Having Metal Oxide Or Copper Sulfide Compound Semiconductive Component Patents (Class 438/85)
  • Publication number: 20110312122
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate including a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer overlying the copper layer to form a multi-layered structure. The method subjects at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species and form a copper indium disulfide material. The copper indium disulfide material includes a thickness of substantially copper sulfide material. The thickness of the copper sulfide material is removed to expose a surface region having a copper poor surface characterized by a copper to indium atomic ratio of less than about 0.95:1. The method subjects the copper poor surface to a metal cation species to convert the copper poor surface from an n-type semiconductor characteristic to a p-type semiconductor characteristic.
    Type: Application
    Filed: August 31, 2011
    Publication date: December 22, 2011
    Applicant: Stion Corporation
    Inventor: Howard W.H. Lee
  • Publication number: 20110284063
    Abstract: A dye-sensitized solar cell (DSSC) is provided. The DSSC anode includes a first electron-collecting layer deposited on a substrate and a first electron-transporting layer deposited on the first electron-collecting layer, the first electron-transporting layer containing light-absorbing dye. The DSSC anode also includes a second nanoporous electron-collecting layer deposited on the first electron-transporting layer; and a second electron-transporting layer deposited on the second porous electron-collecting layer, the second electron-transporting layer containing light-absorbing dye. Methods of fabricating the DSSC anode are also provided.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Inventors: Miao Yu, Wei Zhang, John L. Falconer, Richard D. Noble
  • Publication number: 20110287576
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. The method subject at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species to form a bulk copper indium disulfide material. The bulk copper indium disulfide material includes one or more portions of copper indium disulfide material characterized by a copper-to-indium atomic ratio of less than about 0.95:1 and a copper poor surface comprising a copper to indium atomic ratio of less than about 0.95:1.
    Type: Application
    Filed: August 2, 2011
    Publication date: November 24, 2011
    Applicant: Stion Corporation
    Inventor: Howard W.H. Lee
  • Publication number: 20110287574
    Abstract: A method for forming a thin film photovoltaic device is provided. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A chalcopyrite material is formed overlying the first electrode layer. In a specific embodiment, the chalcopyrite material comprises a copper poor copper indium disulfide region. The copper poor copper indium disulfide region having an atomic ratio of Cu:In of about 0.95 and less. The method includes compensating the copper poor copper indium disulfide region using a sodium species to cause the chalcopyrite material to change from an n-type characteristic to a p-type characteristic. The method includes forming a window layer overlying the chalcopyrite material and forming a second electrode layer overlying the window layer.
    Type: Application
    Filed: August 2, 2011
    Publication date: November 24, 2011
    Applicant: Stion Corporation
    Inventor: Howard W.H. Lee
  • Publication number: 20110277837
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. The method subjects at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species to form a bulk copper indium disulfide material. The bulk copper indium disulfide material comprises one or more portions of copper indium disulfide material and a copper poor surface region characterized by a copper-to-indium atomic ratio of less than about 0.95:1.
    Type: Application
    Filed: July 26, 2011
    Publication date: November 17, 2011
    Applicant: Stion Corporation
    Inventor: Howard W.H. Lee
  • Patent number: 8053350
    Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer on a substrate at a sputtering temperature from about 50° C. to about 250° C., and annealing the transparent conductive oxide layer at an anneal temperature of about 450° C. to about 650° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: November 8, 2011
    Assignee: Primestar Solar, Inc
    Inventors: Scott Daniel Feldman-Peabody, Jennifer Ann Drayton
  • Publication number: 20110269260
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. The method forms a first electrode layer overlying the surface region of the transparent substrate. The method also forms a thin layer of indium material, using a sputtering target of indium material, overlying the first electrode layer to act as an intermediary glue layer to facilitate attachment to the first electrode layer. In a specific embodiment, the method forms a copper material overlying the thin layer of indium material. The method also forms an indium layer overlying the copper material to form a multi layered structure including at least the thin layer of indium material, copper material, and the indium layer. In a preferred embodiment, the multi-layered structure has a first thickness.
