Separated By Insulator (i.e., Floating Gate) Patents (Class 438/593)
  • Publication number: 20110217834
    Abstract: Methods and apparatus for selective one-step nitridation of semiconductor substrates is provided. Nitrogen is selectively incorporated in silicon regions of a semiconductor substrate having silicon regions and silicon oxide regions by use of a selective nitridation process. Nitrogen containing radicals may be directed toward the substrate by forming a nitrogen containing plasma and filtering or removing ions from the plasma, or a thermal nitridation process using selective precursors may be performed. A remote plasma generator may be coupled to a processing chamber, optionally including one or more ion filters, showerheads, and radical distributors, or an in situ plasma may be generated and one or more ion filters or shields disposed in the chamber between the plasma generation zone and the substrate support.
    Type: Application
    Filed: February 23, 2011
    Publication date: September 8, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Udayan Ganguly, Theresa Kramer Guarini, Matthew Scott Rogers, Yoshitaka Yokota, Johanes S. Swenberg, Malcolm J. Bevan
  • Patent number: 8008150
    Abstract: A method of forming a flash memory device in a memory cell region of a substrate includes forming a first insulating layer on the substrate, forming a first conductive layer on the first insulating layer, forming trench isolation regions in the substrate extending through the first conductive layer and the first insulating layer to define an active region in the memory cell region between the trench isolation regions, and selectively removing the first conductive layer and the first insulating layer from the memory cell region of the substrate to expose a surface of the active region between the trench isolation regions.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-Hoon Kim
  • Patent number: 8003508
    Abstract: A method of forming a gate line of a semiconductor device, wherein when an etch process for forming a gate line is performed, a loading effect is improved, thereby enhancing the operating speed of a semiconductor device. According to a method of forming a gate line of a semiconductor device in accordance with an aspect of the invention, a stack layer is formed over a semiconductor substrate that includes a first area and a second area. Hard mask patterns are formed over the stack layer so that the hard mask patterns are denser in the first area than in the second area. Next, a loading compensation layer is formed before the stack layer is etched, or the loading compensation layer is deposited after the stack layer is partially etched. Accordingly, a loading effect occurring when the stack layer is etched can be offset.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: August 23, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Chang Ki Park
  • Patent number: 8003985
    Abstract: Apparatus having a dielectric containing scandium and gadolinium can provide a reliable structure with a high dielectric constant (high k). In an embodiment, atomic layer deposition (ALD) can be used to form a nanolaminate dielectric of gadolinium oxide (Gd2O3) and scandium oxide (Sc2O3) In an embodiment, a dielectric structure can be formed by depositing gadolinium oxide by atomic layer deposition onto a substrate surface using precursor chemicals, followed by depositing scandium oxide onto the substrate using precursor chemicals, and repeating to form the thin laminate structure. A dielectric containing scandium and gadolinium may be used as gate insulator of a MOSFET, a capacitor dielectric in a DRAM, as tunnel gate insulators in flash memories, as a NROM dielectric, or as a dielectric in other electronic devices, because the high dielectric constant (high k) of the film provides the functionality of a much thinner silicon dioxide film.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: August 23, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20110201189
    Abstract: Provided are a semiconductor device and a method of forming the semiconductor device. The semiconductor device includes an active region of which an edge is curved. The semiconductor device includes a gate insulating layer, a floating gate, a gate interlayer dielectric layer and a control gate line on the active region. The semiconductor device includes an oxide pattern having a concave top surface between adjacent floating gates. The control gate may be sufficiently spaced apart from the active region by the oxide pattern. The method can provide a semiconductor device that includes a reoxidation process, an active region having a curved edge and an oxide pattern having a top surface of a curved concave shape.
