-adjusting weight to adjust the frequency of vibration of the piezoelectric vibrator piece.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: May 24, 2011
    Assignee: Seiko Instruments Inc.
    Inventors: Satoshi Shimizu, Masaru Matsuyama
  • Patent number: 7939432
    Abstract: A method of improving the intrinsic gettering ability of a wafer is described. A first annealing step is performed to the wafer at a first temperature in an atmosphere containing at least one of oxygen gas and nitrogen gas. A second annealing step is performed to the wafer, at a second temperature higher than the first temperature, in the atmosphere.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: May 10, 2011
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Chun-Ling Chiang, Jung-Yu Hsieh, Ling-Wu Yang
  • Patent number: 7923353
    Abstract: It is shown in the invention a method for manufacturing a semiconductor wafer structure with an active layer for impurity removal, which method comprises phases of depositing a first layer on a first wafer surface for providing an active layer, an optional phase of preparation for said first layer for next phase, growing thermal oxide layer on a second wafer, bonding said first and second wafers into a stack, annealing the stack for a crystalline formation in said thermal oxide layer as a second layer, and thinning said first wafer to a pre-determined thickness. The invention concerns also a wafer manufactured according to the method, chip that utilizes such a wafer structure and an electronic device utilizing such a chip.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: April 12, 2011
    Assignee: Okmetic Oyj
    Inventor: Jari Mäkinen
  • Patent number: 7923352
    Abstract: The invention provides a method for activating impurity element added to a semiconductor and performing gettering process in shirt time, and a thermal treatment equipment enabling to perform such the heat-treating.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: April 12, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 7919391
    Abstract: The invention concerns a method of treating one or both bonding surfaces of first and second substrates and in particular, the surfaces of donor and receiver wafers that are intended to be bonded together. A simultaneous cleaning and activation step is carried out immediately prior to bonding the wafers together, by applying to one or both bonding surfaces an activation solution of ammonia (NH4OH) in water, preferably deionized, at a concentration by weight in the range from about 0.05% to 2%. The method is applicable to fabricating structures used in the optics, electronics, or optoelectronics fields.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: April 5, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Cécile Delattre, Frédéric Metral, Daniel Delprat, Christophe Maleville
  • Patent number: 7915145
    Abstract: A silicon substrate is manufactured from single-crystal silicon which is grown to have a carbon concentration equal to or higher than 1.0×1016 atoms/cm3 and equal to or lower than 1.6×1017 atoms/cm3 and an initial oxygen concentration equal to or higher than 1.4×1018 atoms/cm3 and equal to or lower than 1.6×1018 atoms/cm3 by a CZ method. A device is formed on a front, the thickness of the silicon substrate is equal to or more than 5 ?m and equal to or less than 40 ?m, and extrinsic gettering which produces residual stress equal to or more than 5 Mpa and equal to or less than 200 Mpa is applied to a back face of the substrate.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: March 29, 2011
    Assignee: Sumco Corporation
    Inventors: Kazunari Kurita, Shuichi Omote
  • Publication number: 20110065263
    Abstract: It is an object of the invention is to provide a method suitable for reprocessing a semiconductor substrate having favorable planarity. Another object of the invention is to manufacture a reprocessed semiconductor substrate by using the method suitable for reprocessing a semiconductor substrate having favorable planarity, and to manufacture an SOI substrate by using the reprocessed semiconductor substrate. A projecting portion of a semiconductor substrate is removed using a method capable of selectively removing a semiconductor region which is damaged by ion irradiation or the like. Further, an oxide film is formed on a surface of the semiconductor substrate when the semiconductor substrate is planarized by a polishing treatment typified by a CMP method, whereby the semiconductor substrate is evenly polished at a uniform rate. Moreover, a reprocessed semiconductor substrate is manufactured using the aforementioned method, and an SOI substrate is manufactured using the reprocessed semiconductor substrate.
    Type: Application
    Filed: August 19, 2010
    Publication date: March 17, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Ryota IMAHAYASHI, Hideto OHNUMA
  • Patent number: 7893506
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: February 22, 2011
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 7883628
    Abstract: A method for reducing the roughness of a free surface of a semiconductor wafer that includes establishing a first atmosphere in an annealing chamber, replacing the first atmosphere with a second atmosphere that includes a gas selected to and in an amount to substantially eliminate or reduce pollutants on a wafer, and exposing the free surface of the wafer to the second atmosphere to substantially eliminate or reduce pollutants thereon. The second atmosphere is then replaced with a third atmosphere that includes pure, and rapid thermal annealing is performed on the wafer exposed to the third atmosphere in the annealing chamber to substantially reduce the roughness of the free surface of the wafer.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: February 8, 2011
    Assignee: S.O.I.Tec Silicon on Insulator Technologies
    Inventors: Eric Neyret, Ludovic Ecarnot, Emmanuel Arene
  • Publication number: 20100295061
    Abstract: An original wafer, typically silicon, has the form of a desired end PV wafer. The original may be made by rapid solidification or CVD. It has small grains. It is encapsulated in a clean thin film, which contains and protects the silicon when recrystallized to create a larger grain structure. The capsule can be made by heating a wafer in the presence of oxygen, or steam, resulting in silicon dioxide on the outer surface, typically 1-2 microns. Further heating creates a molten zone in space, through which the wafer travels, resulting in recrystallization with a larger grain size. The capsule contains the molten material during recrystallization, and protects against impurities. Recrystallization may be in air. Thermal transfer through backing plates minimizes stresses and defects. After recrystallization, the capsule is removed.
    Type: Application
    Filed: June 26, 2008
    Publication date: November 25, 2010
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Emanuel M. Sachs, James G. Serdy, Eerik T. Hantsoo