    Type: Application
    Filed: July 14, 2011
    Publication date: November 3, 2011
    Applicant: Stion Corporation
    Inventor: MILJON T. BUQUING
  • Patent number: 8049104
    Abstract: A donor silicon wafer may be bonded to a substrate and a lamina cleaved from the donor wafer. A photovoltaic cell may be formed from the lamina bonded to the substrate. An intermetal stack is described that is optimized for use in such a cell. The intermetal stack may include a transparent conductive oxide layer serving as a quarter-wave plate, a low resistance layer, an adhesion layer to help adhesion to the receiver element, and may also include a barrier layer to prevent or impede unwanted diffusion within the stack.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: November 1, 2011
    Assignee: Twin Creek Technologies, Inc.
    Inventors: S. Brad Herner, Mark H. Clark
  • Publication number: 20110263071
    Abstract: The present invention provides a process for preparing a photoanode of a dye-sensitized solar cell (DSSC) by pressure swing impregnation, which includes impregnating a metal oxide layer on a conductive substrate in a photosensitizing dye solution in a vessel; introducing a pressurized inert gas into the vessel to maintain a first pressure therein for a period of time, wherein the first pressure can be lower or higher than the critical pressure of the inert gas and the solution is expanded by the inert gas; further pressurizing the vessel with the inert gas and maintaining at a second pressure higher than the first pressure for a period of time, wherein the inert gas becomes sub-critical or supercritical fluid and dissolves more in the solution, creating an anti-solvent effect, so that the photosensitizing dye further deposits onto the metal oxide layer due to the anti-solvent effect.
    Type: Application
    Filed: August 10, 2010
    Publication date: October 27, 2011
    Applicant: National Tsing Hua University
    Inventors: Chung-Sung Tan, I-Hsiang Lin, Jan-Min Yang
  • Patent number: 8043955
    Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer (e.g., including cadmium stannate) on a substrate from a target in a sputtering atmosphere comprising cadmium. The transparent conductive oxide layer can be sputtered at a sputtering temperature greater of about 100° C. to about 600° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 25, 2011
    Assignee: Primestar Solar, Inc.
    Inventor: Scott Daniel Feldman-Peabody
  • Patent number: 8043954
    Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer on a substrate from a target (e.g., including cadmium stannate) in a sputtering atmosphere comprising cadmium. The transparent conductive oxide layer can be sputtered at a sputtering temperature of about 100° C. to about 600° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: October 25, 2011
    Assignee: Primestar Solar, Inc.
    Inventor: Scott Daniel Feldman-Peabody
  • Publication number: 20110244623
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. A first transparent electrode layer is formed overlying the surface region. A multilayered structure including a copper material and an indium material is formed overlying a electrode surface region. The multilayered structure is subjected to a plurality of sulfur bearing entities during a rapid thermal process to form an absorber material comprising a copper entity, an indium entity, and a sulfur entity. The rapid thermal process uses a ramp time ranging from about 10 Degrees Celsius/second to about 50 Degrees Celsius/second.
    Type: Application
    Filed: September 11, 2009
    Publication date: October 6, 2011
    Applicant: STION CORPORATION
    Inventor: HOWARD W.H. LEE
  • Publication number: 20110240112
    Abstract: Provided are a flexible dye-sensitized solar cell and a method for producing the same.
    Type: Application
    Filed: October 4, 2010
    Publication date: October 6, 2011
    Applicant: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: SUNG-HOON AHN, DOO-MAN CHUN, MIN-SAENG KIM
  • Publication number: 20110240996
    Abstract: Embodiments of this invention disclose optoelectronic devices and their producing methods. The embodiments employ solution processes to produce p-type transition metal oxide layer, active layer, and n-type transition metal oxide layer of the optoelectronic devices. The p-type transition metal oxide layer comprises a copper oxide (CuO) layer or a nickel oxide (NiO) layer or a mixing layer, which comprises CuO or NiO mixed with an n-type transition metal oxide.