    Type: Application
    Filed: April 26, 2011
    Publication date: August 18, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ki-Yeol Byun, Chan-Kwang Park, Jae-Hwan Moon, Tae-Wan Lim, Seung-Ah Kim
  • Publication number: 20110198681
    Abstract: A semiconductor device having a nonvolatile memory cell which includes a semiconductor substrate, a first insulating film formed over the semiconductor substrate, a control electrode formed over the first insulating film, the first insulating film acting as a gate insulator for the control gate electrode, a second insulating film formed over the semiconductor substrate, and a memory gate electrode formed over the second insulating film and being adjacent to the control gate electrode, the second insulating film acting as a gate insulator for the memory gate electrode and featuring a non-conductive charge trap film, the control gate electrode having a different type conductivity than that of the memory gate electrode. A manufacturing technique for a semiconductor device including a nonvolatile memory cell having control gate and memory gate electrodes is also featured.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 18, 2011
    Inventor: Shoji SHUKURI
  • Patent number: 7998810
    Abstract: A method of forming a gate electrode of a semiconductor device is provided, the method including: forming a plurality of stacked structures each comprising a tunnel dielectric layer, a first silicon layer for floating gates, an intergate dielectric layer, a second silicon layer for control gates, and a mask pattern, on a semiconductor substrate in the stated order; forming a first interlayer dielectric layer between the plurality of stacked structures so that a top surface of the mask pattern is exposed; selectively removing the mask pattern of which the top surface is exposed; forming a third silicon layer in an area from which the hard disk layer was removed, and forming a silicon layer comprising the third silicon layer and the second silicon layer; recessing the first interlayer dielectric layer so that an upper portion of the silicon layer protrudes over the he first interlayer dielectric layer; and forming a metal silicide layer on the upper portion of the silicon layer.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: August 16, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-hee Kim, Gil-heyun Choi, Sang-woo Lee, Chang-won Lee, Jin-ho Park, Eun-ji Jung, Jeong-gil Lee
  • Patent number: 7998812
    Abstract: A semiconductor device includes a memory cell array area, a peripheral circuit area on a periphery of the memory cell array area, and a boundary area having a specific width between the memory cell array area and the peripheral circuit area, the memory cell array area including a cell area including nonvolatile semiconductor memory cells, linear wirings extending from inside of the cell area to an area outside the cell area, and lower layer wirings in a lower layer than the linear wirings in the boundary area and electrically connected to the linear wirings, and wiring widths of the lower layer wirings being larger than widths of the linear wirings, the peripheral circuit area including a patterns electrically connected to the linear wirings via the lower layer wirings, the boundary area failing to be provided with the linear wirings and a wiring in same layer as the linear wirings.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Sakuma, Takuya Futatsuyama
  • Patent number: 7994564
    Abstract: An integrated circuit device includes a substrate; a bottom electrode over the substrate wherein the bottom electrode is in or over a lowest metallization layer over the substrate; a blocking layer over the bottom electrode; a charge-trapping layer over the blocking layer; an insulation layer over the charge-trapping layer; a control gate over the insulation layer; a tunneling layer over the control gate; and a top electrode over the tunneling layer.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: August 9, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Shih Wei Wang
  • Patent number: 7994588
    Abstract: Example embodiments provide a nonvolatile memory device that may be integrated through stacking, a stack module, and a method of fabricating the nonvolatile memory device. In the nonvolatile memory device according to example embodiments, at least one bottom gate electrode may be formed on a substrate. At least one charge storage layer may be formed on the at least one bottom gate electrode, and at least one semiconductor channel layer may be formed on the at least one charge storage layer.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: August 9, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Huaxiang Yin, Young-soo Park, Sun-Il Kim
  • Publication number: 20110183511
    Abstract: A semiconductor memory includes a memory cell array area provided with first and second memory cells and having a first active area and a first element isolation area constituting a line & space structure, and having a floating gate electrode and a control gate electrode in the first active area, a word line contact area adjacent to the memory cell array area and having a second active area, first and second word lines with a metal silicide structure, functioning respectively as the control gate electrodes of the first and second memory cells and arranged to straddle the memory cell array area and the word line contact area. A dummy gate electrode is arranged just below the first and second word lines in the second active area.