    Type: Application
    Filed: June 14, 2011
    Publication date: October 6, 2011
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: CHING-FUH LIN, JING-SHUN HUANG, JIAN-LIN CHIU
  • Patent number: 8026122
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate including a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer overlying the copper layer to form a multi-layered structure. The method subjects at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species and form a copper indium disulfide material. The copper indium disulfide material includes a thickness of substantially copper sulfide material. The thickness of the copper sulfide material is removed to expose a surface region having a copper poor surface characterized by a copper to indium atomic ratio of less than about 0.95:1. The method subjects the copper poor surface to a metal cation species to convert the copper poor surface from an n-type semiconductor characteristic to a p-type semiconductor characteristic.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 27, 2011
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8022502
    Abstract: A nonvolatile memory element comprises a first electrode layer (103), a second electrode (107), and a resistance variable layer (106) which is disposed between the first electrode layer (103) and the second electrode layer (107), a resistance value of the resistance variable layer varying reversibly according to electric signals having different polarities which are applied between the electrodes (103), (107), wherein the resistance variable layer (106) has a first region comprising a first oxygen-deficient tantalum oxide having a composition represented by TaOx (0<x<2.5) and a second region comprising a second oxygen-deficient tantalum oxide having a composition represented by TaOy (x<y<2.5), the first region and the second region being arranged in a thickness direction of the resistance variable layer.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: September 20, 2011
    Assignee: Panasonic Corporation
    Inventors: Yoshihiko Kanzawa, Koji Katayama, Satoru Fujii, Shunsaku Muraoka, Koichi Osano, Satoru Mitani, Ryoko Miyanaga, Takeshi Takagi, Kazuhiko Shimakawa
  • Publication number: 20110220198
    Abstract: A method for forming a bifacial thin film photovoltaic cell includes providing a glass substrate having a surface region covered by an intermediate layer and forming a thin film photovoltaic cell on the surface region. Additionally, the thin film photovoltaic cell includes an anode overlying the intermediate layer, an absorber over the anode, and a window layer and cathode over the absorber mediated by a buffer layer. The anode comprises an aluminum doped zinc oxide (AZO) layer forming a first interface with the intermediate layer and a second interface with the absorber. The AZO layer is configured to induce Fermi level pinning at the first interface and a strain field from the first interface to the second interface.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 15, 2011
    Applicant: Stion Corporation
    Inventors: Ashish Tandon, Fred Mikulec
  • Patent number: 8017415
    Abstract: Thin freestanding nitride films are used as a growth substrate to enhance the optical, electrical, mechanical and mobility of nitride based devices and to enable the use of thick transparent conductive oxides. Optoelectronic devices such as LEDs, laser diodes, solar cells, biomedical devices, thermoelectrics, and other optoelectronic devices may be fabricated on the freestanding nitride films. The refractive index of the freestanding nitride films can be controlled via alloy composition. Light guiding or light extraction optical elements may be formed based on freestanding nitride films with or without layers. Dual sided processing is enabled by use of these freestanding nitride films. This enables more efficient output for light emitting devices and more efficient energy conversion for solar cells.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: September 13, 2011
    Assignee: Goldeneye, Inc.
    Inventors: Scott M. Zimmerman, Karl W. Beeson, William R. Livesay
  • Publication number: 20110214725
    Abstract: A photovoltaic device can include a graded bandgap buffer layer.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 8, 2011
    Applicant: First Solar, Inc.
    Inventor: Markus E. Beck
  • Publication number: 20110214723
    Abstract: Provided are a dye-sensitized solar cell and a method for manufacturing the dye-sensitized solar cell using a carbon nanotube (CNx) doped with nitrogen, wherein the dye-sensitized solar cell using the carbon nanotube (CNx) doped with nitrogen has an improved conductivity and open circuit voltage as compared to those using the carbon nanotube (CNT) and also a high connectivity between a transparent electrode and an oxide semiconductor
    Type: Application
    Filed: July 23, 2010
    Publication date: September 8, 2011
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jeung-Ku Kang, Ga-In Lee, Weon-Ho Shin, Jae-Joon Lee, Narayan Chandra Deb Nath, Subrata Sarker
  • Patent number: 8008112
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. The method subjects at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species to form a bulk copper indium disulfide material. The bulk copper indium disulfide material comprises one or more portions of copper indium disulfide material and a copper poor surface region characterized by a copper-to-indium atomic ratio of less than about 0.95:1.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: August 30, 2011
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8008110
    Abstract: A method for forming a thin film photovoltaic device is provided. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A chalcopyrite material is formed overlying the first electrode layer. In a specific embodiment, the chalcopyrite material comprises a copper poor copper indium disulfide region. The copper poor copper indium disulfide region having an atomic ratio of Cu:In of about 0.95 and less. The method includes compensating the copper poor copper indium disulfide region using a sodium species to cause the chalcopyrite material to change from an n-type characteristic to a p-type characteristic. The method includes forming a window layer overlying the chalcopyrite material and forming a second electrode layer overlying the window layer.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: August 30, 2011
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8008111
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. The method subject at least the multi-layered structure to a thermal treatment process in an environment containing a sulfur bearing species to form a bulk copper indium disulfide material. The bulk copper indium disulfide material includes one or more portions of copper indium disulfide material characterized by a copper-to-indium atomic ratio of less than about 0.95:1 and a copper poor surface comprising a copper to indium atomic ratio of less than about 0.95:1.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: August 30, 2011
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8003431
    Abstract: Provided are a method for antireflection treatment of a zinc oxide film and a method for manufacturing a solar cell using the same. In the anti-reflection treatment, a substrate is prepared, then a polycrystalline zinc oxide film is formed on the substrate. A surface of the polycrystalline zinc oxide film is textured. Here, the roughening of the surface of the polycrystalline zinc oxide film comprises wet-etching the polycrystalline zinc oxide film on the substrate using an etching solution mixed with nitric acid and hydrogen peroxide.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: August 23, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sun Jin Yun, Jaemin Lee, Jun Kwan Kim, JungWook Lim
  • Patent number: 8003430
    Abstract: A method for forming a thin film photovoltaic device. The method includes providing a transparent substrate comprising a surface region, forming a first electrode layer overlying the surface region, forming a copper layer overlying the first electrode layer and forming an indium layer overlying the copper layer to form a multi-layered structure. The multi-layered structure is subjected to a thermal treatment process in an environment containing a sulfur bearing species to forming a copper indium disulfide material. The copper indium disulfide material comprising a copper-to-indium atomic ratio ranging from about 1.2:1 to about 2:1 and a thickness of substantially copper sulfide material having a copper sulfide surface region. The thickness of the copper sulfide material is selectively removed to expose a surface region having a copper poor surface comprising a copper to indium atomic ratio of less than about 0.95:1.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: August 23, 2011
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Publication number: 20110186120
    Abstract: Certain example embodiments of this invention relate to solar cell devices, and/or methods of making the same. More particularly, certain example embodiments relate to a front transparent conductive electrode for solar cell devices (e.g., micro-morph silicon thin-film solar cells), and/or methods of making the same. The electrode of certain example embodiments may include a textured transparent conductive oxide (TCO) layer. The textured layer and/or coating may include at least two feature sizes, wherein at least one type of feature is comparable in size to the wavelength of solar light absorbed by the amorphous portion of the micro-morph silicon solar cell, and the other feature size being comparable to that of micro-crystalline portion. Double-agent etchants may be used to produce such different features sizes. Using a textured TCO-based layer having different feature sizes may improve the efficiency of the solar cell.
    Type: Application
    Filed: January 26, 2011
    Publication date: August 4, 2011
    Applicant: Guardian Industries Corp.
    Inventor: Alexey Krasnov
  • Publication number: 20110146772
    Abstract: Provided is a manufacturing method for a quantum dot-sensitized solar cell electrode for the production of a quantum dot-sensitized solar cell far more excellent in solar energy capture efficiency than ever before. Also provided is a quantum dot-sensitized solar cell electrode obtained by such manufacturing method. Also provided is a quantum dot-sensitized solar cell using such electrode. Also provided is a quantum dot-sensitized solar cell electrode for the production of a quantum dot-sensitized solar cell far more excellent in solar energy capture efficiency than ever before. Also provided is a quantum dot-sensitized solar cell using such electrode.