    Type: Application
    Filed: April 6, 2011
    Publication date: July 28, 2011
    Inventor: Hideaki MAEKAWA
  • Patent number: 7985650
    Abstract: A nonvolatile semiconductor memory device includes a floating gate electrode which is selectively formed on a main surface of a first conductivity type with a first gate insulating film interposed therebetween, a control gate electrode formed on the floating gate electrode with a second gate insulating film interposed therebetween, and source/drain regions of a second conductivity type which are formed in the main surface of the substrate in correspondence with the respective gate electrodes. The first gate electrode has a three-layer structure in which a silicon nitride film is held between silicon oxide films, and the silicon nitride film includes triple coordinate nitrogen bonds.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichiro Mitani, Daisuke Matsushita
  • Patent number: 7985686
    Abstract: A floating gate for a field effect transistor (and method for forming the same and method of forming a uniform nanoparticle array), includes a plurality of discrete nanoparticles in which at least one of a size, spacing, and density of the nanoparticles is one of templated and defined by a self-assembled material.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: July 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Kathryn Wilder Guarini
  • Patent number: 7985670
    Abstract: A method of realizing a flash floating poly gate using an MPS process can include forming a tunnel oxide layer on an active region of a semiconductor substrate; and then forming a first floating gate on and contacting the tunnel oxide layer; and then forming second and third floating gates on and contacting the first floating gate, wherein the second and third floating gates extend perpendicular to the first floating gate; and then forming a poly meta-stable polysilicon layer on the first, second and third floating gates; and then forming a control gate on the semiconductor substrate including the poly meta-stable polysilicon layer. Therefore, it is possible to increase the surface area of the capacitor by a limited area in comparison with a flat floating gate. As a result, it is possible to improve the coupling ratio essential to the flash memory device and to improve the yield and reliability of the semiconductor device.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: July 26, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Tae-Woong Jeong
  • Patent number: 7981785
    Abstract: A polysilicon electrode layer (103) (a first electrode layer) is formed by forming a polysilicon film on a gate oxide film (102) on a silicon wafer (101). A tungsten layer (105) (a second electrode layer) is formed on this polysilicon electrode layer (103). In addition, a barrier layer (104) is formed on the polysilicon electrode layer (103) before the formation of the tungsten layer (105). Etching is then conducted using a silicon nitride layer (106) as the etching mask. Next, an oxide insulating film (107) is formed on an exposed surface of the polysilicon layer (103) by plasma oxidation wherein a process gas containing oxygen gas and hydrogen gas is used at a process temperature not less than 300° C. With this method, a selective oxidation of the polysilicon electrode layer (103) can be carried out without oxidizing the tungsten layer (105).
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: July 19, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Masaru Sasaki, Yoshiro Kabe
  • Patent number: 7981786
    Abstract: A method of fabricating a non-volatile memory device having a charge trapping layer includes forming a tunneling layer, a charge trapping layer, a blocking layer and a control gate electrode layer over a substrate, forming a mask layer pattern on the control gate electrode layer, performing an etching process using the mask layer pattern as an etching mask to remove an exposed portion of the control gate electrode layer, wherein the etching process is performed as excessive etching to remove the charge trapping layer by a specified thickness, forming an insulating layer for blocking charges from moving on the control gate electrode layer and the mask layer pattern, performing anisotropic etching on the insulating layer to form an insulating layer pattern on a sidewall of the control gate electrode layer and a partial upper sidewall of the blocking layer, and performing an etching process on the blocking layer exposed by the anisotropic etching, wherein the etching process is performed as excessive etching to
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: July 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Moon Sig Joo, Seung Ho Pyi, Ki Seon Park, Heung Jae Cho, Yong Top Kim
  • Patent number: 7972924
    Abstract: A method for manufacturing a memory includes first providing a substrate with a horizontally adjacent control gate region and floating gate region which includes a sacrificial layer and sacrificial sidewalls, removing the sacrificial layer and sacrificial sidewalls to expose the substrate, forming dielectric sidewalls adjacent to the control gate region, forming a floating gate dielectric layer on the exposed substrate and forming a floating gate layer adjacent to the dielectric sidewalls and on the floating gate dielectric layer.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 5, 2011
    Assignee: Nanya Technology Corp.
    Inventors: Hung-Mine Tsai, Ching-Nan Hsiao, Chung-Lin Huang
  • Publication number: 20110156128
    Abstract: The present invention provides a manufacturing method of a dielectric film which reduces a leak current value while suppressing the reduction of a relative permittivity, suppresses the reduction of a deposition rate caused by the reduction of a sputtering rate, and also provides excellent planar uniformity. A dielectric film manufacturing method according to an embodiment of the present invention is forms a dielectric film of a metal oxide mainly containing Al, Si, and O on a substrate, and comprises steps of forming the metal oxide having an amorphous structure in which a molar fraction between an Al element and a Si element, Si/(Si+Al), is 0<Si/(Si+Al)?0.1, and subjecting the metal oxide having the amorphous structure to annealing treatment at a temperature of 1000° C. or more to form the metal oxide including a crystalline phase.