    Type: Application
    Filed: September 22, 2010
    Publication date: June 23, 2011
    Applicants: NIPPON SHOKUBAI CO., LTD., KINKI UNIVERSITY
    Inventor: Hiroaki TADA
  • Patent number: 7960204
    Abstract: A method for forming a thin film photovoltaic device includes providing a transparent substrate comprising a surface region and forming a first electrode layer overlying the surface region. The method further includes forming a thin layer of copper gallium material overlying the first electrode layer to act as an intermediary adhesive layer to facilitate attachment to the first electrode layer. Additionally, the method includes forming a copper layer overlying the thin layer and forming an indium layer overlying the copper layer to form a multilayered structure and subjecting the multilayered structure to thermal treatment process with sulfur bearing species to form a copper indium disulfide alloy material. The copper indium disulfide alloy material comprises a copper:indium atomic ratio of about 1.2:1 to about 3.0:1 overlying a copper gallium disulfide material converted from the thin layer. Furthermore, the method includes forming a window layer overlying the copper indium disulfide alloy material.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: June 14, 2011
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Publication number: 20110132461
    Abstract: The present invention relates to a dye-sensitized photoelectric conversion element and a method for manufacturing the same which provide a dye-sensitized photoelectric conversion element capable of solving the problem of decreasing the efficiency of photoelectric conversion over time and significantly improving durability, and a method for manufacturing the same, and also relates to an electronic apparatus. A dye-sensitized photoelectric conversion element has a structure in which an electrolyte layer 7 is filled between a semiconductor layer 3 and a counter electrode 6. Z907 and dye A are bounded in different configurations as photosensitizing dyes to the semiconductor layer 3. The electrolyte layer 7 contains 3-methoxypropionitrile as a solvent.
    Type: Application
    Filed: May 31, 2010
    Publication date: June 9, 2011
    Inventors: Masaki Orihashi, Reiko Yoneya, Masahiro Morooka, Yusuke Isshiki, Yusuki Suzuki
  • Patent number: 7951639
    Abstract: A growth method is proposed for high quality zinc oxide comprising the following steps: (1) growing a gallium nitride layer on a sapphire substrate around a temperature of 1000° C.; (2) patterning a SiO2 mask into stripes oriented in the gallium nitride <1 100> or <11 20> direction; (3) growing epitaxial lateral overgrowth of (ELO) gallium nitride layers by controlling the facet planes via choosing the growth temperature and the reactor; (4) depositing zinc oxide films on facets ELO gallium nitride templates by chemical vapor deposition (CVD). Zinc oxide crystal of high quality with a reduced number of crystal defects can be grown on a gallium nitride template. This method can be used to fabricate zinc oxide films with low dislocation density lower than 104/cm?2, which will find important applications in future electronic and optoelectronic devices.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: May 31, 2011
    Assignee: National University of Singapore
    Inventors: Soon Jin Chua, Hailong Zhou, Jianyi Lin, Hui Pan
  • Publication number: 20110120552
    Abstract: A method for producing a monocrystalline solar cell having a passivated back side and a back side contact structure, having the following steps: applying a passivating dielectric layer onto the back side of the cell over the entire surface; removing the passivating layer locally in the area of bus bars and local contact locations; coating the back side of the cell homogeneously to develop an unpatterned, thin metal layer, which touches the surface of the substrate material in the areas free of the passivating layer; generating a thick layer from a conductive paste in the area of the bus bars and the local contact locations; and sintering of the thick layer at a temperature above a predefined eutectic temperature, and the formation of a eutectic, low-resistance connection of the thin metal layer to the surface of the substrate material as well as to the conductive particles of the thick layer paste.
    Type: Application
    Filed: May 5, 2009
    Publication date: May 26, 2011
    Inventors: Karsten Meyer, Hans-Joachim Krokoszinski
  • Publication number: 20110124148
    Abstract: Provided are methods of forming a nano structure and method of forming a solar cell using the same. The method of forming the nano structure includes: preparing a template; ionizing a surface of the template; forming an oxide layer enclosing the template on the surface of the template; and removing the template.
    Type: Application
    Filed: June 30, 2010
    Publication date: May 26, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Mi Hee JUNG, Hogyeong Yun, Mangu Kang, Sangee Kim, Hunkyun Pak
  • Patent number: 7947898
    Abstract: A photoelectric conversion element is disclosed, comprising a compound represented by the following formula between a pair of opposed electrodes: wherein Ar1, AR2 and Ar3 are each a substituted or unsubstituted aryl or a substituted or unsubstituted heterocyclic group, x is an organic residue having an acidic group and n is an integer of 2 to 8. A solar cell comprising the photoelectric conversion element is also disclosed.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: May 24, 2011
    Assignee: Konica Minolta Business Technologies, Inc.