    Type: Application
    Filed: December 21, 2010
    Publication date: June 30, 2011
    Applicant: CANON ANELVA CORPORATION
    Inventors: Junko ONO, Naomu KITANO, Takashi NAKAGAWA
  • Patent number: 7960267
    Abstract: A method of making a semiconductor device on a semiconductor layer includes: forming a gate dielectric over the semiconductor layer; forming a layer of gate material over the gate dielectric; etching the layer of gate material to form a select gate; forming a storage layer that extends over the select gate and over a portion of the semiconductor layer; depositing an amorphous silicon layer over the storage layer; etching the amorphous silicon layer to form a control gate; and annealing the semiconductor device to crystallize the amorphous silicon layer.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 14, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Konstantin V. Loiko, Brian A. Winstead, Taras A. Kirichenko
  • Publication number: 20110133267
    Abstract: A method of fabricating a semiconductor device includes forming a gate insulating film on a semiconductor substrate, forming a charge accumulation layer, an intermediate insulating film and a conductive layer sequentially on the gate insulating film, forming an electrode isolating trench in the conductive layer, the intermediate insulating film and the charge accumulation layer, forming a nitride film on upper and side surfaces of the conductive layer, side surfaces of the intermediate insulating film, side surfaces of the charge accumulation layer and an upper surface of the gate insulating film, removing the nitride film formed on the upper surface of the gate insulating film, and filling the electrode isolating trench with an insulating film.
    Type: Application
    Filed: September 1, 2010
    Publication date: June 9, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro Matsuo, Masayuki Tanaka, Hirofumi Iikawa
  • Publication number: 20110133266
    Abstract: The floating gate of a flash memory may be formed with a flat lower surface facing a substrate and a curved upper surface facing the control gate. In some embodiments, such a device has improved capacitive coupling to the control gate and reduced capacitive coupling to its neighbors.
    Type: Application
    Filed: December 3, 2009
    Publication date: June 9, 2011
    Inventors: Sanh Tang, Krishna K. Parat, Haitao Liu
  • Patent number: 7951670
    Abstract: A split gate memory cell. A floating gate is disposed on and insulated from a substrate comprising an active area separated by a pair of isolation structures formed therein. The floating gate is disposed between the pair of isolation structures and does not overlap the upper surface thereof. A cap layer is disposed on the floating gate. A control gate is disposed over the sidewall of the floating gate and insulated therefrom, partially extending to the upper surface of the cap layer. A source region is formed in the substrate near one side of the floating gate.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: May 31, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Ming Huang, Hung-Cheng Sung, Wen-Ting Chu, Chang-Jen Hsieh, Ya-Chen Kao
  • Publication number: 20110117735
    Abstract: Nonvolatile memory devices may be fabricated to include a switching device on a substrate and/or a storage node electrically connected to the switching device. A storage node may include a lower metal layer electrically connected to the switching device, a first insulating layer, a middle metal layer, a second insulating layer, an upper metal layer, a carbon nanotube layer, and/or a passivation layer stacked on the lower metal layer.
    Type: Application
    Filed: January 3, 2011
    Publication date: May 19, 2011
    Inventors: Chang-wook Moon, Joong S. Jeon, El Mostafa Bourim, Hyun-deok Yang
  • Publication number: 20110108903
    Abstract: According to one exemplary embodiment, a method for fabricating a flash memory cell in a semiconductor die includes forming a control gate stack overlying a floating gate stack in a memory region of a substrate, where the floating gate stack includes a floating gate overlying a portion of a dielectric one layer. The floating gate includes a portion of a metal one layer and the dielectric one layer includes a first high-k dielectric material. The control gate stack can include a control gate including a portion of a metal two layer, where the metal one layer can include a different metal than the metal two layer.
    Type: Application
    Filed: November 6, 2009
    Publication date: May 12, 2011
    Applicant: BROADCOM CORPORATION
    Inventors: Wei Xia, Xiangdong Chen, Frank Hui
  • Patent number: 7939442
    Abstract: Strontium ruthenium oxide provides an effective interface between a ruthenium conductor and a strontium titanium oxide dielectric. Formation of the strontium ruthenium oxide includes the use of atomic layer deposition to form strontium oxide and subsequent annealing of the strontium oxide to form the strontium ruthenium oxide. A first atomic layer deposition of strontium oxide is preformed using water as an oxygen source, followed by a subsequent atomic layer deposition of strontium oxide using ozone as an oxygen source.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 10, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Bhaskar Srinivasan, Vassil Antonov, John Smythe
  • Publication number: 20110104883
    Abstract: A method of fabricating a semiconductor device includes forming a gate insulating film on a semiconductor substrate, forming a first conductive layer on the gate insulating film, forming an intergate insulating film on the first conductive layer, forming a second conductive layer on the intergate insulating film, dividing the conductive layers and the intergate insulating film with a mask pattern formed on the second conductive layer, thereby forming a plurality of gate electrodes, forming a first recess on a first side wall of the first conductive layer and a second recess on a second side wall of the second conductive layer with side surfaces of the gate electrodes being exposed, and burying insulating films between the gate electrodes respectively and forming air gap portions respectively in portions of the buried insulating films corresponding to the recesses.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 5, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hajime NAGANO
  • Patent number: 7932125
    Abstract: Devices and methods for forming self-aligned charge storage regions are disclosed. In one embodiment, a method for manufacturing a semiconductor device comprises forming a layer of a nitride film stacked between two oxide films on a semiconductor substrate, and forming a gate electrode on the layer of the nitride film stacked between the two oxide films. In addition, the method comprises removing side portions of the nitride film such that a central portion of the nitride film below a center portion of the gate electrode remains, oxidizing the central portion of the nitride film, and forming charge storage layers in the side portions of the nitride film, where the charge storage layers are separated by the central portion of the nitride film.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: April 26, 2011
    Assignee: Spansion LLC
    Inventor: Fumihiko Inoue
  • Patent number: 7928503
    Abstract: Some embodiments include methods of forming memory cells. Dopant is implanted into a semiconductor substrate to form a pair of source/drain regions that are spaced from one another by a channel region. The dopant is annealed within the source/drain regions, and then a plurality of charge trapping units are formed over the channel region. Dielectric material is then formed over the charge trapping units, and control gate material is formed over the dielectric material. Some embodiments include memory cells that contain a plurality of nanosized islands of charge trapping material over a channel region, with adjacent islands being spaced from one another by gaps. The memory cells can further include dielectric material over and between the nanosized islands, with the dielectric material forming a container shape having an upwardly opening trough therein. The memory cells can further include control gate material within the trough.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: April 19, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Hussein I. Hanafi
  • Patent number: 7919367
    Abstract: A non-volatile memory cell with increased charge retention is fabricated on the same substrate as logic devices using a single-gate conventional logic process. A silicide-blocking dielectric structure is formed over a floating gate of the NVM cell, thereby preventing silicide formation over the floating gate, while allowing silicide formation over the logic devices. Silicide spiking and bridging are prevented in the NVM cell, as silicide-blocking dielectric structure prevents silicide metal from coming in contact with the floating gate or adjacent sidewall spacers. The silicide-blocking dielectric layer may expose portions of the active regions of the NVM cell, away from the floating gate and adjacent sidewall spacers, thereby enabling silicide formation on these portions. Alternately, the silicide-blocking dielectric layer may cover the active regions of the NVM cell during silicide formation. In this case, silicide-blocking dielectric layer may be thinned or removed after silicide formation.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: April 5, 2011
    Assignee: MoSys, Inc.