    Inventors: Akihiko Itami, Tomoko Sakimura, Fumitaka Mochizuki, Hideya Miwa
  • Publication number: 20110092011
    Abstract: Provided are a method for antireflection treatment of a zinc oxide film and a method for manufacturing a solar cell using the same. In the anti-reflection treatment, a substrate is prepared, then a polycrystalline zinc oxide film is formed on the substrate. A surface of the polycrystalline zinc oxide film is textured. Here, the roughening of the surface of the polycrystalline zinc oxide film comprises wet-etching the polycrystalline zinc oxide film on the substrate using an etching solution mixed with nitric acid and hydrogen peroxide.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 21, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sun Jin YUN, Jaemin Lee, Jun Kwan Kim, JungWook Lim
  • Patent number: 7923629
    Abstract: Disclosed herein is a method for fabricating a flexible semiconductor electrode including preparing a first substrate having a semiconductor layer disposed on a release layer, forming a second substrate having an adhesive layer disposed on a conductive material-coated flexible substrate, and pressing the first substrate against the second substrate under heat effective to transfer the semiconductor layer from the first substrate to the second substrate. The method allows for a flexible semiconductor electrode to be fabricated at low temperatures in a stable manner, and the flexible semiconductor electrode allows for high photoelectric conversion efficiency in a solar cell.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: April 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young Jun Park, Jung Gyu Nam, Sang Cheol Park, Eun Sung Lee
  • Patent number: 7915072
    Abstract: A coating method for preparing a light absorbing layer of a solar cell is provided. In a non-vacuum environment, an ultrasonic vibrating mixer is employed to mix a CIGS mixture with a mixing fluid to obtain a CIGS coating material. The CIGS coating material is then uniformly coated on a molybdenum (Mo) layer which is driven by a conveyor device, so as to form a CIGS coating material layer having a uniform thickness on the Mo layer. An infrared ray (IR) heating lamp is then used to dry the CIGS coating material layer for removing residue of the mixing fluid remained in the CIGS coating material layer. In such a way, a CIGS light absorbing layer adapted for absorbing a solar energy and converting the absorbed solar energy into an electric energy is obtained. The CIGS light absorbing layer can be then used for fabricating a CIGS solar cell.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: March 29, 2011
    Assignee: Jenn Feng New Energy Co., Ltd.
    Inventor: Chuan-Lung Chuang
  • Publication number: 20110030789
    Abstract: A method of forming a conducting polymer based photovoltaic device including: (a) providing a transparent first electrode; (b) providing the transparent first electrode with a layer of metal oxide nanoparticles, wherein the metal oxide is selected from the group consisting of: TiO2, TiOx, and ZnO; (c) providing the layer of metal oxide nanoparticles with a bulk hetero junction layer including metal oxide nanoparticles and a hole conducting polymer containing thermocleavable groups, wherein the metal oxide is selected from the group consisting of: TiO2, TiOx, CeO2, Nb2O5 and ZnO; (d) heating the bulk heterojunction layer, to cleave the thermally cleavable groups to produce an insoluble hole containing polymer; (e) providing the bulk heterojunction layer with a hole transporting layer; and (f) providing the hole transporting layer with a second electrode. Also a conducting polymer based photovoltaic device, and polymeric compounds suitable for use in such devices and methods.
    Type: Application
    Filed: February 17, 2009
    Publication date: February 10, 2011
    Applicant: THE TECHNICAL UNIVERSITY OF DENMARK
    Inventor: Frederik Christian Krebs
  • Patent number: 7883929
    Abstract: Integrated circuit nonvolatile memory devices are manufactured by forming a variable resistance layer on an integrated circuit substrate. The variable resistance layer includes grains that define grain boundaries between the grains. Conductive filaments are formed along at least some of the grain boundaries. Electrodes are formed on the variable resistance layer. The conductive filaments may be formed by implanting conductive ions into at least some of the grain boundaries. Moreover, the variable resistance layer may be a variable resistance oxide of a metal, and the conductive filaments may be the metal. Related devices are also disclosed.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: February 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Yong Choi, Choong-Ho Lee, Kyu-Charn Park
  • Publication number: 20110024739
    Abstract: A digital X-ray detecting panel includes a wavelength transforming layer and a photoelectric detecting plate. The wavelength transforming layer is configured for transforming X-ray into visible light. The photoelectric detecting plate is disposed under the wavelength transforming layer. The photoelectric detecting plate includes a substrate and a number of photoelectric detecting units disposed on the substrate and arranged in an array. Each of the photoelectric detecting units includes a thin film transistor and a photodiode electrically connected to the thin film transistor. The thin film transistor has an oxide semiconductor layer. The digital X-ray detecting panel can avoid a photocurrent in the thin film transistor, and thereby improving detecting accuracy of the digital X-ray detecting panel. A method for manufacturing the digital X-ray detecting panel is also provided.