    Inventors: Gang-feng Fang, Dennis Sinitsky, Wingyu Leung
  • Patent number: 7919370
    Abstract: A flash device and a manufacturing method thereof are provided. An ONO pattern can be formed on a floating gate, and a control gate can be formed on the ONO pattern. The ONO pattern can be formed with a portion that projects farther out than the sides of the floating gate and the control gate.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: April 5, 2011
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Hyun Ju Lim
  • Patent number: 7915123
    Abstract: A dual node memory device and methods for fabricating the device are provided. In one embodiment the method comprises forming a layered structure with an insulator layer, a charge storage layer, a buffer layer, and a sacrificial layer on a semiconductor substrate. The layers are patterned to form two spaced apart stacks and an exposed substrate portion between the stacks. A gate insulator and a gate electrode are formed on the exposed substrate, and the sacrificial layer and buffer layer are removed. An additional insulator layer is deposited overlying the charge storage layer to form insulator-storage layer-insulator memory storage areas on each side of the gate electrode. Sidewall spacers are formed at the sidewalls of the gate electrode overlying the storage areas. Bit lines are formed in the substrate spaced apart from the gate electrode, and a word line is formed that contacts the gate electrode and the sidewall spacers.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: March 29, 2011
    Assignee: Spansion LLC
    Inventors: Chungho Lee, Hiroyuki Kinoshita, Kuo-Tung Chang, Amol Joshi, Kyunghoon Min, Chi Chang
  • Publication number: 20110070702
    Abstract: A method for fabricating a semiconductor device is provided. A high dielectric constant (high-k) layer and a work function metal layer are formed in sequence on a substrate. A hard mask layer is formed on the work function metal layer, where the material of the hard mask layer is lanthanum oxide. The work function metal layer is patterned by using the hard mask layer as a mask. The hard mask layer is then removed. Afterwards, a gate structure is formed on the substrate.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 24, 2011
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Cheng Chien, Chun-Hsien Lin, Chiu-Hsien Yeh
  • Patent number: 7910435
    Abstract: In a semiconductor device and a method of manufacturing the semiconductor device, the semiconductor device includes a conductive structure, first insulating layers and first conductive layer patterns. The conductive structure includes a first portion, second portions and third portions. The second portions extend in a first direction on the first portion. The second portions are spaced apart from one another in a second direction substantially perpendicular to the first direction. The third portions are provided on the second portions. The third portions are spaced apart from one another in the first and second directions. The first insulating layers cover sidewalls of the second portions. The first conductive layer patterns are provided on the first insulating layers.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: March 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyoung-Seub Rhie
  • Patent number: 7910430
    Abstract: A NAND flash memory device and method of manufacturing the same is disclosed. Source and drain select transistor gates are recessed lower than an active region of a semiconductor substrate. A valid channel length of the source and drain select transistor gates is longer than a channel length of memory cell gates. Accordingly, an electric field between a source region and a drain region of the select transistor can be reduced. It is thus possible to prevent program disturbance from occurring in edge memory cells adjacent to the source and drain select transistors in non-selected cell strings.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: March 22, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jae Chul Om, Nam Kyeong Kim, Se Jun Kim
  • Patent number: 7906396
    Abstract: In a method of fabricating a flash memory, a substrate with isolation structures formed therein and a dielectric layer and a floating gate formed thereon between isolation structures is provided. A mask layer is formed on the substrate, covering the isolation structures in a periphery region and the isolation structure in a cell region adjacent to the periphery region. The isolation structures in the cell region not covered by the mask layer are partially removed. Therefore, a first height difference is between surfaces of the isolation structures in the periphery region and a surface of the dielectric layer, and between a surface of the isolation structure in the cell region adjacent to the periphery region and the surface of the dielectric layer. A second height difference smaller than the first height difference is between surfaces of other isolation structures in the cell region and the surface of the dielectric layer.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: March 15, 2011
    Assignee: Winbond Electronics Corp.
    Inventors: Lu-Ping Chiang, Hsiu-Han Liao
  • Publication number: 20110057245
    Abstract: A nonvolatile semiconductor memory device according to an exemplary embodiment of the present invention including, a first gate electrode formed above a semiconductor substrate via a first insulating film, having a projecting part which projects in upper direction with a certain width; a second gate electrode formed beside a side surface of the first gate electrode via a second insulating film; two side walls having insulation properties formed on a side surface of the second gate electrode and a side surface of the projecting part respectively; and a silicide layer formed on an upper surface of the projecting part and a part of a surface of the second gate electrode, wherein a width of the projecting part is smaller than a width of the first gate electrode below the projecting part.
    Type: Application
    Filed: September 7, 2010
    Publication date: March 10, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Takaaki NAGAI
  • Publication number: 20110059605
    Abstract: Methods of forming non-volatile memory is described. The non-volatile memory includes a substrate having a source region, a drain region and a channel region. The channel region separates the source region and the drain region. An electrically insulating layer is adjacent to the source region, drain region and channel region. A floating gate electrode is adjacent to the electrically insulating layer. The electrically insulating layer separates the floating gate electrode from the channel region. The floating gate electrode has a floating gate major surface. A control gate electrode has a control gate major surface and the control gate major surface opposes the floating gate major surface. A vacuum layer or gas layer at least partially separates the control gate major surface from the floating gate major surface.