    Type: Application
    Filed: February 2, 2010
    Publication date: February 3, 2011
    Inventors: Fang-An SHU, Lee-Tyng Chen, Henry Wang, Wei-Chou Lan
  • Patent number: 7858436
    Abstract: The semiconductor device has: a ZnO-containing substrate containing Li; a zinc silicate layer formed above the ZnO-containing substrate; and a semiconductor layer epitaxially grown relative to the ZnO-containing substrate via the zinc silicate layer.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: December 28, 2010
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Hiroyuki Kato, Michihiro Sano
  • Publication number: 20100313957
    Abstract: Solar cells and methods for manufacturing solar cells and/or components or layers thereof are disclosed. An example method for manufacturing a multi-bandgap quantum dot layer for use in a solar cell may include providing a first precursor compound, providing a second precursor compound, and combining a portion of the first precursor compound with a portion of the second precursor compound to form a multi-bandgap quantum dot layer that includes a plurality of quantum dots that differ in bandgap.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Applicant: Honeywell International Inc.
    Inventors: Linan Zhao, Zhi Zheng, Marilyn Wang, Xuanbin Liu, Huili Tang
  • Patent number: 7851699
    Abstract: A dye-sensitized solar cell comprising a first support, a first conductive layer, a porous photovoltaic layer containing a dye, a carrier transport layer and a second conductive layer stacked in this order, wherein the length of contact side of the porous photovoltaic layer closed to the first conductive layer is different from that of its confronted side of the porous photovoltaic layer.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: December 14, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Ryohsuke Yamanaka, Liyuan Han
  • Publication number: 20100300524
    Abstract: A method for preparing a metal sulfide thin film using ALD and structures incorporating the metal sulfide thin film. The method includes providing an ALD reactor, a substrate, a first precursor comprising a metal and a second precursor comprising a sulfur compound. The first and the second precursors are reacted in the ALD precursor to form a metal sulfide thin film on the substrate. In a particular embodiment, the metal compound comprises Bis(N,N?-di-sec-butylacetamidinato)dicopper(I) and the sulfur compound comprises hydrogen sulfide (H2S) to prepare a Cu2S film. The resulting metal sulfide thin film may be used in among other devices, photovoltaic devices, including interdigitated photovoltaic devices that may use relatively abundant materials for electrical energy production.
    Type: Application
    Filed: May 14, 2010
    Publication date: December 2, 2010
    Inventors: Alex MARTINSON, Jeffrey W. Elam, Michael J. Pellin
  • Patent number: 7842539
    Abstract: There are provided a method of manufacturing a zinc oxide semiconductor, and a zinc oxide semiconductor manufactured using the method. A metal catalyst layer is formed on a zinc oxide thin film that has an electrical characteristic of a n-type semiconductor, and a heat treatment is performed thereon so that the zinc oxide thin film is modified into a zinc oxide thin film having an electrical characteristic of a p-type semiconductor. Hydrogen atoms existing in the zinc oxide thin film are removed by a metal catalyst during the heat treatment. Accordingly, the hydrogen atoms existing in the zinc oxide thin film are removed by the metal catalyst and the heat treatment, and the concentration of holes serving as carriers is increased. That is, an n-type zinc oxide thin film is modified into a highly-concentrated p-type zinc oxide semiconductor.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: November 30, 2010
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Seong Ju Park, Min Suk Oh, Dae Kyu Hwang, Min Ki Kwon
  • Publication number: 20100294350
    Abstract: Provided are a photo-electrode for dye-sensitized solar cells, and back contact dye-sensitized solar cells comprising the same. The photo-electrode includes a porous membrane having metal oxide nano-particles adsorbed in a photosensitive dye directly contacting a transparent substrate without intermediation of a conductive film, so that the photo-electrode has advanced light transmittance without absorption and scattering of incident light by the conductive film and application possibilities to a thin film retaining a high-level of electrical conductivity, as well as an easy forming method for the conductive film.