    Type: Application
    Filed: November 18, 2010
    Publication date: March 10, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventor: Jun Zheng
  • Patent number: 7902059
    Abstract: In a method of manufacturing a floating gate of a non-volatile semiconductor memory, a pattern is formed on a substrate to have an opening that exposes a portion of the substrate. A first preliminary polysilicon layer is formed on the pattern and the exposed portion of the substrate to substantially fill the opening. A first polysilicon layer is formed by partially etching the first preliminary polysilicon layer until a first void formed in the first preliminary polysilicon layer is exposed. A second polysilicon layer is formed on the first polysilicon layer.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: March 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Hun-Hyeoung Leam, Jai-Dong Lee, Young-Seok Kim, Young-Sub You, Ki-Su Na, Woong Lee
  • Patent number: 7902019
    Abstract: A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: March 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Ho Lee, Nae-In Lee
  • Publication number: 20110053338
    Abstract: In a method of fabricating a flash memory, a substrate with isolation structures formed therein and a dielectric layer and a floating gate formed thereon between isolation structures is provided. A mask layer is formed on the substrate, covering the isolation structures in a periphery region and the isolation structure in a cell region adjacent to the periphery region. The isolation structures in the cell region not covered by the mask layer are partially removed. Therefore, a first height difference is between surfaces of the isolation structures in the periphery region and a surface of the dielectric layer, and between a surface of the isolation structure in the cell region adjacent to the periphery region and the surface of the dielectric layer. A second height difference smaller than the first height difference is between surfaces of other isolation structures in the cell region and the surface of the dielectric layer.
    Type: Application
    Filed: September 2, 2009
    Publication date: March 3, 2011
    Applicant: Winbond Electronics Corp.
    Inventors: Lu-Ping Chiang, Hsiu-Han Liao
  • Publication number: 20110049602
    Abstract: A gate insulating film layer, a floating gate electrode layer, an interelectrode insulating film layer, and a control gate electrode layer are stacked on a silicon substrate, and the control gate electrode film layer is etched to form a plurality of the control gate electrodes having the same width with the width of the memory cell. An arbitrary of the plurality of control gate electrodes is a transistor unit, and an interelectrode insulating film, a floating gate electrode, and a gate insulating film are formed in the transistor unit. In the transistor unit, a conductive material is buried into a contact hole to form a transistor, the contact hole is formed along the plurality of control gate electrodes.
    Type: Application
    Filed: June 15, 2010
    Publication date: March 3, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hidefumi NAWATA
  • Patent number: 7897448
    Abstract: A high voltage transistor exhibiting an improved breakdown voltage and related methods are provided. For example, a method of manufacturing an integrated circuit includes etching a poly silicon layer to provide a gate stacked above a floating gate of a flash memory cell. A source and a drain of the flash memory cell are implanted in a substrate. The poly silicon layer is etched to provide a gate of a high voltage transistor. Lightly doped drain (LDD) implants are provided in source/drain regions of the high voltage transistor in the substrate. An annealing operation is performed on the integrated circuit, wherein the annealing causes each of the LDD implants to form a graded junction in relation to a channel in the substrate between the LDD regions, and further causes sidewalls to oxidize on the gates of the flash memory cell and on the gate of the high voltage transistor.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 1, 2011
    Assignee: Lattice Semiconductor Corporation
    Inventor: Sunil Mehta
  • Patent number: 7898020
    Abstract: A semiconductor memory includes a composite floating structure where an insulation film is formed on a semiconductor substrate, Si-based quantum dots covered with an extremely thin Si oxide film is formed on the insulation film, silicide quantum dots covered with a high dielectric insulation film are formed on the extremely thin Si oxide film, and Si-based quantum dots covered with a high dielectric insulation film are formed on the high dielectric insulation film. Multivalued memory operations can be conducted at a high speed and with stability by applying a certain positive voltage to a gate electrode to accumulate electrons in the silicide quantum dots and by applying a certain negative voltage and weak light to the gate electrode to emit the electrons from the silicide quantum dots.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: March 1, 2011
    Assignee: Hiroshima University
    Inventors: Katsunori Makihara, Seiichi Miyazaki, Seiichiro Higashi
  • Patent number: 7892958
    Abstract: A semiconductor device has two transistors of different structure from each other. One of transistors is P-type and the other is N-type. One of the transistors includes a gate structure in which a polysilicon layer contacts a gate insulation film while the other transistor includes a gate structure in which a metal layer contacts a gate insulation film.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: February 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Lan Lee, Yu-Gyun Shin, Sang-Bom Kang, Hag-Ju Cho, Seong-Geon Park, Taek-Soo Jeon
  • Publication number: 20110039407
    Abstract: A semiconductor device manufacturing method, the method including: forming an insulation layer having a protruding portion, the insulation layer having a surface and a rising surface that protrudes upward from the surface, on a semiconductor substrate; forming a conductive layer to cover the insulation layer having the protruding portion; and removing a predetermined region of the conductive layer by patterning the predetermined region according to an etching process using microwave plasma, which uses a microwave as a plasma source, while applying bias power of 70 mW/cm2 or above on the semiconductor substrate, under a high pressure condition of 85 mTorr or above.
    Type: Application
    Filed: August 26, 2008
    Publication date: February 17, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Tetsuya Nishizuka, Masahiko Takahashi
  • Patent number: 7884415
    Abstract: In a semiconductor device, each of a plurality of floating gate electrodes has an upper end, a lower end and an intermediate portion between the upper and lower ends and is formed so that the intermediate portion has a smaller length in a gate-length direction than each of the upper and lower ends. Each of a plurality of control gate electrodes has an upper end, a lower end and an intermediate portion between the upper and lower ends and is formed so that the intermediate portion has a smaller length in a gate-length direction than each of the upper and lower ends. Each of a plurality of inter-electrode insulating films includes a first air gap formed in a first portion corresponding to the intermediate portion of each floating gate electrode and a second air gap formed in a second portion corresponding to the intermediate portion of each control gate electrode.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: February 8, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hajime Nagano
  • Publication number: 20110024845
    Abstract: A semiconductor device has a first-conductivity-type-channel MOSFET formed on a semiconductor substrate, wherein the first-conductivity-type-channel MOSFET is typically a P-channel MOSFET, and is composed of a gate insulating film and a gate electrode provided over the semiconductor substrate, the gate electrode contains a metal gate electrode provided over the gate insulating film, a metal oxide film provided over the metal gate electrode, and another metal gate electrode provided over metal oxide film.
    Type: Application
    Filed: June 25, 2010
    Publication date: February 3, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Tomohiro HIRAI
  • Publication number: 20110027982
    Abstract: A method of manufacturing a semiconductor device according to the present invention includes the steps of introducing first impurities of a first conductivity type into a main surface of a semiconductor substrate 1 to form a first impurity region, introducing second impurities of a second conductivity type to form a second impurity region, forming a first nickel silicide film on the first impurity region and forming a second nickel silicide film on the second impurity region, removing an oxide film formed on each of the first and second nickel silicide films by using a mixed gas having an NH3 gas and a gas containing a hydrogen element mixed therein, and forming a first conducting film on the first nickel silicide film and forming a second conducting film on the second nickel silicide film, with the oxide film removed.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 3, 2011
    Applicant: Renesas Electronics Corporation
    Inventors: Kazuhito ICHINOSE, Akie YUTANI
  • Patent number: 7871886
    Abstract: A method of making a semiconductor device using a semiconductor substrate includes forming a first insulating layer having a first band energy over the semiconductor substrate. A first semiconductor layer having a second band energy is formed on the first insulating layer. The first semiconductor layer is annealed to form a plurality of first charge retainer globules from the first semiconductor layer. A first protective film is formed over each charge retainer globule of the plurality of first charge retainer globules. A second semiconductor layer is formed having a third band energy over the plurality of first charge retainer globules. The second semiconductor layer is annealed to form a plurality of storage globules from the second semiconductor layer over the plurality of first charge retainer globules. A magnitude of the second band energy is between a magnitude of the first band energy and a magnitude of the third band energy.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: January 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Cheong Min Hong, Sung-Taeg Kang
  • Publication number: 20110006354
    Abstract: A semiconductor device structure, for improving the metal gate leakage within the semiconductor device. A structure for a metal gate electrode for a n-type Field Effect Transistor includes a capping layer; a first metal layer comprising Ti and Al over the capping layer; a metal oxide layer over the first metal layer; a barrier layer over the metal oxide layer; and a second metal layer over the barrier layer.
    Type: Application
    Filed: April 6, 2010
    Publication date: January 13, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shiu-Ko JANGJIAN, Szu-An WU, Sheng-Wen CHEN