    Type: Application
    Filed: November 9, 2009
    Publication date: November 25, 2010
    Inventors: Min-Jae KO, Won-Mok Kim, Kyung-Kon Kim, Nam-Gyu Park, Boem-Jin Yoo, Yong-Hyun Kim
  • Publication number: 20100282309
    Abstract: A photovoltaic element (110) for converting electromagnetic radiation into electrical energy is provided, which has a tandem cell structure.
    Type: Application
    Filed: July 22, 2008
    Publication date: November 11, 2010
    Applicant: BASF SE
    Inventors: Neil Gregory Pschirer, Felix Eickemeyer, Jan Schoeneboom, Jae Hyung Hwang, Martin Karlsson, Ingmar Bruder
  • Patent number: 7825329
    Abstract: A method of forming a Group IBIIIAVIA solar cell absorber which includes an active portion and an electrically resistive portion. The absorber is interposed between a base layer and a transparent conductive layer. The electrically resistive portion increases resistance between the base layer and a connector layer that is formed on the transparent conductive layer. The connector layer comprises the busbar and the fingers of the solar cell. The busbar is preferably placed over the electrically resistive portion while the fingers extend over the active portion of the absorber layer.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: November 2, 2010
    Assignee: SoloPower, Inc.
    Inventor: Bulent M. Basol
  • Patent number: 7824952
    Abstract: A display apparatus, such as an organic light emitting diode (“OLED”) display, is driven by thin film transistors (“TFTs”), including a driving TFT and a switching TFT, and a pixel electrode. The display apparatus includes an amorphous silicon layer for the switching TFT and a microcrystalline silicon or polycrystalline silicon layer for the driving TFT. The amorphous silicon layer and the microcrystalline silicon layer are separated by an insulating layer. The apparatus provides product reliability and high image quality. A method of manufacturing the apparatus is characterized by reducing processing steps, and using a special mask which is a half tone mask or a slit mask adapted to forming a source electrode and a drain electrode of the switching TFT or the driving TFT and a semiconductor layer during a photolithographic process.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: November 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Beom Choi, Young-Jin Chang, Kwan-Wook Jung, Seung-Hwan Shim
  • Publication number: 20100269892
    Abstract: There are provided a dye-sensitized solar cell that achieves high photoelectric conversion efficiency, can be manufactured at low cost, and has excellent design properties and a method for manufacturing the dye-sensitized solar cell. Dye-carrying porous titanium oxide layers (2a to 2d) are formed on a transparent conductive substrate (1) such that a desired color is produced and a desired pattern is formed by selecting the type of a sensitizing dye, the thickness, the stacked structure, the particle size of the titanium oxide fine particles or, if the titanium oxide fine particles are composed of at least two types of titanium oxide fine particles having different particle sizes, the combination ratio of the at least two types of titanium oxide fine particles.
    Type: Application
    Filed: October 28, 2009
    Publication date: October 28, 2010
    Applicant: Sony Corporation
    Inventors: Reiko Yoneya, Masaki Orihashi, Yusuke Suzuki, Masahiro Morooka
  • Patent number: 7820471
    Abstract: A paste in which semiconductor fine grain such as titanium oxide fine grain or the like and a binder made of a polymer compound are mixed is coated onto a transparent conductive substrate and sintered, thereby forming a semiconductor layer made of the semiconductor fine grain, after that, ultraviolet rays are irradiated to the semiconductor layer and, by using a photocatalyst effect of the semiconductor fine grain, an organic substance remaining in the semiconductor layer is removed.
    Type: Grant
    Filed: December 26, 2003
    Date of Patent: October 26, 2010
    Assignee: Sony Corporation
    Inventors: Kenichi Ishibashi, Yuichi Tokita, Masahiro Morooka, Yusuke Suzuki, Kazuhiro Noda